use COPY_CHAN4 macro
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /* $Id: s_aatriangle.c,v 1.27 2003/01/20 15:20:27 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 5.1
6 *
7 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle rasterizers
30 */
31
32
33 #include "glheader.h"
34 #include "colormac.h"
35 #include "macros.h"
36 #include "imports.h"
37 #include "mmath.h"
38 #include "s_aatriangle.h"
39 #include "s_context.h"
40 #include "s_span.h"
41
42
43 /*
44 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
45 * vertices and the given Z values.
46 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
47 */
48 static INLINE void
49 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
50 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
51 {
52 const GLfloat px = v1[0] - v0[0];
53 const GLfloat py = v1[1] - v0[1];
54 const GLfloat pz = z1 - z0;
55
56 const GLfloat qx = v2[0] - v0[0];
57 const GLfloat qy = v2[1] - v0[1];
58 const GLfloat qz = z2 - z0;
59
60 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
61 const GLfloat a = py * qz - pz * qy;
62 const GLfloat b = pz * qx - px * qz;
63 const GLfloat c = px * qy - py * qx;
64 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
65 on the distance of plane from origin and arbitrary "w" parallel
66 to the plane. */
67 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
68 which is equal to "-d" below. */
69 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
70
71 plane[0] = a;
72 plane[1] = b;
73 plane[2] = c;
74 plane[3] = d;
75 }
76
77
78 /*
79 * Compute coefficients of a plane with a constant Z value.
80 */
81 static INLINE void
82 constant_plane(GLfloat value, GLfloat plane[4])
83 {
84 plane[0] = 0.0;
85 plane[1] = 0.0;
86 plane[2] = -1.0;
87 plane[3] = value;
88 }
89
90 #define CONSTANT_PLANE(VALUE, PLANE) \
91 do { \
92 PLANE[0] = 0.0F; \
93 PLANE[1] = 0.0F; \
94 PLANE[2] = -1.0F; \
95 PLANE[3] = VALUE; \
96 } while (0)
97
98
99
100 /*
101 * Solve plane equation for Z at (X,Y).
102 */
103 static INLINE GLfloat
104 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
105 {
106 ASSERT(plane[2] != 0.0F);
107 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
108 }
109
110
111 #define SOLVE_PLANE(X, Y, PLANE) \
112 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
113
114
115 /*
116 * Return 1 / solve_plane().
117 */
118 static INLINE GLfloat
119 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
120 {
121 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
122 if (denom == 0.0F)
123 return 0.0F;
124 else
125 return -plane[2] / denom;
126 }
127
128
129 /*
130 * Solve plane and return clamped GLchan value.
131 */
132 static INLINE GLchan
133 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
134 {
135 GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F;
136 if (z < 0.0F)
137 return 0;
138 else if (z > CHAN_MAXF)
139 return (GLchan) CHAN_MAXF;
140 return (GLchan) (GLint) z;
141 }
142
143
144
145 /*
146 * Compute how much (area) of the given pixel is inside the triangle.
147 * Vertices MUST be specified in counter-clockwise order.
148 * Return: coverage in [0, 1].
149 */
150 static GLfloat
151 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
152 const GLfloat v2[3], GLint winx, GLint winy)
153 {
154 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
155 * Contributed by Ray Tice.
156 *
157 * Jitter sample positions -
158 * - average should be .5 in x & y for each column
159 * - each of the 16 rows and columns should be used once
160 * - the rectangle formed by the first four points
161 * should contain the other points
162 * - the distrubition should be fairly even in any given direction
163 *
164 * The pattern drawn below isn't optimal, but it's better than a regular
165 * grid. In the drawing, the center of each subpixel is surrounded by
166 * four dots. The "x" marks the jittered position relative to the
167 * subpixel center.
168 */
169 #define POS(a, b) (0.5+a*4+b)/16
170 static const GLfloat samples[16][2] = {
171 /* start with the four corners */
172 { POS(0, 2), POS(0, 0) },
173 { POS(3, 3), POS(0, 2) },
174 { POS(0, 0), POS(3, 1) },
175 { POS(3, 1), POS(3, 3) },
176 /* continue with interior samples */
177 { POS(1, 1), POS(0, 1) },
178 { POS(2, 0), POS(0, 3) },
179 { POS(0, 3), POS(1, 3) },
180 { POS(1, 2), POS(1, 0) },
181 { POS(2, 3), POS(1, 2) },
182 { POS(3, 2), POS(1, 1) },
183 { POS(0, 1), POS(2, 2) },
184 { POS(1, 0), POS(2, 1) },
185 { POS(2, 1), POS(2, 3) },
186 { POS(3, 0), POS(2, 0) },
187 { POS(1, 3), POS(3, 0) },
188 { POS(2, 2), POS(3, 2) }
189 };
190
191 const GLfloat x = (GLfloat) winx;
192 const GLfloat y = (GLfloat) winy;
193 const GLfloat dx0 = v1[0] - v0[0];
194 const GLfloat dy0 = v1[1] - v0[1];
195 const GLfloat dx1 = v2[0] - v1[0];
196 const GLfloat dy1 = v2[1] - v1[1];
197 const GLfloat dx2 = v0[0] - v2[0];
198 const GLfloat dy2 = v0[1] - v2[1];
199 GLint stop = 4, i;
200 GLfloat insideCount = 16.0F;
201
202 #ifdef DEBUG
203 {
204 const GLfloat area = dx0 * dy1 - dx1 * dy0;
205 ASSERT(area >= 0.0);
206 }
207 #endif
208
209 for (i = 0; i < stop; i++) {
210 const GLfloat sx = x + samples[i][0];
211 const GLfloat sy = y + samples[i][1];
212 const GLfloat fx0 = sx - v0[0];
213 const GLfloat fy0 = sy - v0[1];
214 const GLfloat fx1 = sx - v1[0];
215 const GLfloat fy1 = sy - v1[1];
216 const GLfloat fx2 = sx - v2[0];
217 const GLfloat fy2 = sy - v2[1];
218 /* cross product determines if sample is inside or outside each edge */
219 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
220 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
221 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
222 /* Check if the sample is exactly on an edge. If so, let cross be a
223 * positive or negative value depending on the direction of the edge.
224 */
225 if (cross0 == 0.0F)
226 cross0 = dx0 + dy0;
227 if (cross1 == 0.0F)
228 cross1 = dx1 + dy1;
229 if (cross2 == 0.0F)
230 cross2 = dx2 + dy2;
231 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
232 /* point is outside triangle */
233 insideCount -= 1.0F;
234 stop = 16;
235 }
236 }
237 if (stop == 4)
238 return 1.0F;
239 else
240 return insideCount * (1.0F / 16.0F);
241 }
242
243
244
245 /*
246 * Compute how much (area) of the given pixel is inside the triangle.
247 * Vertices MUST be specified in counter-clockwise order.
248 * Return: coverage in [0, 15].
249 */
250 static GLint
251 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
252 const GLfloat v2[3], GLint winx, GLint winy)
253 {
254 /* NOTE: 15 samples instead of 16. */
255 static const GLfloat samples[15][2] = {
256 /* start with the four corners */
257 { POS(0, 2), POS(0, 0) },
258 { POS(3, 3), POS(0, 2) },
259 { POS(0, 0), POS(3, 1) },
260 { POS(3, 1), POS(3, 3) },
261 /* continue with interior samples */
262 { POS(1, 1), POS(0, 1) },
263 { POS(2, 0), POS(0, 3) },
264 { POS(0, 3), POS(1, 3) },
265 { POS(1, 2), POS(1, 0) },
266 { POS(2, 3), POS(1, 2) },
267 { POS(3, 2), POS(1, 1) },
268 { POS(0, 1), POS(2, 2) },
269 { POS(1, 0), POS(2, 1) },
270 { POS(2, 1), POS(2, 3) },
271 { POS(3, 0), POS(2, 0) },
272 { POS(1, 3), POS(3, 0) }
273 };
274 const GLfloat x = (GLfloat) winx;
275 const GLfloat y = (GLfloat) winy;
276 const GLfloat dx0 = v1[0] - v0[0];
277 const GLfloat dy0 = v1[1] - v0[1];
278 const GLfloat dx1 = v2[0] - v1[0];
279 const GLfloat dy1 = v2[1] - v1[1];
280 const GLfloat dx2 = v0[0] - v2[0];
281 const GLfloat dy2 = v0[1] - v2[1];
282 GLint stop = 4, i;
283 GLint insideCount = 15;
284
285 #ifdef DEBUG
286 {
287 const GLfloat area = dx0 * dy1 - dx1 * dy0;
288 ASSERT(area >= 0.0);
289 }
290 #endif
291
292 for (i = 0; i < stop; i++) {
293 const GLfloat sx = x + samples[i][0];
294 const GLfloat sy = y + samples[i][1];
295 const GLfloat fx0 = sx - v0[0];
296 const GLfloat fy0 = sy - v0[1];
297 const GLfloat fx1 = sx - v1[0];
298 const GLfloat fy1 = sy - v1[1];
299 const GLfloat fx2 = sx - v2[0];
300 const GLfloat fy2 = sy - v2[1];
301 /* cross product determines if sample is inside or outside each edge */
302 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
303 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
304 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
305 /* Check if the sample is exactly on an edge. If so, let cross be a
306 * positive or negative value depending on the direction of the edge.
307 */
308 if (cross0 == 0.0F)
309 cross0 = dx0 + dy0;
310 if (cross1 == 0.0F)
311 cross1 = dx1 + dy1;
312 if (cross2 == 0.0F)
313 cross2 = dx2 + dy2;
314 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
315 /* point is outside triangle */
316 insideCount--;
317 stop = 15;
318 }
319 }
320 if (stop == 4)
321 return 15;
322 else
323 return insideCount;
324 }
325
326
327
328 static void
329 rgba_aa_tri(GLcontext *ctx,
330 const SWvertex *v0,
331 const SWvertex *v1,
332 const SWvertex *v2)
333 {
334 #define DO_Z
335 #define DO_FOG
336 #define DO_RGBA
337 #include "s_aatritemp.h"
338 }
339
340
341 static void
342 index_aa_tri(GLcontext *ctx,
343 const SWvertex *v0,
344 const SWvertex *v1,
345 const SWvertex *v2)
346 {
347 #define DO_Z
348 #define DO_FOG
349 #define DO_INDEX
350 #include "s_aatritemp.h"
351 }
352
353
354 /*
355 * Compute mipmap level of detail.
356 * XXX we should really include the R coordinate in this computation
357 * in order to do 3-D texture mipmapping.
358 */
359 static INLINE GLfloat
360 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
361 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
362 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
363 {
364 const GLfloat s = solve_plane(cx, cy, sPlane);
365 const GLfloat t = solve_plane(cx, cy, tPlane);
366 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
367 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
368 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
369 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
370 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
371 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
372 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
373 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
374 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
375 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
376 GLfloat maxU, maxV, rho, lambda;
377 dsdx = FABSF(dsdx);
378 dsdy = FABSF(dsdy);
379 dtdx = FABSF(dtdx);
380 dtdy = FABSF(dtdy);
381 maxU = MAX2(dsdx, dsdy) * texWidth;
382 maxV = MAX2(dtdx, dtdy) * texHeight;
383 rho = MAX2(maxU, maxV);
384 lambda = LOG2(rho);
385 return lambda;
386 }
387
388
389 static void
390 tex_aa_tri(GLcontext *ctx,
391 const SWvertex *v0,
392 const SWvertex *v1,
393 const SWvertex *v2)
394 {
395 #define DO_Z
396 #define DO_FOG
397 #define DO_RGBA
398 #define DO_TEX
399 #include "s_aatritemp.h"
400 }
401
402
403 static void
404 spec_tex_aa_tri(GLcontext *ctx,
405 const SWvertex *v0,
406 const SWvertex *v1,
407 const SWvertex *v2)
408 {
409 #define DO_Z
410 #define DO_FOG
411 #define DO_RGBA
412 #define DO_TEX
413 #define DO_SPEC
414 #include "s_aatritemp.h"
415 }
416
417
418 static void
419 multitex_aa_tri(GLcontext *ctx,
420 const SWvertex *v0,
421 const SWvertex *v1,
422 const SWvertex *v2)
423 {
424 #define DO_Z
425 #define DO_FOG
426 #define DO_RGBA
427 #define DO_MULTITEX
428 #include "s_aatritemp.h"
429 }
430
431 static void
432 spec_multitex_aa_tri(GLcontext *ctx,
433 const SWvertex *v0,
434 const SWvertex *v1,
435 const SWvertex *v2)
436 {
437 #define DO_Z
438 #define DO_FOG
439 #define DO_RGBA
440 #define DO_MULTITEX
441 #define DO_SPEC
442 #include "s_aatritemp.h"
443 }
444
445
446 /*
447 * Examine GL state and set swrast->Triangle to an
448 * appropriate antialiased triangle rasterizer function.
449 */
450 void
451 _mesa_set_aa_triangle_function(GLcontext *ctx)
452 {
453 ASSERT(ctx->Polygon.SmoothFlag);
454
455 if (ctx->Texture._EnabledUnits != 0) {
456 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
457 if (ctx->Texture._EnabledUnits > 1) {
458 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
459 }
460 else {
461 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
462 }
463 }
464 else {
465 if (ctx->Texture._EnabledUnits > 1) {
466 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
467 }
468 else {
469 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
470 }
471 }
472 }
473 else if (ctx->Visual.rgbMode) {
474 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
475 }
476 else {
477 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
478 }
479
480 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
481 }