improved solve_plane_chan() (Evgeny Kotsuba)
[mesa.git] / src / mesa / swrast / s_aatriangle.c
1 /* $Id: s_aatriangle.c,v 1.28 2003/01/22 15:03:09 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 5.1
6 *
7 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle rasterizers
30 */
31
32
33 #include "glheader.h"
34 #include "colormac.h"
35 #include "macros.h"
36 #include "imports.h"
37 #include "mmath.h"
38 #include "s_aatriangle.h"
39 #include "s_context.h"
40 #include "s_span.h"
41
42
43 /*
44 * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
45 * vertices and the given Z values.
46 * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
47 */
48 static INLINE void
49 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
50 GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
51 {
52 const GLfloat px = v1[0] - v0[0];
53 const GLfloat py = v1[1] - v0[1];
54 const GLfloat pz = z1 - z0;
55
56 const GLfloat qx = v2[0] - v0[0];
57 const GLfloat qy = v2[1] - v0[1];
58 const GLfloat qz = z2 - z0;
59
60 /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
61 const GLfloat a = py * qz - pz * qy;
62 const GLfloat b = pz * qx - px * qz;
63 const GLfloat c = px * qy - py * qx;
64 /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
65 on the distance of plane from origin and arbitrary "w" parallel
66 to the plane. */
67 /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
68 which is equal to "-d" below. */
69 const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
70
71 plane[0] = a;
72 plane[1] = b;
73 plane[2] = c;
74 plane[3] = d;
75 }
76
77
78 /*
79 * Compute coefficients of a plane with a constant Z value.
80 */
81 static INLINE void
82 constant_plane(GLfloat value, GLfloat plane[4])
83 {
84 plane[0] = 0.0;
85 plane[1] = 0.0;
86 plane[2] = -1.0;
87 plane[3] = value;
88 }
89
90 #define CONSTANT_PLANE(VALUE, PLANE) \
91 do { \
92 PLANE[0] = 0.0F; \
93 PLANE[1] = 0.0F; \
94 PLANE[2] = -1.0F; \
95 PLANE[3] = VALUE; \
96 } while (0)
97
98
99
100 /*
101 * Solve plane equation for Z at (X,Y).
102 */
103 static INLINE GLfloat
104 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
105 {
106 ASSERT(plane[2] != 0.0F);
107 return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
108 }
109
110
111 #define SOLVE_PLANE(X, Y, PLANE) \
112 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
113
114
115 /*
116 * Return 1 / solve_plane().
117 */
118 static INLINE GLfloat
119 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
120 {
121 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
122 if (denom == 0.0F)
123 return 0.0F;
124 else
125 return -plane[2] / denom;
126 }
127
128
129 /*
130 * Solve plane and return clamped GLchan value.
131 */
132 static INLINE GLchan
133 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
134 {
135 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
136 #if CHAN_TYPE == GL_FLOAT
137 return CLAMP(z, 0.0F, CHAN_MAXF);
138 #else
139 if (z < 0)
140 return 0;
141 else if (z > CHAN_MAX)
142 return CHAN_MAX;
143 return (GLchan) IROUND_POS(z);
144 #endif
145 }
146
147
148
149 /*
150 * Compute how much (area) of the given pixel is inside the triangle.
151 * Vertices MUST be specified in counter-clockwise order.
152 * Return: coverage in [0, 1].
153 */
154 static GLfloat
155 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
156 const GLfloat v2[3], GLint winx, GLint winy)
157 {
158 /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
159 * Contributed by Ray Tice.
160 *
161 * Jitter sample positions -
162 * - average should be .5 in x & y for each column
163 * - each of the 16 rows and columns should be used once
164 * - the rectangle formed by the first four points
165 * should contain the other points
166 * - the distrubition should be fairly even in any given direction
167 *
168 * The pattern drawn below isn't optimal, but it's better than a regular
169 * grid. In the drawing, the center of each subpixel is surrounded by
170 * four dots. The "x" marks the jittered position relative to the
171 * subpixel center.
172 */
173 #define POS(a, b) (0.5+a*4+b)/16
174 static const GLfloat samples[16][2] = {
175 /* start with the four corners */
176 { POS(0, 2), POS(0, 0) },
177 { POS(3, 3), POS(0, 2) },
178 { POS(0, 0), POS(3, 1) },
179 { POS(3, 1), POS(3, 3) },
180 /* continue with interior samples */
181 { POS(1, 1), POS(0, 1) },
182 { POS(2, 0), POS(0, 3) },
183 { POS(0, 3), POS(1, 3) },
184 { POS(1, 2), POS(1, 0) },
185 { POS(2, 3), POS(1, 2) },
186 { POS(3, 2), POS(1, 1) },
187 { POS(0, 1), POS(2, 2) },
188 { POS(1, 0), POS(2, 1) },
189 { POS(2, 1), POS(2, 3) },
190 { POS(3, 0), POS(2, 0) },
191 { POS(1, 3), POS(3, 0) },
192 { POS(2, 2), POS(3, 2) }
193 };
194
195 const GLfloat x = (GLfloat) winx;
196 const GLfloat y = (GLfloat) winy;
197 const GLfloat dx0 = v1[0] - v0[0];
198 const GLfloat dy0 = v1[1] - v0[1];
199 const GLfloat dx1 = v2[0] - v1[0];
200 const GLfloat dy1 = v2[1] - v1[1];
201 const GLfloat dx2 = v0[0] - v2[0];
202 const GLfloat dy2 = v0[1] - v2[1];
203 GLint stop = 4, i;
204 GLfloat insideCount = 16.0F;
205
206 #ifdef DEBUG
207 {
208 const GLfloat area = dx0 * dy1 - dx1 * dy0;
209 ASSERT(area >= 0.0);
210 }
211 #endif
212
213 for (i = 0; i < stop; i++) {
214 const GLfloat sx = x + samples[i][0];
215 const GLfloat sy = y + samples[i][1];
216 const GLfloat fx0 = sx - v0[0];
217 const GLfloat fy0 = sy - v0[1];
218 const GLfloat fx1 = sx - v1[0];
219 const GLfloat fy1 = sy - v1[1];
220 const GLfloat fx2 = sx - v2[0];
221 const GLfloat fy2 = sy - v2[1];
222 /* cross product determines if sample is inside or outside each edge */
223 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
224 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
225 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
226 /* Check if the sample is exactly on an edge. If so, let cross be a
227 * positive or negative value depending on the direction of the edge.
228 */
229 if (cross0 == 0.0F)
230 cross0 = dx0 + dy0;
231 if (cross1 == 0.0F)
232 cross1 = dx1 + dy1;
233 if (cross2 == 0.0F)
234 cross2 = dx2 + dy2;
235 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
236 /* point is outside triangle */
237 insideCount -= 1.0F;
238 stop = 16;
239 }
240 }
241 if (stop == 4)
242 return 1.0F;
243 else
244 return insideCount * (1.0F / 16.0F);
245 }
246
247
248
249 /*
250 * Compute how much (area) of the given pixel is inside the triangle.
251 * Vertices MUST be specified in counter-clockwise order.
252 * Return: coverage in [0, 15].
253 */
254 static GLint
255 compute_coveragei(const GLfloat v0[3], const GLfloat v1[3],
256 const GLfloat v2[3], GLint winx, GLint winy)
257 {
258 /* NOTE: 15 samples instead of 16. */
259 static const GLfloat samples[15][2] = {
260 /* start with the four corners */
261 { POS(0, 2), POS(0, 0) },
262 { POS(3, 3), POS(0, 2) },
263 { POS(0, 0), POS(3, 1) },
264 { POS(3, 1), POS(3, 3) },
265 /* continue with interior samples */
266 { POS(1, 1), POS(0, 1) },
267 { POS(2, 0), POS(0, 3) },
268 { POS(0, 3), POS(1, 3) },
269 { POS(1, 2), POS(1, 0) },
270 { POS(2, 3), POS(1, 2) },
271 { POS(3, 2), POS(1, 1) },
272 { POS(0, 1), POS(2, 2) },
273 { POS(1, 0), POS(2, 1) },
274 { POS(2, 1), POS(2, 3) },
275 { POS(3, 0), POS(2, 0) },
276 { POS(1, 3), POS(3, 0) }
277 };
278 const GLfloat x = (GLfloat) winx;
279 const GLfloat y = (GLfloat) winy;
280 const GLfloat dx0 = v1[0] - v0[0];
281 const GLfloat dy0 = v1[1] - v0[1];
282 const GLfloat dx1 = v2[0] - v1[0];
283 const GLfloat dy1 = v2[1] - v1[1];
284 const GLfloat dx2 = v0[0] - v2[0];
285 const GLfloat dy2 = v0[1] - v2[1];
286 GLint stop = 4, i;
287 GLint insideCount = 15;
288
289 #ifdef DEBUG
290 {
291 const GLfloat area = dx0 * dy1 - dx1 * dy0;
292 ASSERT(area >= 0.0);
293 }
294 #endif
295
296 for (i = 0; i < stop; i++) {
297 const GLfloat sx = x + samples[i][0];
298 const GLfloat sy = y + samples[i][1];
299 const GLfloat fx0 = sx - v0[0];
300 const GLfloat fy0 = sy - v0[1];
301 const GLfloat fx1 = sx - v1[0];
302 const GLfloat fy1 = sy - v1[1];
303 const GLfloat fx2 = sx - v2[0];
304 const GLfloat fy2 = sy - v2[1];
305 /* cross product determines if sample is inside or outside each edge */
306 GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);
307 GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);
308 GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);
309 /* Check if the sample is exactly on an edge. If so, let cross be a
310 * positive or negative value depending on the direction of the edge.
311 */
312 if (cross0 == 0.0F)
313 cross0 = dx0 + dy0;
314 if (cross1 == 0.0F)
315 cross1 = dx1 + dy1;
316 if (cross2 == 0.0F)
317 cross2 = dx2 + dy2;
318 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {
319 /* point is outside triangle */
320 insideCount--;
321 stop = 15;
322 }
323 }
324 if (stop == 4)
325 return 15;
326 else
327 return insideCount;
328 }
329
330
331
332 static void
333 rgba_aa_tri(GLcontext *ctx,
334 const SWvertex *v0,
335 const SWvertex *v1,
336 const SWvertex *v2)
337 {
338 #define DO_Z
339 #define DO_FOG
340 #define DO_RGBA
341 #include "s_aatritemp.h"
342 }
343
344
345 static void
346 index_aa_tri(GLcontext *ctx,
347 const SWvertex *v0,
348 const SWvertex *v1,
349 const SWvertex *v2)
350 {
351 #define DO_Z
352 #define DO_FOG
353 #define DO_INDEX
354 #include "s_aatritemp.h"
355 }
356
357
358 /*
359 * Compute mipmap level of detail.
360 * XXX we should really include the R coordinate in this computation
361 * in order to do 3-D texture mipmapping.
362 */
363 static INLINE GLfloat
364 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
365 const GLfloat qPlane[4], GLfloat cx, GLfloat cy,
366 GLfloat invQ, GLfloat texWidth, GLfloat texHeight)
367 {
368 const GLfloat s = solve_plane(cx, cy, sPlane);
369 const GLfloat t = solve_plane(cx, cy, tPlane);
370 const GLfloat invQ_x1 = solve_plane_recip(cx+1.0F, cy, qPlane);
371 const GLfloat invQ_y1 = solve_plane_recip(cx, cy+1.0F, qPlane);
372 const GLfloat s_x1 = s - sPlane[0] / sPlane[2];
373 const GLfloat s_y1 = s - sPlane[1] / sPlane[2];
374 const GLfloat t_x1 = t - tPlane[0] / tPlane[2];
375 const GLfloat t_y1 = t - tPlane[1] / tPlane[2];
376 GLfloat dsdx = s_x1 * invQ_x1 - s * invQ;
377 GLfloat dsdy = s_y1 * invQ_y1 - s * invQ;
378 GLfloat dtdx = t_x1 * invQ_x1 - t * invQ;
379 GLfloat dtdy = t_y1 * invQ_y1 - t * invQ;
380 GLfloat maxU, maxV, rho, lambda;
381 dsdx = FABSF(dsdx);
382 dsdy = FABSF(dsdy);
383 dtdx = FABSF(dtdx);
384 dtdy = FABSF(dtdy);
385 maxU = MAX2(dsdx, dsdy) * texWidth;
386 maxV = MAX2(dtdx, dtdy) * texHeight;
387 rho = MAX2(maxU, maxV);
388 lambda = LOG2(rho);
389 return lambda;
390 }
391
392
393 static void
394 tex_aa_tri(GLcontext *ctx,
395 const SWvertex *v0,
396 const SWvertex *v1,
397 const SWvertex *v2)
398 {
399 #define DO_Z
400 #define DO_FOG
401 #define DO_RGBA
402 #define DO_TEX
403 #include "s_aatritemp.h"
404 }
405
406
407 static void
408 spec_tex_aa_tri(GLcontext *ctx,
409 const SWvertex *v0,
410 const SWvertex *v1,
411 const SWvertex *v2)
412 {
413 #define DO_Z
414 #define DO_FOG
415 #define DO_RGBA
416 #define DO_TEX
417 #define DO_SPEC
418 #include "s_aatritemp.h"
419 }
420
421
422 static void
423 multitex_aa_tri(GLcontext *ctx,
424 const SWvertex *v0,
425 const SWvertex *v1,
426 const SWvertex *v2)
427 {
428 #define DO_Z
429 #define DO_FOG
430 #define DO_RGBA
431 #define DO_MULTITEX
432 #include "s_aatritemp.h"
433 }
434
435 static void
436 spec_multitex_aa_tri(GLcontext *ctx,
437 const SWvertex *v0,
438 const SWvertex *v1,
439 const SWvertex *v2)
440 {
441 #define DO_Z
442 #define DO_FOG
443 #define DO_RGBA
444 #define DO_MULTITEX
445 #define DO_SPEC
446 #include "s_aatritemp.h"
447 }
448
449
450 /*
451 * Examine GL state and set swrast->Triangle to an
452 * appropriate antialiased triangle rasterizer function.
453 */
454 void
455 _mesa_set_aa_triangle_function(GLcontext *ctx)
456 {
457 ASSERT(ctx->Polygon.SmoothFlag);
458
459 if (ctx->Texture._EnabledUnits != 0) {
460 if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) {
461 if (ctx->Texture._EnabledUnits > 1) {
462 SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri;
463 }
464 else {
465 SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri;
466 }
467 }
468 else {
469 if (ctx->Texture._EnabledUnits > 1) {
470 SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri;
471 }
472 else {
473 SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri;
474 }
475 }
476 }
477 else if (ctx->Visual.rgbMode) {
478 SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
479 }
480 else {
481 SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;
482 }
483
484 ASSERT(SWRAST_CONTEXT(ctx)->Triangle);
485 }