-"fix" page flipping
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet. That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 * DO_Z - if defined, compute Z values
36 * DO_RGBA - if defined, compute RGBA values
37 * DO_INDEX - if defined, compute color index values
38 * DO_SPEC - if defined, compute specular RGB values
39 * DO_TEX - if defined, compute unit 0 STRQ texcoords
40 * DO_MULTITEX - if defined, compute all unit's STRQ texcoords
41 */
42
43 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
44 {
45 const GLfloat *p0 = v0->win;
46 const GLfloat *p1 = v1->win;
47 const GLfloat *p2 = v2->win;
48 const SWvertex *vMin, *vMid, *vMax;
49 GLint iyMin, iyMax;
50 GLfloat yMin, yMax;
51 GLboolean ltor;
52 GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
53
54 struct sw_span span;
55
56 #ifdef DO_Z
57 GLfloat zPlane[4];
58 #endif
59 #ifdef DO_FOG
60 GLfloat fogPlane[4];
61 #else
62 GLfloat *fog = NULL;
63 #endif
64 #ifdef DO_RGBA
65 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66 #endif
67 #ifdef DO_INDEX
68 GLfloat iPlane[4];
69 #endif
70 #ifdef DO_SPEC
71 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
72 #endif
73 #ifdef DO_TEX
74 GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
75 GLfloat texWidth, texHeight;
76 #elif defined(DO_MULTITEX)
77 GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture S */
78 GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture T */
79 GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture R */
80 GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture Q */
81 GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
82 GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
83 #endif
84 GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
85
86
87 INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
88
89 /* determine bottom to top order of vertices */
90 {
91 GLfloat y0 = v0->win[1];
92 GLfloat y1 = v1->win[1];
93 GLfloat y2 = v2->win[1];
94 if (y0 <= y1) {
95 if (y1 <= y2) {
96 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
97 }
98 else if (y2 <= y0) {
99 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
100 }
101 else {
102 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
103 }
104 }
105 else {
106 if (y0 <= y2) {
107 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
108 }
109 else if (y2 <= y1) {
110 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
111 }
112 else {
113 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
114 }
115 }
116 }
117
118 majDx = vMax->win[0] - vMin->win[0];
119 majDy = vMax->win[1] - vMin->win[1];
120
121 {
122 const GLfloat botDx = vMid->win[0] - vMin->win[0];
123 const GLfloat botDy = vMid->win[1] - vMin->win[1];
124 const GLfloat area = majDx * botDy - botDx * majDy;
125 /* Do backface culling */
126 if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
127 return;
128 ltor = (GLboolean) (area < 0.0F);
129 }
130
131 #ifndef DO_OCCLUSION_TEST
132 ctx->OcclusionResult = GL_TRUE;
133 #endif
134
135 /* Plane equation setup:
136 * We evaluate plane equations at window (x,y) coordinates in order
137 * to compute color, Z, fog, texcoords, etc. This isn't terribly
138 * efficient but it's easy and reliable.
139 */
140 #ifdef DO_Z
141 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
142 span.arrayMask |= SPAN_Z;
143 #endif
144 #ifdef DO_FOG
145 compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
146 span.arrayMask |= SPAN_FOG;
147 #endif
148 #ifdef DO_RGBA
149 if (ctx->Light.ShadeModel == GL_SMOOTH) {
150 compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
151 compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
152 compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
153 compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
154 }
155 else {
156 constant_plane(v2->color[RCOMP], rPlane);
157 constant_plane(v2->color[GCOMP], gPlane);
158 constant_plane(v2->color[BCOMP], bPlane);
159 constant_plane(v2->color[ACOMP], aPlane);
160 }
161 span.arrayMask |= SPAN_RGBA;
162 #endif
163 #ifdef DO_INDEX
164 if (ctx->Light.ShadeModel == GL_SMOOTH) {
165 compute_plane(p0, p1, p2, (GLfloat) v0->index,
166 v1->index, v2->index, iPlane);
167 }
168 else {
169 constant_plane(v2->index, iPlane);
170 }
171 span.arrayMask |= SPAN_INDEX;
172 #endif
173 #ifdef DO_SPEC
174 if (ctx->Light.ShadeModel == GL_SMOOTH) {
175 compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
176 compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
177 compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
178 }
179 else {
180 constant_plane(v2->specular[RCOMP], srPlane);
181 constant_plane(v2->specular[GCOMP], sgPlane);
182 constant_plane(v2->specular[BCOMP], sbPlane);
183 }
184 span.arrayMask |= SPAN_SPEC;
185 #endif
186 #ifdef DO_TEX
187 {
188 const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
189 const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
190 const GLfloat invW0 = v0->win[3];
191 const GLfloat invW1 = v1->win[3];
192 const GLfloat invW2 = v2->win[3];
193 const GLfloat s0 = v0->texcoord[0][0] * invW0;
194 const GLfloat s1 = v1->texcoord[0][0] * invW1;
195 const GLfloat s2 = v2->texcoord[0][0] * invW2;
196 const GLfloat t0 = v0->texcoord[0][1] * invW0;
197 const GLfloat t1 = v1->texcoord[0][1] * invW1;
198 const GLfloat t2 = v2->texcoord[0][1] * invW2;
199 const GLfloat r0 = v0->texcoord[0][2] * invW0;
200 const GLfloat r1 = v1->texcoord[0][2] * invW1;
201 const GLfloat r2 = v2->texcoord[0][2] * invW2;
202 const GLfloat q0 = v0->texcoord[0][3] * invW0;
203 const GLfloat q1 = v1->texcoord[0][3] * invW1;
204 const GLfloat q2 = v2->texcoord[0][3] * invW2;
205 compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
206 compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
207 compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
208 compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
209 texWidth = (GLfloat) texImage->Width;
210 texHeight = (GLfloat) texImage->Height;
211 }
212 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
213 #elif defined(DO_MULTITEX)
214 {
215 GLuint u;
216 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
217 if (ctx->Texture.Unit[u]._ReallyEnabled) {
218 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
219 const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
220 const GLfloat invW0 = v0->win[3];
221 const GLfloat invW1 = v1->win[3];
222 const GLfloat invW2 = v2->win[3];
223 const GLfloat s0 = v0->texcoord[u][0] * invW0;
224 const GLfloat s1 = v1->texcoord[u][0] * invW1;
225 const GLfloat s2 = v2->texcoord[u][0] * invW2;
226 const GLfloat t0 = v0->texcoord[u][1] * invW0;
227 const GLfloat t1 = v1->texcoord[u][1] * invW1;
228 const GLfloat t2 = v2->texcoord[u][1] * invW2;
229 const GLfloat r0 = v0->texcoord[u][2] * invW0;
230 const GLfloat r1 = v1->texcoord[u][2] * invW1;
231 const GLfloat r2 = v2->texcoord[u][2] * invW2;
232 const GLfloat q0 = v0->texcoord[u][3] * invW0;
233 const GLfloat q1 = v1->texcoord[u][3] * invW1;
234 const GLfloat q2 = v2->texcoord[u][3] * invW2;
235 compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
236 compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
237 compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
238 compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
239 texWidth[u] = (GLfloat) texImage->Width;
240 texHeight[u] = (GLfloat) texImage->Height;
241 }
242 }
243 }
244 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
245 #endif
246
247 /* Begin bottom-to-top scan over the triangle.
248 * The long edge will either be on the left or right side of the
249 * triangle. We always scan from the long edge toward the shorter
250 * edges, stopping when we find that coverage = 0. If the long edge
251 * is on the left we scan left-to-right. Else, we scan right-to-left.
252 */
253 yMin = vMin->win[1];
254 yMax = vMax->win[1];
255 iyMin = (GLint) yMin;
256 iyMax = (GLint) yMax + 1;
257
258 if (ltor) {
259 /* scan left to right */
260 const GLfloat *pMin = vMin->win;
261 const GLfloat *pMid = vMid->win;
262 const GLfloat *pMax = vMax->win;
263 const GLfloat dxdy = majDx / majDy;
264 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
265 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
266 GLint iy;
267 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
268 GLint ix, startX = (GLint) (x - xAdj);
269 GLuint count;
270 GLfloat coverage = 0.0F;
271
272 /* skip over fragments with zero coverage */
273 while (startX < MAX_WIDTH) {
274 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
275 if (coverage > 0.0F)
276 break;
277 startX++;
278 }
279
280 /* enter interior of triangle */
281 ix = startX;
282 count = 0;
283 while (coverage > 0.0F) {
284 /* (cx,cy) = center of fragment */
285 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
286 struct span_arrays *array = span.array;
287 #ifdef DO_INDEX
288 array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
289 #else
290 array->coverage[count] = coverage;
291 #endif
292 #ifdef DO_Z
293 array->z[count] = (GLdepth) IROUND(solve_plane(cx, cy, zPlane));
294 #endif
295 #ifdef DO_FOG
296 array->fog[count] = solve_plane(cx, cy, fogPlane);
297 #endif
298 #ifdef DO_RGBA
299 array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
300 array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
301 array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
302 array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
303 #endif
304 #ifdef DO_INDEX
305 array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
306 #endif
307 #ifdef DO_SPEC
308 array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
309 array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
310 array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
311 #endif
312 #ifdef DO_TEX
313 {
314 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
315 array->texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
316 array->texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
317 array->texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
318 array->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
319 cx, cy, invQ,
320 texWidth, texHeight);
321 }
322 #elif defined(DO_MULTITEX)
323 {
324 GLuint unit;
325 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
326 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
327 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
328 array->texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
329 array->texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
330 array->texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
331 array->lambda[unit][count] = compute_lambda(sPlane[unit],
332 tPlane[unit], vPlane[unit], cx, cy, invQ,
333 texWidth[unit], texHeight[unit]);
334 }
335 }
336 }
337 #endif
338 ix++;
339 count++;
340 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
341 }
342
343 if (ix <= startX)
344 continue;
345
346 span.x = startX;
347 span.y = iy;
348 span.end = (GLuint) ix - (GLuint) startX;
349 ASSERT(span.interpMask == 0);
350 #if defined(DO_RGBA)
351 _swrast_write_rgba_span(ctx, &span);
352 #else
353 _swrast_write_index_span(ctx, &span);
354 #endif
355 }
356 }
357 else {
358 /* scan right to left */
359 const GLfloat *pMin = vMin->win;
360 const GLfloat *pMid = vMid->win;
361 const GLfloat *pMax = vMax->win;
362 const GLfloat dxdy = majDx / majDy;
363 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
364 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
365 GLint iy;
366 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
367 GLint ix, left, startX = (GLint) (x + xAdj);
368 GLuint count, n;
369 GLfloat coverage = 0.0F;
370
371 /* make sure we're not past the window edge */
372 if (startX >= ctx->DrawBuffer->_Xmax) {
373 startX = ctx->DrawBuffer->_Xmax - 1;
374 }
375
376 /* skip fragments with zero coverage */
377 while (startX >= 0) {
378 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
379 if (coverage > 0.0F)
380 break;
381 startX--;
382 }
383
384 /* enter interior of triangle */
385 ix = startX;
386 count = 0;
387 while (coverage > 0.0F) {
388 /* (cx,cy) = center of fragment */
389 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
390 struct span_arrays *array = span.array;
391 #ifdef DO_INDEX
392 array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
393 #else
394 array->coverage[ix] = coverage;
395 #endif
396 #ifdef DO_Z
397 array->z[ix] = (GLdepth) IROUND(solve_plane(cx, cy, zPlane));
398 #endif
399 #ifdef DO_FOG
400 array->fog[ix] = solve_plane(cx, cy, fogPlane);
401 #endif
402 #ifdef DO_RGBA
403 array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
404 array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
405 array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
406 array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
407 #endif
408 #ifdef DO_INDEX
409 array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
410 #endif
411 #ifdef DO_SPEC
412 array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
413 array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
414 array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
415 #endif
416 #ifdef DO_TEX
417 {
418 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
419 array->texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
420 array->texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
421 array->texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
422 array->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
423 cx, cy, invQ, texWidth, texHeight);
424 }
425 #elif defined(DO_MULTITEX)
426 {
427 GLuint unit;
428 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
429 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
430 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
431 array->texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
432 array->texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
433 array->texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
434 array->lambda[unit][ix] = compute_lambda(sPlane[unit],
435 tPlane[unit],
436 vPlane[unit],
437 cx, cy, invQ,
438 texWidth[unit],
439 texHeight[unit]);
440 }
441 }
442 }
443 #endif
444 ix--;
445 count++;
446 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
447 }
448
449 if (startX <= ix)
450 continue;
451
452 n = (GLuint) startX - (GLuint) ix;
453
454 left = ix + 1;
455
456 /* shift all values to the left */
457 /* XXX this is temporary */
458 {
459 struct span_arrays *array = span.array;
460 GLint j;
461 for (j = 0; j < (GLint) n; j++) {
462 #ifdef DO_RGBA
463 COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
464 #endif
465 #ifdef DO_SPEC
466 COPY_CHAN4(array->spec[j], array->spec[j + left]);
467 #endif
468 #ifdef DO_INDEX
469 array->index[j] = array->index[j + left];
470 #endif
471 #ifdef DO_Z
472 array->z[j] = array->z[j + left];
473 #endif
474 #ifdef DO_FOG
475 array->fog[j] = array->fog[j + left];
476 #endif
477 #ifdef DO_TEX
478 COPY_4V(array->texcoords[0][j], array->texcoords[0][j + left]);
479 #endif
480 #if defined(DO_MULTITEX) || defined(DO_TEX)
481 array->lambda[0][j] = array->lambda[0][j + left];
482 #endif
483 array->coverage[j] = array->coverage[j + left];
484 }
485 }
486 #ifdef DO_MULTITEX
487 /* shift texcoords */
488 {
489 struct span_arrays *array = span.array;
490 GLuint unit;
491 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
492 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
493 GLint j;
494 for (j = 0; j < (GLint) n; j++) {
495 array->texcoords[unit][j][0] = array->texcoords[unit][j + left][0];
496 array->texcoords[unit][j][1] = array->texcoords[unit][j + left][1];
497 array->texcoords[unit][j][2] = array->texcoords[unit][j + left][2];
498 array->lambda[unit][j] = array->lambda[unit][j + left];
499 }
500 }
501 }
502 }
503 #endif
504
505 span.x = left;
506 span.y = iy;
507 span.end = n;
508 ASSERT(span.interpMask == 0);
509 #if defined(DO_RGBA)
510 _swrast_write_rgba_span(ctx, &span);
511 #else
512 _swrast_write_index_span(ctx, &span);
513 #endif
514 }
515 }
516 }
517
518
519 #ifdef DO_Z
520 #undef DO_Z
521 #endif
522
523 #ifdef DO_FOG
524 #undef DO_FOG
525 #endif
526
527 #ifdef DO_RGBA
528 #undef DO_RGBA
529 #endif
530
531 #ifdef DO_INDEX
532 #undef DO_INDEX
533 #endif
534
535 #ifdef DO_SPEC
536 #undef DO_SPEC
537 #endif
538
539 #ifdef DO_TEX
540 #undef DO_TEX
541 #endif
542
543 #ifdef DO_MULTITEX
544 #undef DO_MULTITEX
545 #endif
546
547 #ifdef DO_OCCLUSION_TEST
548 #undef DO_OCCLUSION_TEST
549 #endif