e142c6fb27978a3a1ec786b9d98d75d221899cb2
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /* $Id: s_aatritemp.h,v 1.25 2002/01/28 00:07:33 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom AA triangle rasterizers.
32 * NOTE: this code hasn't been optimized yet. That'll come after it
33 * works correctly.
34 *
35 * The following macros may be defined to indicate what auxillary information
36 * must be copmuted across the triangle:
37 * DO_Z - if defined, compute Z values
38 * DO_RGBA - if defined, compute RGBA values
39 * DO_INDEX - if defined, compute color index values
40 * DO_SPEC - if defined, compute specular RGB values
41 * DO_TEX - if defined, compute unit 0 STRQ texcoords
42 * DO_MULTITEX - if defined, compute all unit's STRQ texcoords
43 */
44
45 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
46 {
47 const GLfloat *p0 = v0->win;
48 const GLfloat *p1 = v1->win;
49 const GLfloat *p2 = v2->win;
50 const SWvertex *vMin, *vMid, *vMax;
51 GLint iyMin, iyMax;
52 GLfloat yMin, yMax;
53 GLboolean ltor;
54 GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
55
56 struct sw_span span;
57
58 #ifdef DO_Z
59 GLfloat zPlane[4];
60 #endif
61 #ifdef DO_FOG
62 GLfloat fogPlane[4];
63 #else
64 GLfloat *fog = NULL;
65 #endif
66 #ifdef DO_RGBA
67 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
68 #endif
69 #ifdef DO_INDEX
70 GLfloat iPlane[4];
71 #endif
72 #ifdef DO_SPEC
73 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
74 #endif
75 #ifdef DO_TEX
76 GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
77 GLfloat texWidth, texHeight;
78 #elif defined(DO_MULTITEX)
79 GLfloat sPlane[MAX_TEXTURE_UNITS][4];
80 GLfloat tPlane[MAX_TEXTURE_UNITS][4];
81 GLfloat uPlane[MAX_TEXTURE_UNITS][4];
82 GLfloat vPlane[MAX_TEXTURE_UNITS][4];
83 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
84 #endif
85 GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
86
87
88 INIT_SPAN(span);
89 span.arrayMask |= SPAN_COVERAGE;
90
91 /* determine bottom to top order of vertices */
92 {
93 GLfloat y0 = v0->win[1];
94 GLfloat y1 = v1->win[1];
95 GLfloat y2 = v2->win[1];
96 if (y0 <= y1) {
97 if (y1 <= y2) {
98 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
99 }
100 else if (y2 <= y0) {
101 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
102 }
103 else {
104 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
105 }
106 }
107 else {
108 if (y0 <= y2) {
109 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
110 }
111 else if (y2 <= y1) {
112 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
113 }
114 else {
115 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
116 }
117 }
118 }
119
120 majDx = vMax->win[0] - vMin->win[0];
121 majDy = vMax->win[1] - vMin->win[1];
122
123 {
124 const GLfloat botDx = vMid->win[0] - vMin->win[0];
125 const GLfloat botDy = vMid->win[1] - vMin->win[1];
126 const GLfloat area = majDx * botDy - botDx * majDy;
127 ltor = (GLboolean) (area < 0.0F);
128 /* Do backface culling */
129 if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
130 return;
131 }
132
133 #ifndef DO_OCCLUSION_TEST
134 ctx->OcclusionResult = GL_TRUE;
135 #endif
136
137 /* Plane equation setup:
138 * We evaluate plane equations at window (x,y) coordinates in order
139 * to compute color, Z, fog, texcoords, etc. This isn't terribly
140 * efficient but it's easy and reliable.
141 */
142 #ifdef DO_Z
143 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
144 span.arrayMask |= SPAN_Z;
145 #endif
146 #ifdef DO_FOG
147 compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
148 span.arrayMask |= SPAN_FOG;
149 #endif
150 #ifdef DO_RGBA
151 if (ctx->Light.ShadeModel == GL_SMOOTH) {
152 compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane);
153 compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane);
154 compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane);
155 compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane);
156 }
157 else {
158 constant_plane(v2->color[RCOMP], rPlane);
159 constant_plane(v2->color[GCOMP], gPlane);
160 constant_plane(v2->color[BCOMP], bPlane);
161 constant_plane(v2->color[ACOMP], aPlane);
162 }
163 span.arrayMask |= SPAN_RGBA;
164 #endif
165 #ifdef DO_INDEX
166 if (ctx->Light.ShadeModel == GL_SMOOTH) {
167 compute_plane(p0, p1, p2, (GLfloat) v0->index,
168 (GLfloat) v1->index, (GLfloat) v2->index, iPlane);
169 }
170 else {
171 constant_plane((GLfloat) v2->index, iPlane);
172 }
173 span.arrayMask |= SPAN_INDEX;
174 #endif
175 #ifdef DO_SPEC
176 if (ctx->Light.ShadeModel == GL_SMOOTH) {
177 compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane);
178 compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane);
179 compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane);
180 }
181 else {
182 constant_plane(v2->specular[RCOMP], srPlane);
183 constant_plane(v2->specular[GCOMP], sgPlane);
184 constant_plane(v2->specular[BCOMP], sbPlane);
185 }
186 span.arrayMask |= SPAN_SPEC;
187 #endif
188 #ifdef DO_TEX
189 {
190 const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
191 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
192 const GLfloat invW0 = v0->win[3];
193 const GLfloat invW1 = v1->win[3];
194 const GLfloat invW2 = v2->win[3];
195 const GLfloat s0 = v0->texcoord[0][0] * invW0;
196 const GLfloat s1 = v1->texcoord[0][0] * invW1;
197 const GLfloat s2 = v2->texcoord[0][0] * invW2;
198 const GLfloat t0 = v0->texcoord[0][1] * invW0;
199 const GLfloat t1 = v1->texcoord[0][1] * invW1;
200 const GLfloat t2 = v2->texcoord[0][1] * invW2;
201 const GLfloat r0 = v0->texcoord[0][2] * invW0;
202 const GLfloat r1 = v1->texcoord[0][2] * invW1;
203 const GLfloat r2 = v2->texcoord[0][2] * invW2;
204 const GLfloat q0 = v0->texcoord[0][3] * invW0;
205 const GLfloat q1 = v1->texcoord[0][3] * invW1;
206 const GLfloat q2 = v2->texcoord[0][3] * invW2;
207 compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
208 compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
209 compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
210 compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
211 texWidth = (GLfloat) texImage->Width;
212 texHeight = (GLfloat) texImage->Height;
213 }
214 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
215 #elif defined(DO_MULTITEX)
216 {
217 GLuint u;
218 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
219 if (ctx->Texture.Unit[u]._ReallyEnabled) {
220 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
221 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
222 const GLfloat invW0 = v0->win[3];
223 const GLfloat invW1 = v1->win[3];
224 const GLfloat invW2 = v2->win[3];
225 const GLfloat s0 = v0->texcoord[u][0] * invW0;
226 const GLfloat s1 = v1->texcoord[u][0] * invW1;
227 const GLfloat s2 = v2->texcoord[u][0] * invW2;
228 const GLfloat t0 = v0->texcoord[u][1] * invW0;
229 const GLfloat t1 = v1->texcoord[u][1] * invW1;
230 const GLfloat t2 = v2->texcoord[u][1] * invW2;
231 const GLfloat r0 = v0->texcoord[u][2] * invW0;
232 const GLfloat r1 = v1->texcoord[u][2] * invW1;
233 const GLfloat r2 = v2->texcoord[u][2] * invW2;
234 const GLfloat q0 = v0->texcoord[u][3] * invW0;
235 const GLfloat q1 = v1->texcoord[u][3] * invW1;
236 const GLfloat q2 = v2->texcoord[u][3] * invW2;
237 compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
238 compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
239 compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
240 compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
241 texWidth[u] = (GLfloat) texImage->Width;
242 texHeight[u] = (GLfloat) texImage->Height;
243 }
244 }
245 }
246 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
247 #endif
248
249 /* Begin bottom-to-top scan over the triangle.
250 * The long edge will either be on the left or right side of the
251 * triangle. We always scan from the long edge toward the shorter
252 * edges, stopping when we find that coverage = 0. If the long edge
253 * is on the left we scan left-to-right. Else, we scan right-to-left.
254 */
255 yMin = vMin->win[1];
256 yMax = vMax->win[1];
257 iyMin = (GLint) yMin;
258 iyMax = (GLint) yMax + 1;
259
260 if (ltor) {
261 /* scan left to right */
262 const GLfloat *pMin = vMin->win;
263 const GLfloat *pMid = vMid->win;
264 const GLfloat *pMax = vMax->win;
265 const GLfloat dxdy = majDx / majDy;
266 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
267 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
268 GLint iy;
269 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
270 GLint ix, startX = (GLint) (x - xAdj);
271 GLuint count;
272 GLfloat coverage = 0.0F;
273 SW_SPAN_RESET(span);
274
275 /* skip over fragments with zero coverage */
276 while (startX < MAX_WIDTH) {
277 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
278 if (coverage > 0.0F)
279 break;
280 startX++;
281 }
282
283 /* enter interior of triangle */
284 ix = startX;
285 count = 0;
286 while (coverage > 0.0F) {
287 /* (cx,cy) = center of fragment */
288 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
289 #ifdef DO_INDEX
290 span.coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
291 #else
292 span.coverage[count] = coverage;
293 #endif
294 #ifdef DO_Z
295 span.zArray[count] = (GLdepth) solve_plane(cx, cy, zPlane);
296 #endif
297 #ifdef DO_FOG
298 span.fogArray[count] = solve_plane(cx, cy, fogPlane);
299 #endif
300 #ifdef DO_RGBA
301 span.color.rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
302 span.color.rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
303 span.color.rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
304 span.color.rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
305 #endif
306 #ifdef DO_INDEX
307 span.color.index[count] = (GLint) solve_plane(cx, cy, iPlane);
308 #endif
309 #ifdef DO_SPEC
310 span.specArray[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
311 span.specArray[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
312 span.specArray[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
313 #endif
314 #ifdef DO_TEX
315 {
316 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
317 span.texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
318 span.texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
319 span.texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
320 span.lambda[0][count] = compute_lambda(sPlane, tPlane, invQ,
321 texWidth, texHeight);
322 }
323 #elif defined(DO_MULTITEX)
324 {
325 GLuint unit;
326 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
327 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
328 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
329 span.texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
330 span.texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
331 span.texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
332 span.lambda[unit][count] = compute_lambda(sPlane[unit],
333 tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
334 }
335 }
336 }
337 #endif
338 ix++;
339 count++;
340 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
341 }
342
343 if (ix <= startX)
344 continue;
345
346 span.x = startX;
347 span.y = iy;
348 span.end = (GLuint) ix - (GLuint) startX;
349 ASSERT(span.interpMask == 0);
350 #if defined(DO_MULTITEX) || defined(DO_TEX)
351 _mesa_write_texture_span(ctx, &span, GL_POLYGON);
352 #elif defined(DO_RGBA)
353 _mesa_write_rgba_span(ctx, &span, GL_POLYGON);
354 #elif defined(DO_INDEX)
355 _mesa_write_index_span(ctx, &span, GL_POLYGON);
356 #endif
357 }
358 }
359 else {
360 /* scan right to left */
361 const GLfloat *pMin = vMin->win;
362 const GLfloat *pMid = vMid->win;
363 const GLfloat *pMax = vMax->win;
364 const GLfloat dxdy = majDx / majDy;
365 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
366 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
367 GLint iy;
368 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
369 GLint ix, left, startX = (GLint) (x + xAdj);
370 GLuint count, n;
371 GLfloat coverage = 0.0F;
372
373 /* make sure we're not past the window edge */
374 if (startX >= ctx->DrawBuffer->_Xmax) {
375 startX = ctx->DrawBuffer->_Xmax - 1;
376 }
377
378 /* skip fragments with zero coverage */
379 while (startX >= 0) {
380 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
381 if (coverage > 0.0F)
382 break;
383 startX--;
384 }
385
386 /* enter interior of triangle */
387 ix = startX;
388 count = 0;
389 while (coverage > 0.0F) {
390 /* (cx,cy) = center of fragment */
391 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
392 #ifdef DO_INDEX
393 span.coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
394 #else
395 span.coverage[ix] = coverage;
396 #endif
397 #ifdef DO_Z
398 span.zArray[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
399 #endif
400 #ifdef DO_FOG
401 span.fogArray[ix] = solve_plane(cx, cy, fogPlane);
402 #endif
403 #ifdef DO_RGBA
404 span.color.rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
405 span.color.rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
406 span.color.rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
407 span.color.rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
408 #endif
409 #ifdef DO_INDEX
410 span.color.index[ix] = (GLint) solve_plane(cx, cy, iPlane);
411 #endif
412 #ifdef DO_SPEC
413 span.specArray[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
414 span.specArray[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
415 span.specArray[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
416 #endif
417 #ifdef DO_TEX
418 {
419 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
420 span.texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
421 span.texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
422 span.texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
423 span.lambda[0][ix] = compute_lambda(sPlane, tPlane, invQ,
424 texWidth, texHeight);
425 }
426 #elif defined(DO_MULTITEX)
427 {
428 GLuint unit;
429 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
430 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
431 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
432 span.texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
433 span.texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
434 span.texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
435 span.lambda[unit][ix] = compute_lambda(sPlane[unit],
436 tPlane[unit],
437 invQ,
438 texWidth[unit],
439 texHeight[unit]);
440 }
441 }
442 }
443 #endif
444 ix--;
445 count++;
446 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
447 }
448
449 if (startX <= ix)
450 continue;
451
452 n = (GLuint) startX - (GLuint) ix;
453
454 left = ix + 1;
455
456 /* shift all values to the left */
457 /* XXX this is temporary */
458 {
459 GLint j;
460 for (j = 0; j < (GLint) n; j++) {
461 #ifdef DO_RGBA
462 COPY_4V(span.color.rgba[j], span.color.rgba[j + left]);
463 #endif
464 #ifdef DO_SPEC
465 COPY_4V(span.specArray[j], span.specArray[j + left]);
466 #endif
467 #ifdef DO_INDEX
468 span.color.index[j] = span.color.index[j + left];
469 #endif
470 #ifdef DO_Z
471 span.zArray[j] = span.zArray[j + left];
472 #endif
473 #ifdef DO_FOG
474 span.fogArray[j] = span.fogArray[j + left];
475 #endif
476 #ifdef DO_TEX
477 COPY_4V(span.texcoords[0][j], span.texcoords[0][j + left]);
478 #endif
479 #if defined(DO_MULTITEX) || defined(DO_TEX)
480 span.lambda[0][j] = span.lambda[0][j + left];
481 #endif
482 span.coverage[j] = span.coverage[j + left];
483 }
484 }
485 #ifdef DO_MULTITEX
486 /* shift texcoords */
487 {
488 GLuint unit;
489 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
490 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
491 GLint j;
492 for (j = 0; j < (GLint) n; j++) {
493 span.texcoords[unit][j][0] = span.texcoords[unit][j + left][0];
494 span.texcoords[unit][j][1] = span.texcoords[unit][j + left][1];
495 span.texcoords[unit][j][2] = span.texcoords[unit][j + left][2];
496 span.lambda[unit][j] = span.lambda[unit][j + left];
497 }
498 }
499 }
500 }
501 #endif
502
503 span.x = left;
504 span.y = iy;
505 span.end = n;
506 ASSERT(span.interpMask == 0);
507 #if defined(DO_MULTITEX) || defined(DO_TEX)
508 _mesa_write_texture_span(ctx, &span, GL_POLYGON);
509 #elif defined(DO_RGBA)
510 _mesa_write_rgba_span(ctx, &span, GL_POLYGON);
511 #elif defined(DO_INDEX)
512 _mesa_write_index_span(ctx, &span, GL_POLYGON);
513 #endif
514 }
515 }
516 }
517
518
519 #ifdef DO_Z
520 #undef DO_Z
521 #endif
522
523 #ifdef DO_FOG
524 #undef DO_FOG
525 #endif
526
527 #ifdef DO_RGBA
528 #undef DO_RGBA
529 #endif
530
531 #ifdef DO_INDEX
532 #undef DO_INDEX
533 #endif
534
535 #ifdef DO_SPEC
536 #undef DO_SPEC
537 #endif
538
539 #ifdef DO_TEX
540 #undef DO_TEX
541 #endif
542
543 #ifdef DO_MULTITEX
544 #undef DO_MULTITEX
545 #endif
546
547 #ifdef DO_OCCLUSION_TEST
548 #undef DO_OCCLUSION_TEST
549 #endif