added dispatch override mechanism, used by trace extension
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /* $Id: s_aatritemp.h,v 1.5 2001/01/05 02:26:49 keithw Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom AA triangle rasterizers.
32 * NOTE: this code hasn't been optimized yet. That'll come after it
33 * works correctly.
34 *
35 * The following macros may be defined to indicate what auxillary information
36 * must be copmuted across the triangle:
37 * DO_Z - if defined, compute Z values
38 * DO_RGBA - if defined, compute RGBA values
39 * DO_INDEX - if defined, compute color index values
40 * DO_SPEC - if defined, compute specular RGB values
41 * DO_TEX - if defined, compute unit 0 STRQ texcoords
42 * DO_MULTITEX - if defined, compute all unit's STRQ texcoords
43 */
44
45 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
46 {
47 const GLfloat *p0 = v0->win;
48 const GLfloat *p1 = v1->win;
49 const GLfloat *p2 = v2->win;
50 const SWvertex *vMin, *vMid, *vMax;
51 GLint iyMin, iyMax;
52 GLfloat yMin, yMax;
53 GLboolean ltor;
54 GLfloat majDx, majDy;
55 #ifdef DO_Z
56 GLfloat zPlane[4]; /* Z (depth) */
57 GLdepth z[MAX_WIDTH];
58 GLfloat fogPlane[4];
59 GLfixed fog[MAX_WIDTH];
60 #endif
61 #ifdef DO_RGBA
62 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; /* color */
63 GLchan rgba[MAX_WIDTH][4];
64 #endif
65 #ifdef DO_INDEX
66 GLfloat iPlane[4]; /* color index */
67 GLuint index[MAX_WIDTH];
68 #endif
69 #ifdef DO_SPEC
70 GLfloat srPlane[4], sgPlane[4], sbPlane[4]; /* spec color */
71 GLchan spec[MAX_WIDTH][4];
72 #endif
73 #ifdef DO_TEX
74 GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
75 GLfloat texWidth, texHeight;
76 GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH];
77 GLfloat lambda[MAX_WIDTH];
78 #elif defined(DO_MULTITEX)
79 GLfloat sPlane[MAX_TEXTURE_UNITS][4];
80 GLfloat tPlane[MAX_TEXTURE_UNITS][4];
81 GLfloat uPlane[MAX_TEXTURE_UNITS][4];
82 GLfloat vPlane[MAX_TEXTURE_UNITS][4];
83 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
84 GLfloat s[MAX_TEXTURE_UNITS][MAX_WIDTH];
85 GLfloat t[MAX_TEXTURE_UNITS][MAX_WIDTH];
86 GLfloat u[MAX_TEXTURE_UNITS][MAX_WIDTH];
87 GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
88 #endif
89 GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
90
91 /* determine bottom to top order of vertices */
92 {
93 GLfloat y0 = v0->win[1];
94 GLfloat y1 = v1->win[1];
95 GLfloat y2 = v2->win[1];
96 if (y0 <= y1) {
97 if (y1 <= y2) {
98 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
99 }
100 else if (y2 <= y0) {
101 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
102 }
103 else {
104 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
105 }
106 }
107 else {
108 if (y0 <= y2) {
109 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
110 }
111 else if (y2 <= y1) {
112 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
113 }
114 else {
115 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
116 }
117 }
118 }
119
120 majDx = vMax->win[0] - vMin->win[0];
121 majDy = vMax->win[1] - vMin->win[1];
122
123 {
124 const GLfloat botDx = vMid->win[0] - vMin->win[0];
125 const GLfloat botDy = vMid->win[1] - vMin->win[1];
126 const GLfloat area = majDx * botDy - botDx * majDy;
127 ltor = (GLboolean) (area < 0.0F);
128 /* Do backface culling */
129 if (area * bf < 0 || area * area < .0025)
130 return;
131 }
132
133 #ifndef DO_OCCLUSION_TEST
134 ctx->OcclusionResult = GL_TRUE;
135 #endif
136
137 /* plane setup */
138 #ifdef DO_Z
139 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
140 compute_plane(p0, p1, p2,
141 v0->fog,
142 v1->fog,
143 v2->fog,
144 fogPlane);
145 #endif
146 #ifdef DO_RGBA
147 if (ctx->Light.ShadeModel == GL_SMOOTH) {
148 compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane);
149 compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane);
150 compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane);
151 compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane);
152 }
153 else {
154 constant_plane(v2->color[RCOMP], rPlane);
155 constant_plane(v2->color[GCOMP], gPlane);
156 constant_plane(v2->color[BCOMP], bPlane);
157 constant_plane(v2->color[ACOMP], aPlane);
158 }
159 #endif
160 #ifdef DO_INDEX
161 if (ctx->Light.ShadeModel == GL_SMOOTH) {
162 compute_plane(p0, p1, p2, v0->index,
163 v1->index, v2->index, iPlane);
164 }
165 else {
166 constant_plane(v2->index, iPlane);
167 }
168 #endif
169 #ifdef DO_SPEC
170 if (ctx->Light.ShadeModel == GL_SMOOTH) {
171 compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane);
172 compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane);
173 compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane);
174 }
175 else {
176 /* KW: added this */
177 constant_plane(v2->specular[RCOMP], srPlane);
178 constant_plane(v2->specular[GCOMP], sgPlane);
179 constant_plane(v2->specular[BCOMP], sbPlane);
180 }
181 #endif
182 #ifdef DO_TEX
183 {
184 const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
185 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
186 const GLfloat invW0 = v0->win[3];
187 const GLfloat invW1 = v1->win[3];
188 const GLfloat invW2 = v2->win[3];
189 const GLfloat s0 = v0->texcoord[0][0] * invW0;
190 const GLfloat s1 = v1->texcoord[0][0] * invW1;
191 const GLfloat s2 = v2->texcoord[0][0] * invW2;
192 const GLfloat t0 = v0->texcoord[0][1] * invW0;
193 const GLfloat t1 = v1->texcoord[0][1] * invW1;
194 const GLfloat t2 = v2->texcoord[0][1] * invW2;
195 const GLfloat r0 = v0->texcoord[0][2] * invW0;
196 const GLfloat r1 = v1->texcoord[0][2] * invW1;
197 const GLfloat r2 = v2->texcoord[0][2] * invW2;
198 const GLfloat q0 = v0->texcoord[0][3] * invW0;
199 const GLfloat q1 = v1->texcoord[0][3] * invW1;
200 const GLfloat q2 = v2->texcoord[0][3] * invW2;
201 compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
202 compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
203 compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
204 compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
205 texWidth = (GLfloat) texImage->Width;
206 texHeight = (GLfloat) texImage->Height;
207 }
208 #elif defined(DO_MULTITEX)
209 {
210 GLuint u;
211 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
212 if (ctx->Texture.Unit[u]._ReallyEnabled) {
213 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
214 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
215 const GLfloat invW0 = v0->win[3];
216 const GLfloat invW1 = v1->win[3];
217 const GLfloat invW2 = v2->win[3];
218 const GLfloat s0 = v0->texcoord[u][0] * invW0;
219 const GLfloat s1 = v1->texcoord[u][0] * invW1;
220 const GLfloat s2 = v2->texcoord[u][0] * invW2;
221 const GLfloat t0 = v0->texcoord[u][1] * invW0;
222 const GLfloat t1 = v1->texcoord[u][1] * invW1;
223 const GLfloat t2 = v2->texcoord[u][1] * invW2;
224 const GLfloat r0 = v0->texcoord[u][2] * invW0;
225 const GLfloat r1 = v1->texcoord[u][2] * invW1;
226 const GLfloat r2 = v2->texcoord[u][2] * invW2;
227 const GLfloat q0 = v0->texcoord[u][3] * invW0;
228 const GLfloat q1 = v1->texcoord[u][3] * invW1;
229 const GLfloat q2 = v2->texcoord[u][3] * invW2;
230 compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
231 compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
232 compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
233 compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
234 texWidth[u] = (GLfloat) texImage->Width;
235 texHeight[u] = (GLfloat) texImage->Height;
236 }
237 }
238 }
239 #endif
240
241 yMin = vMin->win[1];
242 yMax = vMax->win[1];
243 iyMin = (int) yMin;
244 iyMax = (int) yMax + 1;
245
246 if (ltor) {
247 /* scan left to right */
248 const float *pMin = vMin->win;
249 const float *pMid = vMid->win;
250 const float *pMax = vMax->win;
251 const float dxdy = majDx / majDy;
252 const float xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
253 float x = vMin->win[0] - (yMin - iyMin) * dxdy;
254 int iy;
255 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
256 GLint ix, startX = (GLint) (x - xAdj);
257 GLuint count, n;
258 GLfloat coverage = 0.0F;
259 /* skip over fragments with zero coverage */
260 while (startX < MAX_WIDTH) {
261 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
262 if (coverage > 0.0F)
263 break;
264 startX++;
265 }
266
267 /* enter interior of triangle */
268 ix = startX;
269 count = 0;
270 while (coverage > 0.0F) {
271 #ifdef DO_Z
272 z[count] = (GLdepth) solve_plane(ix, iy, zPlane);
273 fog[count] = FloatToFixed(solve_plane(ix, iy, fogPlane));
274 #endif
275 #ifdef DO_RGBA
276 rgba[count][RCOMP] = solve_plane_chan(ix, iy, rPlane);
277 rgba[count][GCOMP] = solve_plane_chan(ix, iy, gPlane);
278 rgba[count][BCOMP] = solve_plane_chan(ix, iy, bPlane);
279 rgba[count][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
280 #endif
281 #ifdef DO_INDEX
282 {
283 GLint frac = compute_coveragei(pMin, pMid, pMax, ix, iy);
284 GLint indx = (GLint) solve_plane(ix, iy, iPlane);
285 index[count] = (indx & ~0xf) | frac;
286 }
287 #endif
288 #ifdef DO_SPEC
289 spec[count][RCOMP] = solve_plane_chan(ix, iy, srPlane);
290 spec[count][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
291 spec[count][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
292 #endif
293 #ifdef DO_TEX
294 {
295 GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
296 s[count] = solve_plane(ix, iy, sPlane) * invQ;
297 t[count] = solve_plane(ix, iy, tPlane) * invQ;
298 u[count] = solve_plane(ix, iy, uPlane) * invQ;
299 lambda[count] = compute_lambda(sPlane, tPlane, invQ,
300 texWidth, texHeight);
301 }
302 #elif defined(DO_MULTITEX)
303 {
304 GLuint unit;
305 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
306 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
307 GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
308 s[unit][count] = solve_plane(ix, iy, sPlane[unit]) * invQ;
309 t[unit][count] = solve_plane(ix, iy, tPlane[unit]) * invQ;
310 u[unit][count] = solve_plane(ix, iy, uPlane[unit]) * invQ;
311 lambda[unit][count] = compute_lambda(sPlane[unit],
312 tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
313 }
314 }
315 }
316 #endif
317 ix++;
318 count++;
319 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
320 }
321
322 n = (GLuint) ix - (GLuint) startX;
323 #ifdef DO_MULTITEX
324 # ifdef DO_SPEC
325 gl_write_multitexture_span(ctx, n, startX, iy, z, fog,
326 (const GLfloat (*)[MAX_WIDTH]) s,
327 (const GLfloat (*)[MAX_WIDTH]) t,
328 (const GLfloat (*)[MAX_WIDTH]) u,
329 (GLfloat (*)[MAX_WIDTH]) lambda,
330 rgba, (const GLchan (*)[4]) spec,
331 GL_POLYGON);
332 # else
333 gl_write_multitexture_span(ctx, n, startX, iy, z, fog,
334 (const GLfloat (*)[MAX_WIDTH]) s,
335 (const GLfloat (*)[MAX_WIDTH]) t,
336 (const GLfloat (*)[MAX_WIDTH]) u,
337 lambda, rgba, NULL, GL_POLYGON);
338 # endif
339 #elif defined(DO_TEX)
340 # ifdef DO_SPEC
341 gl_write_texture_span(ctx, n, startX, iy, z, fog,
342 s, t, u, lambda, rgba,
343 (const GLchan (*)[4]) spec, GL_POLYGON);
344 # else
345 gl_write_texture_span(ctx, n, startX, iy, z, fog,
346 s, t, u, lambda,
347 rgba, NULL, GL_POLYGON);
348 # endif
349 #elif defined(DO_RGBA)
350 gl_write_rgba_span(ctx, n, startX, iy, z, fog, rgba, GL_POLYGON);
351 #elif defined(DO_INDEX)
352 gl_write_index_span(ctx, n, startX, iy, z, fog, index, GL_POLYGON);
353 #endif
354 }
355 }
356 else {
357 /* scan right to left */
358 const GLfloat *pMin = vMin->win;
359 const GLfloat *pMid = vMid->win;
360 const GLfloat *pMax = vMax->win;
361 const GLfloat dxdy = majDx / majDy;
362 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
363 GLfloat x = vMin->win[0] - (yMin - iyMin) * dxdy;
364 GLint iy;
365 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
366 GLint ix, left, startX = (GLint) (x + xAdj);
367 GLuint count, n;
368 GLfloat coverage = 0.0F;
369 /* skip fragments with zero coverage */
370 while (startX >= 0) {
371 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
372 if (coverage > 0.0F)
373 break;
374 startX--;
375 }
376
377 /* enter interior of triangle */
378 ix = startX;
379 count = 0;
380 while (coverage > 0.0F) {
381 #ifdef DO_Z
382 z[ix] = (GLdepth) solve_plane(ix, iy, zPlane);
383 fog[ix] = FloatToFixed(solve_plane(ix, iy, fogPlane));
384 #endif
385 #ifdef DO_RGBA
386 rgba[ix][RCOMP] = solve_plane_chan(ix, iy, rPlane);
387 rgba[ix][GCOMP] = solve_plane_chan(ix, iy, gPlane);
388 rgba[ix][BCOMP] = solve_plane_chan(ix, iy, bPlane);
389 rgba[ix][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
390 #endif
391 #ifdef DO_INDEX
392 {
393 GLint frac = compute_coveragei(pMin, pMax, pMid, ix, iy);
394 GLint indx = (GLint) solve_plane(ix, iy, iPlane);
395 index[ix] = (indx & ~0xf) | frac;
396 }
397 #endif
398 #ifdef DO_SPEC
399 spec[ix][RCOMP] = solve_plane_chan(ix, iy, srPlane);
400 spec[ix][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
401 spec[ix][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
402 #endif
403 #ifdef DO_TEX
404 {
405 GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
406 s[ix] = solve_plane(ix, iy, sPlane) * invQ;
407 t[ix] = solve_plane(ix, iy, tPlane) * invQ;
408 u[ix] = solve_plane(ix, iy, uPlane) * invQ;
409 lambda[ix] = compute_lambda(sPlane, tPlane, invQ,
410 texWidth, texHeight);
411 }
412 #elif defined(DO_MULTITEX)
413 {
414 GLuint unit;
415 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
416 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
417 GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
418 s[unit][ix] = solve_plane(ix, iy, sPlane[unit]) * invQ;
419 t[unit][ix] = solve_plane(ix, iy, tPlane[unit]) * invQ;
420 u[unit][ix] = solve_plane(ix, iy, uPlane[unit]) * invQ;
421 lambda[unit][ix] = compute_lambda(sPlane[unit],
422 tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
423 }
424 }
425 }
426 #endif
427 ix--;
428 count++;
429 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
430 }
431
432 n = (GLuint) startX - (GLuint) ix;
433 left = ix + 1;
434 #ifdef DO_MULTITEX
435 {
436 GLuint unit;
437 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
438 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
439 GLint j;
440 for (j = 0; j < n; j++) {
441 s[unit][j] = s[unit][j + left];
442 t[unit][j] = t[unit][j + left];
443 u[unit][j] = u[unit][j + left];
444 lambda[unit][j] = lambda[unit][j + left];
445 }
446 }
447 }
448 }
449 # ifdef DO_SPEC
450 gl_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
451 (const GLfloat (*)[MAX_WIDTH]) s,
452 (const GLfloat (*)[MAX_WIDTH]) t,
453 (const GLfloat (*)[MAX_WIDTH]) u,
454 lambda, rgba + left,
455 (const GLchan (*)[4]) (spec + left),
456 GL_POLYGON);
457 # else
458 gl_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
459 (const GLfloat (*)[MAX_WIDTH]) s,
460 (const GLfloat (*)[MAX_WIDTH]) t,
461 (const GLfloat (*)[MAX_WIDTH]) u,
462 lambda,
463 rgba + left, NULL, GL_POLYGON);
464 # endif
465 #elif defined(DO_TEX)
466 # ifdef DO_SPEC
467 gl_write_texture_span(ctx, n, left, iy, z + left, fog + left,
468 s + left, t + left, u + left,
469 lambda + left, rgba + left,
470 (const GLchan (*)[4]) (spec + left),
471 GL_POLYGON);
472 # else
473 gl_write_texture_span(ctx, n, left, iy, z + left, fog + left,
474 s + left, t + left,
475 u + left, lambda + left,
476 rgba + left, NULL, GL_POLYGON);
477 # endif
478 #elif defined(DO_RGBA)
479 gl_write_rgba_span(ctx, n, left, iy, z + left, fog + left,
480 rgba + left, GL_POLYGON);
481 #elif defined(DO_INDEX)
482 gl_write_index_span(ctx, n, left, iy, z + left, fog + left,
483 index + left, GL_POLYGON);
484 #endif
485 }
486 }
487 }
488
489
490 #ifdef DO_Z
491 #undef DO_Z
492 #endif
493
494 #ifdef DO_RGBA
495 #undef DO_RGBA
496 #endif
497
498 #ifdef DO_INDEX
499 #undef DO_INDEX
500 #endif
501
502 #ifdef DO_SPEC
503 #undef DO_SPEC
504 #endif
505
506 #ifdef DO_TEX
507 #undef DO_TEX
508 #endif
509
510 #ifdef DO_MULTITEX
511 #undef DO_MULTITEX
512 #endif
513
514 #ifdef DO_OCCLUSION_TEST
515 #undef DO_OCCLUSION_TEST
516 #endif