remove unneeded #include
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "glheader.h"
32 #include "context.h"
33 #include "colormac.h"
34 #include "context.h"
35 #include "macros.h"
36 #include "imports.h"
37 #include "s_aatriangle.h"
38 #include "s_context.h"
39 #include "s_span.h"
40
41
42 /*
43 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
44 * vertices and the given Z values.
45 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
46 */
47 static INLINE void
48 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
49 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
50 {
51 const GLfloat px = v1[0] - v0[0];
52 const GLfloat py = v1[1] - v0[1];
53 const GLfloat pz = z1 - z0;
54
55 const GLfloat qx = v2[0] - v0[0];
56 const GLfloat qy = v2[1] - v0[1];
57 const GLfloat qz = z2 - z0;
58
59 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
60 const GLfloat a = py * qz - pz * qy;
61 const GLfloat b = pz * qx - px * qz;
62 const GLfloat c = px * qy - py * qx;
63 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
64 on the distance of plane from origin and arbitrary "w" parallel
65 to the plane. */
66 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
67 which is equal to "-d" below. */
68 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
69
70 plane[0] = a;
71 plane[1] = b;
72 plane[2] = c;
73 plane[3] = d;
74 }
75
76
77 /*
78 * Compute coefficients of a plane with a constant Z value.
79 */
80 static INLINE void
81 constant_plane(GLfloat value, GLfloat plane[4])
82 {
83 plane[0] = 0.0;
84 plane[1] = 0.0;
85 plane[2] = -1.0;
86 plane[3] = value;
87 }
88
89 #define CONSTANT_PLANE(VALUE, PLANE) \
90 do { \
91 PLANE[0] = 0.0F; \
92 PLANE[1] = 0.0F; \
93 PLANE[2] = -1.0F; \
94 PLANE[3] = VALUE; \
95 } while (0)
96
97
98
99 /*
100 * Solve plane equation for Z at (X,Y).
101 */
102 static INLINE GLfloat
103 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
104 {
105 ASSERT(plane[2] != 0.0F);
106 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
107 }
108
109
110 #define SOLVE_PLANE(X, Y, PLANE) \
111 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
112
113
114 /*
115 * Return 1 / solve_plane().
116 */
117 static INLINE GLfloat
118 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
119 {
120 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
121 if (denom == 0.0F)
122 return 0.0F;
123 else
124 return -plane[2] / denom;
125 }
126
127
128 /*
129 * Solve plane and return clamped GLchan value.
130 */
131 static INLINE GLchan
132 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
133 {
134 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
135 #if CHAN_TYPE == GL_FLOAT
136 return CLAMP(z, 0.0F, CHAN_MAXF);
137 #else
138 if (z < 0)
139 return 0;
140 else if (z > CHAN_MAX)
141 return CHAN_MAX;
142 return (GLchan) IROUND_POS(z);
143 #endif
144 }
145
146
147
148 /*
149 * Compute how much (area) of the given pixel is inside the triangle.
150 * Vertices MUST be specified in counter-clockwise order.
151 * Return: coverage in [0, 1].
152 */
153 static GLfloat
154 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
155 const GLfloat v2[3], GLint winx, GLint winy)
156 {
157 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
158 * Contributed by Ray Tice.
159 *
160 * Jitter sample positions -
161 * - average should be .5 in x & y for each column
162 * - each of the 16 rows and columns should be used once
163 * - the rectangle formed by the first four points
164 * should contain the other points
165 * - the distrubition should be fairly even in any given direction
166 *
167 * The pattern drawn below isn't optimal, but it's better than a regular
168 * grid. In the drawing, the center of each subpixel is surrounded by
169 * four dots. The "x" marks the jittered position relative to the
170 * subpixel center.
171 */
172 #define POS(a, b) (0.5+a*4+b)/16
173 static const GLfloat samples[16][2] = {
174 /* start with the four corners */
175 { POS(0, 2), POS(0, 0) },
176 { POS(3, 3), POS(0, 2) },
177 { POS(0, 0), POS(3, 1) },
178 { POS(3, 1), POS(3, 3) },
179 /* continue with interior samples */
180 { POS(1, 1), POS(0, 1) },
181 { POS(2, 0), POS(0, 3) },
182 { POS(0, 3), POS(1, 3) },
183 { POS(1, 2), POS(1, 0) },
184 { POS(2, 3), POS(1, 2) },
185 { POS(3, 2), POS(1, 1) },
186 { POS(0, 1), POS(2, 2) },
187 { POS(1, 0), POS(2, 1) },
188 { POS(2, 1), POS(2, 3) },
189 { POS(3, 0), POS(2, 0) },
190 { POS(1, 3), POS(3, 0) },
191 { POS(2, 2), POS(3, 2) }
192 };
193
194 const GLfloat x = (GLfloat) winx;
195 const GLfloat y = (GLfloat) winy;
196 const GLfloat dx0 = v1[0] - v0[0];
197 const GLfloat dy0 = v1[1] - v0[1];
198 const GLfloat dx1 = v2[0] - v1[0];
199 const GLfloat dy1 = v2[1] - v1[1];
200 const GLfloat dx2 = v0[0] - v2[0];
201 const GLfloat dy2 = v0[1] - v2[1];
202 GLint stop = 4, i;
203 GLfloat insideCount = 16.0F;
204
205 #ifdef DEBUG
206 {
207 const GLfloat area = dx0 * dy1 - dx1 * dy0;
208 ASSERT(area >= 0.0);
209 }
210 #endif
211
212 for (i = 0; i < stop; i++) {
213 const GLfloat sx = x + samples[i][0];
214 const GLfloat sy = y + samples[i][1];
215 /* cross product determines if sample is inside or outside each edge */
216 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
217 /* Check if the sample is exactly on an edge. If so, let cross be a
218 * positive or negative value depending on the direction of the edge.
219 */
220 if (cross == 0.0F)
221 cross = dx0 + dy0;
222 if (cross < 0.0F) {
223 /* sample point is outside first edge */
224 insideCount -= 1.0F;
225 stop = 16;
226 }
227 else {
228 /* sample point is inside first edge */
229 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
230 if (cross == 0.0F)
231 cross = dx1 + dy1;
232 if (cross < 0.0F) {
233 /* sample point is outside second edge */
234 insideCount -= 1.0F;
235 stop = 16;
236 }
237 else {
238 /* sample point is inside first and second edges */
239 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
240 if (cross == 0.0F)
241 cross = dx2 + dy2;
242 if (cross < 0.0F) {
243 /* sample point is outside third edge */
244 insideCount -= 1.0F;
245 stop = 16;
246 }
247 }
248 }
249 }
250 if (stop == 4)
251 return 1.0F;
252 else
253 return insideCount * (1.0F / 16.0F);
254 }
255
256
257
258 /*
259 * Compute how much (area) of the given pixel is inside the triangle.
260 * Vertices MUST be specified in counter-clockwise order.
261 * Return: coverage in [0, 15].
262 */
263 static GLint
264 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
265 const GLfloat v2[3], GLint winx, GLint winy)
266 {
267 /* NOTE: 15 samples instead of 16. */
268 static const GLfloat samples[15][2] = {
269 /* start with the four corners */
270 { POS(0, 2), POS(0, 0) },
271 { POS(3, 3), POS(0, 2) },
272 { POS(0, 0), POS(3, 1) },
273 { POS(3, 1), POS(3, 3) },
274 /* continue with interior samples */
275 { POS(1, 1), POS(0, 1) },
276 { POS(2, 0), POS(0, 3) },
277 { POS(0, 3), POS(1, 3) },
278 { POS(1, 2), POS(1, 0) },
279 { POS(2, 3), POS(1, 2) },
280 { POS(3, 2), POS(1, 1) },
281 { POS(0, 1), POS(2, 2) },
282 { POS(1, 0), POS(2, 1) },
283 { POS(2, 1), POS(2, 3) },
284 { POS(3, 0), POS(2, 0) },
285 { POS(1, 3), POS(3, 0) }
286 };
287 const GLfloat x = (GLfloat) winx;
288 const GLfloat y = (GLfloat) winy;
289 const GLfloat dx0 = v1[0] - v0[0];
290 const GLfloat dy0 = v1[1] - v0[1];
291 const GLfloat dx1 = v2[0] - v1[0];
292 const GLfloat dy1 = v2[1] - v1[1];
293 const GLfloat dx2 = v0[0] - v2[0];
294 const GLfloat dy2 = v0[1] - v2[1];
295 GLint stop = 4, i;
296 GLint insideCount = 15;
297
298 #ifdef DEBUG
299 {
300 const GLfloat area = dx0 * dy1 - dx1 * dy0;
301 ASSERT(area >= 0.0);
302 }
303 #endif
304
305 for (i = 0; i < stop; i++) {
306 const GLfloat sx = x + samples[i][0];
307 const GLfloat sy = y + samples[i][1];
308 const GLfloat fx0 = sx - v0[0];
309 const GLfloat fy0 = sy - v0[1];
310 const GLfloat fx1 = sx - v1[0];
311 const GLfloat fy1 = sy - v1[1];
312 const GLfloat fx2 = sx - v2[0];
313 const GLfloat fy2 = sy - v2[1];
314 /* cross product determines if sample is inside or outside each edge */
315 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
316 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
317 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
318 /* Check if the sample is exactly on an edge. If so, let cross be a
319 * positive or negative value depending on the direction of the edge.
320 */
321 if (cross0 == 0.0F)
322 cross0 = dx0 + dy0;
323 if (cross1 == 0.0F)
324 cross1 = dx1 + dy1;
325 if (cross2 == 0.0F)
326 cross2 = dx2 + dy2;
327 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
328 /* point is outside triangle */
329 insideCount--;
330 stop = 15;
331 }
332 }
333 if (stop == 4)
334 return 15;
335 else
336 return insideCount;
337 }
338
339
340
341 static void
342 rgba_aa_tri(GLcontext *ctx,
343 const SWvertex *v0,
344 const SWvertex *v1,
345 const SWvertex *v2)
346 {
347 #define DO_Z
348 #define DO_FOG
349 #define DO_RGBA
350 #include "s_aatritemp.h"
351 }
352
353
354 static void
355 index_aa_tri(GLcontext *ctx,
356 const SWvertex *v0,
357 const SWvertex *v1,
358 const SWvertex *v2)
359 {
360 #define DO_Z
361 #define DO_FOG
362 #define DO_INDEX
363 #include "s_aatritemp.h"
364 }
365
366
367 /*
368 * Compute mipmap level of detail.
369 * XXX we should really include the R coordinate in this computation
370 * in order to do 3-D texture mipmapping.
371 */
372 static INLINE GLfloat
373 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
374 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
375 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
376 {
377 const GLfloat s = solve_plane(cx, cy, sPlane);
378 const GLfloat t = solve_plane(cx, cy, tPlane);
379 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
380 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
381 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
382 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
383 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
384 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
385 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
386 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
387 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
388 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
389 GLfloat maxU, maxV, rho, lambda;
390 dsdx = FABSF(dsdx);
391 dsdy = FABSF(dsdy);
392 dtdx = FABSF(dtdx);
393 dtdy = FABSF(dtdy);
394 maxU = MAX2(dsdx, dsdy) * texWidth;
395 maxV = MAX2(dtdx, dtdy) * texHeight;
396 rho = MAX2(maxU, maxV);
397 lambda = LOG2(rho);
398 return lambda;
399 }
400
401
402 static void
403 tex_aa_tri(GLcontext *ctx,
404 const SWvertex *v0,
405 const SWvertex *v1,
406 const SWvertex *v2)
407 {
408 #define DO_Z
409 #define DO_FOG
410 #define DO_RGBA
411 #define DO_TEX
412 #include "s_aatritemp.h"
413 }
414
415
416 static void
417 spec_tex_aa_tri(GLcontext *ctx,
418 const SWvertex *v0,
419 const SWvertex *v1,
420 const SWvertex *v2)
421 {
422 #define DO_Z
423 #define DO_FOG
424 #define DO_RGBA
425 #define DO_TEX
426 #define DO_SPEC
427 #include "s_aatritemp.h"
428 }
429
430
431 static void
432 multitex_aa_tri(GLcontext *ctx,
433 const SWvertex *v0,
434 const SWvertex *v1,
435 const SWvertex *v2)
436 {
437 #define DO_Z
438 #define DO_FOG
439 #define DO_RGBA
440 #define DO_MULTITEX
441 #include "s_aatritemp.h"
442 }
443
444 static void
445 spec_multitex_aa_tri(GLcontext *ctx,
446 const SWvertex *v0,
447 const SWvertex *v1,
448 const SWvertex *v2)
449 {
450 #define DO_Z
451 #define DO_FOG
452 #define DO_RGBA
453 #define DO_MULTITEX
454 #define DO_SPEC
455 #include "s_aatritemp.h"
456 }
457
458
459 /*
460 * Examine GL state and set swrast->Triangle to an
461 * appropriate antialiased triangle rasterizer function.
462 */
463 void
464 _swrast_set_aa_triangle_function(GLcontext *ctx)
465 {
466 ASSERT(ctx->Polygon.SmoothFlag);
467
468 if (ctx->Texture._EnabledCoordUnits != 0) {
469 if (NEED_SECONDARY_COLOR(ctx)) {
470 if (ctx->Texture._EnabledCoordUnits > 1) {
471 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
472 }
473 else {
474 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
475 }
476 }
477 else {
478 if (ctx->Texture._EnabledCoordUnits > 1) {
479 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
480 }
481 else {
482 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
483 }
484 }
485 }
486 else if (ctx->Visual.rgbMode) {
487 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
488 }
489 else {
490 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
491 }
492
493 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
494 }