Merge commit 'origin/gallium-0.1'
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.0.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet. That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 * DO_Z - if defined, compute Z values
36 * DO_RGBA - if defined, compute RGBA values
37 * DO_INDEX - if defined, compute color index values
38 * DO_ATTRIBS - if defined, compute texcoords, varying, etc.
39 */
40
41 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
42 {
43 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
44 const GLfloat *p0 = v0->attrib[FRAG_ATTRIB_WPOS];
45 const GLfloat *p1 = v1->attrib[FRAG_ATTRIB_WPOS];
46 const GLfloat *p2 = v2->attrib[FRAG_ATTRIB_WPOS];
47 const SWvertex *vMin, *vMid, *vMax;
48 GLint iyMin, iyMax;
49 GLfloat yMin, yMax;
50 GLboolean ltor;
51 GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
52
53 SWspan span;
54
55 #ifdef DO_Z
56 GLfloat zPlane[4];
57 #endif
58 #ifdef DO_RGBA
59 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
60 #endif
61 #ifdef DO_INDEX
62 GLfloat iPlane[4];
63 #endif
64 #if defined(DO_ATTRIBS)
65 GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
66 GLfloat wPlane[4]; /* win[3] */
67 #endif
68 GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
69
70 (void) swrast;
71
72 INIT_SPAN(span, GL_POLYGON);
73 span.arrayMask = SPAN_COVERAGE;
74
75 /* determine bottom to top order of vertices */
76 {
77 GLfloat y0 = v0->attrib[FRAG_ATTRIB_WPOS][1];
78 GLfloat y1 = v1->attrib[FRAG_ATTRIB_WPOS][1];
79 GLfloat y2 = v2->attrib[FRAG_ATTRIB_WPOS][1];
80 if (y0 <= y1) {
81 if (y1 <= y2) {
82 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
83 }
84 else if (y2 <= y0) {
85 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
86 }
87 else {
88 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
89 }
90 }
91 else {
92 if (y0 <= y2) {
93 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
94 }
95 else if (y2 <= y1) {
96 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
97 }
98 else {
99 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
100 }
101 }
102 }
103
104 majDx = vMax->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
105 majDy = vMax->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
106
107 /* front/back-face determination and cullling */
108 {
109 const GLfloat botDx = vMid->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
110 const GLfloat botDy = vMid->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
111 const GLfloat area = majDx * botDy - botDx * majDy;
112 /* Do backface culling */
113 if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
114 return;
115 ltor = (GLboolean) (area < 0.0F);
116
117 span.facing = area * swrast->_BackfaceSign > 0.0F;
118 }
119
120 /* Plane equation setup:
121 * We evaluate plane equations at window (x,y) coordinates in order
122 * to compute color, Z, fog, texcoords, etc. This isn't terribly
123 * efficient but it's easy and reliable.
124 */
125 #ifdef DO_Z
126 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
127 span.arrayMask |= SPAN_Z;
128 #endif
129 #ifdef DO_RGBA
130 if (ctx->Light.ShadeModel == GL_SMOOTH) {
131 compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
132 compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
133 compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
134 compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
135 }
136 else {
137 constant_plane(v2->color[RCOMP], rPlane);
138 constant_plane(v2->color[GCOMP], gPlane);
139 constant_plane(v2->color[BCOMP], bPlane);
140 constant_plane(v2->color[ACOMP], aPlane);
141 }
142 span.arrayMask |= SPAN_RGBA;
143 #endif
144 #ifdef DO_INDEX
145 if (ctx->Light.ShadeModel == GL_SMOOTH) {
146 compute_plane(p0, p1, p2, (GLfloat) v0->attrib[FRAG_ATTRIB_CI][0],
147 v1->attrib[FRAG_ATTRIB_CI][0], v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
148 }
149 else {
150 constant_plane(v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
151 }
152 span.arrayMask |= SPAN_INDEX;
153 #endif
154 #if defined(DO_ATTRIBS)
155 {
156 const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3];
157 const GLfloat invW1 = v1->attrib[FRAG_ATTRIB_WPOS][3];
158 const GLfloat invW2 = v2->attrib[FRAG_ATTRIB_WPOS][3];
159 compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane);
160 span.attrStepX[FRAG_ATTRIB_WPOS][3] = plane_dx(wPlane);
161 span.attrStepY[FRAG_ATTRIB_WPOS][3] = plane_dy(wPlane);
162 ATTRIB_LOOP_BEGIN
163 GLuint c;
164 if (swrast->_InterpMode[attr] == GL_FLAT) {
165 for (c = 0; c < 4; c++) {
166 constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]);
167 }
168 }
169 else {
170 for (c = 0; c < 4; c++) {
171 const GLfloat a0 = v0->attrib[attr][c] * invW0;
172 const GLfloat a1 = v1->attrib[attr][c] * invW1;
173 const GLfloat a2 = v2->attrib[attr][c] * invW2;
174 compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]);
175 }
176 }
177 for (c = 0; c < 4; c++) {
178 span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]);
179 span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]);
180 }
181 ATTRIB_LOOP_END
182 }
183 #endif
184
185 /* Begin bottom-to-top scan over the triangle.
186 * The long edge will either be on the left or right side of the
187 * triangle. We always scan from the long edge toward the shorter
188 * edges, stopping when we find that coverage = 0. If the long edge
189 * is on the left we scan left-to-right. Else, we scan right-to-left.
190 */
191 yMin = vMin->attrib[FRAG_ATTRIB_WPOS][1];
192 yMax = vMax->attrib[FRAG_ATTRIB_WPOS][1];
193 iyMin = (GLint) yMin;
194 iyMax = (GLint) yMax + 1;
195
196 if (ltor) {
197 /* scan left to right */
198 const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
199 const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
200 const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
201 const GLfloat dxdy = majDx / majDy;
202 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
203 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
204 GLint iy;
205 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
206 GLint ix, startX = (GLint) (x - xAdj);
207 GLuint count;
208 GLfloat coverage = 0.0F;
209
210 /* skip over fragments with zero coverage */
211 while (startX < MAX_WIDTH) {
212 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
213 if (coverage > 0.0F)
214 break;
215 startX++;
216 }
217
218 /* enter interior of triangle */
219 ix = startX;
220
221 #if defined(DO_ATTRIBS)
222 /* compute attributes at left-most fragment */
223 span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5, iy + 0.5, wPlane);
224 ATTRIB_LOOP_BEGIN
225 GLuint c;
226 for (c = 0; c < 4; c++) {
227 span.attrStart[attr][c] = solve_plane(ix + 0.5, iy + 0.5, attrPlane[attr][c]);
228 }
229 ATTRIB_LOOP_END
230 #endif
231
232 count = 0;
233 while (coverage > 0.0F) {
234 /* (cx,cy) = center of fragment */
235 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
236 SWspanarrays *array = span.array;
237 #ifdef DO_INDEX
238 array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
239 #else
240 array->coverage[count] = coverage;
241 #endif
242 #ifdef DO_Z
243 array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
244 #endif
245 #ifdef DO_RGBA
246 array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
247 array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
248 array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
249 array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
250 #endif
251 #ifdef DO_INDEX
252 array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
253 #endif
254 ix++;
255 count++;
256 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
257 }
258
259 if (ix <= startX)
260 continue;
261
262 span.x = startX;
263 span.y = iy;
264 span.end = (GLuint) ix - (GLuint) startX;
265 #if defined(DO_RGBA)
266 _swrast_write_rgba_span(ctx, &span);
267 #else
268 _swrast_write_index_span(ctx, &span);
269 #endif
270 }
271 }
272 else {
273 /* scan right to left */
274 const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
275 const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
276 const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
277 const GLfloat dxdy = majDx / majDy;
278 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
279 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
280 GLint iy;
281 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
282 GLint ix, left, startX = (GLint) (x + xAdj);
283 GLuint count, n;
284 GLfloat coverage = 0.0F;
285
286 /* make sure we're not past the window edge */
287 if (startX >= ctx->DrawBuffer->_Xmax) {
288 startX = ctx->DrawBuffer->_Xmax - 1;
289 }
290
291 /* skip fragments with zero coverage */
292 while (startX > 0) {
293 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
294 if (coverage > 0.0F)
295 break;
296 startX--;
297 }
298
299 /* enter interior of triangle */
300 ix = startX;
301 count = 0;
302 while (coverage > 0.0F) {
303 /* (cx,cy) = center of fragment */
304 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
305 SWspanarrays *array = span.array;
306 ASSERT(ix >= 0);
307 #ifdef DO_INDEX
308 array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
309 #else
310 array->coverage[ix] = coverage;
311 #endif
312 #ifdef DO_Z
313 array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
314 #endif
315 #ifdef DO_RGBA
316 array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
317 array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
318 array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
319 array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
320 #endif
321 #ifdef DO_INDEX
322 array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
323 #endif
324 ix--;
325 count++;
326 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
327 }
328
329 #if defined(DO_ATTRIBS)
330 /* compute attributes at left-most fragment */
331 span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5, iy + 0.5, wPlane);
332 ATTRIB_LOOP_BEGIN
333 GLuint c;
334 for (c = 0; c < 4; c++) {
335 span.attrStart[attr][c] = solve_plane(ix + 1.5, iy + 0.5, attrPlane[attr][c]);
336 }
337 ATTRIB_LOOP_END
338 #endif
339
340 if (startX <= ix)
341 continue;
342
343 n = (GLuint) startX - (GLuint) ix;
344
345 left = ix + 1;
346
347 /* shift all values to the left */
348 /* XXX this is temporary */
349 {
350 SWspanarrays *array = span.array;
351 GLint j;
352 for (j = 0; j < (GLint) n; j++) {
353 array->coverage[j] = array->coverage[j + left];
354 #ifdef DO_RGBA
355 COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
356 #endif
357 #ifdef DO_INDEX
358 array->index[j] = array->index[j + left];
359 #endif
360 #ifdef DO_Z
361 array->z[j] = array->z[j + left];
362 #endif
363 }
364 }
365
366 span.x = left;
367 span.y = iy;
368 span.end = n;
369 #if defined(DO_RGBA)
370 _swrast_write_rgba_span(ctx, &span);
371 #else
372 _swrast_write_index_span(ctx, &span);
373 #endif
374 }
375 }
376 }
377
378
379 #undef DO_Z
380 #undef DO_RGBA
381 #undef DO_INDEX
382 #undef DO_ATTRIBS
383 #undef DO_OCCLUSION_TEST