Merge branch 'master' of ssh://git.freedesktop.org/git/mesa/mesa into pipe-video
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle rasterizers
28 */
29
30
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/colormac.h"
34 #include "main/macros.h"
35 #include "main/imports.h"
36 #include "s_aatriangle.h"
37 #include "s_context.h"
38 #include "s_span.h"
39
40
41 /*
42 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
43 * vertices and the given Z values.
44 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
45 */
46 static INLINE void
47 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
48 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
49 {
50 const GLfloat px = v1[0] - v0[0];
51 const GLfloat py = v1[1] - v0[1];
52 const GLfloat pz = z1 - z0;
53
54 const GLfloat qx = v2[0] - v0[0];
55 const GLfloat qy = v2[1] - v0[1];
56 const GLfloat qz = z2 - z0;
57
58 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
59 const GLfloat a = py * qz - pz * qy;
60 const GLfloat b = pz * qx - px * qz;
61 const GLfloat c = px * qy - py * qx;
62 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
63 on the distance of plane from origin and arbitrary "w" parallel
64 to the plane. */
65 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
66 which is equal to "-d" below. */
67 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
68
69 plane[0] = a;
70 plane[1] = b;
71 plane[2] = c;
72 plane[3] = d;
73 }
74
75
76 /*
77 * Compute coefficients of a plane with a constant Z value.
78 */
79 static INLINE void
80 constant_plane(GLfloat value, GLfloat plane[4])
81 {
82 plane[0] = 0.0;
83 plane[1] = 0.0;
84 plane[2] = -1.0;
85 plane[3] = value;
86 }
87
88 #define CONSTANT_PLANE(VALUE, PLANE) \
89 do { \
90 PLANE[0] = 0.0F; \
91 PLANE[1] = 0.0F; \
92 PLANE[2] = -1.0F; \
93 PLANE[3] = VALUE; \
94 } while (0)
95
96
97
98 /*
99 * Solve plane equation for Z at (X,Y).
100 */
101 static INLINE GLfloat
102 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
103 {
104 ASSERT(plane[2] != 0.0F);
105 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
106 }
107
108
109 #define SOLVE_PLANE(X, Y, PLANE) \
110 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
111
112
113 /*
114 * Return 1 / solve_plane().
115 */
116 static INLINE GLfloat
117 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
118 {
119 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
120 if (denom == 0.0F)
121 return 0.0F;
122 else
123 return -plane[2] / denom;
124 }
125
126
127 /*
128 * Solve plane and return clamped GLchan value.
129 */
130 static INLINE GLchan
131 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
132 {
133 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
134 #if CHAN_TYPE == GL_FLOAT
135 return CLAMP(z, 0.0F, CHAN_MAXF);
136 #else
137 if (z < 0)
138 return 0;
139 else if (z > CHAN_MAX)
140 return CHAN_MAX;
141 return (GLchan) IROUND_POS(z);
142 #endif
143 }
144
145
146 static INLINE GLfloat
147 plane_dx(const GLfloat plane[4])
148 {
149 return -plane[0] / plane[2];
150 }
151
152 static INLINE GLfloat
153 plane_dy(const GLfloat plane[4])
154 {
155 return -plane[1] / plane[2];
156 }
157
158
159
160 /*
161 * Compute how much (area) of the given pixel is inside the triangle.
162 * Vertices MUST be specified in counter-clockwise order.
163 * Return: coverage in [0, 1].
164 */
165 static GLfloat
166 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
167 const GLfloat v2[3], GLint winx, GLint winy)
168 {
169 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
170 * Contributed by Ray Tice.
171 *
172 * Jitter sample positions -
173 * - average should be .5 in x & y for each column
174 * - each of the 16 rows and columns should be used once
175 * - the rectangle formed by the first four points
176 * should contain the other points
177 * - the distrubition should be fairly even in any given direction
178 *
179 * The pattern drawn below isn't optimal, but it's better than a regular
180 * grid. In the drawing, the center of each subpixel is surrounded by
181 * four dots. The "x" marks the jittered position relative to the
182 * subpixel center.
183 */
184 #define POS(a, b) (0.5+a*4+b)/16
185 static const GLfloat samples[16][2] = {
186 /* start with the four corners */
187 { POS(0, 2), POS(0, 0) },
188 { POS(3, 3), POS(0, 2) },
189 { POS(0, 0), POS(3, 1) },
190 { POS(3, 1), POS(3, 3) },
191 /* continue with interior samples */
192 { POS(1, 1), POS(0, 1) },
193 { POS(2, 0), POS(0, 3) },
194 { POS(0, 3), POS(1, 3) },
195 { POS(1, 2), POS(1, 0) },
196 { POS(2, 3), POS(1, 2) },
197 { POS(3, 2), POS(1, 1) },
198 { POS(0, 1), POS(2, 2) },
199 { POS(1, 0), POS(2, 1) },
200 { POS(2, 1), POS(2, 3) },
201 { POS(3, 0), POS(2, 0) },
202 { POS(1, 3), POS(3, 0) },
203 { POS(2, 2), POS(3, 2) }
204 };
205
206 const GLfloat x = (GLfloat) winx;
207 const GLfloat y = (GLfloat) winy;
208 const GLfloat dx0 = v1[0] - v0[0];
209 const GLfloat dy0 = v1[1] - v0[1];
210 const GLfloat dx1 = v2[0] - v1[0];
211 const GLfloat dy1 = v2[1] - v1[1];
212 const GLfloat dx2 = v0[0] - v2[0];
213 const GLfloat dy2 = v0[1] - v2[1];
214 GLint stop = 4, i;
215 GLfloat insideCount = 16.0F;
216
217 #ifdef DEBUG
218 {
219 const GLfloat area = dx0 * dy1 - dx1 * dy0;
220 ASSERT(area >= 0.0);
221 }
222 #endif
223
224 for (i = 0; i < stop; i++) {
225 const GLfloat sx = x + samples[i][0];
226 const GLfloat sy = y + samples[i][1];
227 /* cross product determines if sample is inside or outside each edge */
228 GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
229 /* Check if the sample is exactly on an edge. If so, let cross be a
230 * positive or negative value depending on the direction of the edge.
231 */
232 if (cross == 0.0F)
233 cross = dx0 + dy0;
234 if (cross < 0.0F) {
235 /* sample point is outside first edge */
236 insideCount -= 1.0F;
237 stop = 16;
238 }
239 else {
240 /* sample point is inside first edge */
241 cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
242 if (cross == 0.0F)
243 cross = dx1 + dy1;
244 if (cross < 0.0F) {
245 /* sample point is outside second edge */
246 insideCount -= 1.0F;
247 stop = 16;
248 }
249 else {
250 /* sample point is inside first and second edges */
251 cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0]));
252 if (cross == 0.0F)
253 cross = dx2 + dy2;
254 if (cross < 0.0F) {
255 /* sample point is outside third edge */
256 insideCount -= 1.0F;
257 stop = 16;
258 }
259 }
260 }
261 }
262 if (stop == 4)
263 return 1.0F;
264 else
265 return insideCount * (1.0F / 16.0F);
266 }
267
268
269
270 static void
271 rgba_aa_tri(GLcontext *ctx,
272 const SWvertex *v0,
273 const SWvertex *v1,
274 const SWvertex *v2)
275 {
276 #define DO_Z
277 #include "s_aatritemp.h"
278 }
279
280
281 static void
282 general_aa_tri(GLcontext *ctx,
283 const SWvertex *v0,
284 const SWvertex *v1,
285 const SWvertex *v2)
286 {
287 #define DO_Z
288 #define DO_ATTRIBS
289 #include "s_aatritemp.h"
290 }
291
292
293
294 /*
295 * Examine GL state and set swrast->Triangle to an
296 * appropriate antialiased triangle rasterizer function.
297 */
298 void
299 _swrast_set_aa_triangle_function(GLcontext *ctx)
300 {
301 SWcontext *swrast = SWRAST_CONTEXT(ctx);
302
303 ASSERT(ctx->Polygon.SmoothFlag);
304
305 if (ctx->Texture._EnabledCoordUnits != 0
306 || ctx->FragmentProgram._Current
307 || swrast->_FogEnabled
308 || NEED_SECONDARY_COLOR(ctx)) {
309 SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
310 }
311 else {
312 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
313 }
314
315 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
316 }