Allocate a sw_span struct in the swrast context instead of allocating it
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /* $Id: s_aatritemp.h,v 1.29 2002/04/19 14:05:50 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Antialiased Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom AA triangle rasterizers.
32 * NOTE: this code hasn't been optimized yet. That'll come after it
33 * works correctly.
34 *
35 * The following macros may be defined to indicate what auxillary information
36 * must be copmuted across the triangle:
37 * DO_Z - if defined, compute Z values
38 * DO_RGBA - if defined, compute RGBA values
39 * DO_INDEX - if defined, compute color index values
40 * DO_SPEC - if defined, compute specular RGB values
41 * DO_TEX - if defined, compute unit 0 STRQ texcoords
42 * DO_MULTITEX - if defined, compute all unit's STRQ texcoords
43 */
44
45 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
46 {
47 const GLfloat *p0 = v0->win;
48 const GLfloat *p1 = v1->win;
49 const GLfloat *p2 = v2->win;
50 const SWvertex *vMin, *vMid, *vMax;
51 GLint iyMin, iyMax;
52 GLfloat yMin, yMax;
53 GLboolean ltor;
54 GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
55
56 struct sw_span *span = SWRAST_CONTEXT(ctx)->span;
57
58 #ifdef DO_Z
59 GLfloat zPlane[4];
60 #endif
61 #ifdef DO_FOG
62 GLfloat fogPlane[4];
63 #else
64 GLfloat *fog = NULL;
65 #endif
66 #ifdef DO_RGBA
67 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
68 #endif
69 #ifdef DO_INDEX
70 GLfloat iPlane[4];
71 #endif
72 #ifdef DO_SPEC
73 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
74 #endif
75 #ifdef DO_TEX
76 GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
77 GLfloat texWidth, texHeight;
78 #elif defined(DO_MULTITEX)
79 GLfloat sPlane[MAX_TEXTURE_UNITS][4]; /* texture S */
80 GLfloat tPlane[MAX_TEXTURE_UNITS][4]; /* texture T */
81 GLfloat uPlane[MAX_TEXTURE_UNITS][4]; /* texture R */
82 GLfloat vPlane[MAX_TEXTURE_UNITS][4]; /* texture Q */
83 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
84 #endif
85 GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
86
87
88 INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
89
90 /* determine bottom to top order of vertices */
91 {
92 GLfloat y0 = v0->win[1];
93 GLfloat y1 = v1->win[1];
94 GLfloat y2 = v2->win[1];
95 if (y0 <= y1) {
96 if (y1 <= y2) {
97 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
98 }
99 else if (y2 <= y0) {
100 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
101 }
102 else {
103 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
104 }
105 }
106 else {
107 if (y0 <= y2) {
108 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
109 }
110 else if (y2 <= y1) {
111 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
112 }
113 else {
114 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
115 }
116 }
117 }
118
119 majDx = vMax->win[0] - vMin->win[0];
120 majDy = vMax->win[1] - vMin->win[1];
121
122 {
123 const GLfloat botDx = vMid->win[0] - vMin->win[0];
124 const GLfloat botDy = vMid->win[1] - vMin->win[1];
125 const GLfloat area = majDx * botDy - botDx * majDy;
126 ltor = (GLboolean) (area < 0.0F);
127 /* Do backface culling */
128 if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
129 return;
130 }
131
132 #ifndef DO_OCCLUSION_TEST
133 ctx->OcclusionResult = GL_TRUE;
134 #endif
135
136 /* Plane equation setup:
137 * We evaluate plane equations at window (x,y) coordinates in order
138 * to compute color, Z, fog, texcoords, etc. This isn't terribly
139 * efficient but it's easy and reliable.
140 */
141 #ifdef DO_Z
142 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
143 span->arrayMask |= SPAN_Z;
144 #endif
145 #ifdef DO_FOG
146 compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
147 span->arrayMask |= SPAN_FOG;
148 #endif
149 #ifdef DO_RGBA
150 if (ctx->Light.ShadeModel == GL_SMOOTH) {
151 compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane);
152 compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane);
153 compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane);
154 compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane);
155 }
156 else {
157 constant_plane(v2->color[RCOMP], rPlane);
158 constant_plane(v2->color[GCOMP], gPlane);
159 constant_plane(v2->color[BCOMP], bPlane);
160 constant_plane(v2->color[ACOMP], aPlane);
161 }
162 span->arrayMask |= SPAN_RGBA;
163 #endif
164 #ifdef DO_INDEX
165 if (ctx->Light.ShadeModel == GL_SMOOTH) {
166 compute_plane(p0, p1, p2, (GLfloat) v0->index,
167 (GLfloat) v1->index, (GLfloat) v2->index, iPlane);
168 }
169 else {
170 constant_plane((GLfloat) v2->index, iPlane);
171 }
172 span->arrayMask |= SPAN_INDEX;
173 #endif
174 #ifdef DO_SPEC
175 if (ctx->Light.ShadeModel == GL_SMOOTH) {
176 compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane);
177 compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane);
178 compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane);
179 }
180 else {
181 constant_plane(v2->specular[RCOMP], srPlane);
182 constant_plane(v2->specular[GCOMP], sgPlane);
183 constant_plane(v2->specular[BCOMP], sbPlane);
184 }
185 span->arrayMask |= SPAN_SPEC;
186 #endif
187 #ifdef DO_TEX
188 {
189 const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
190 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
191 const GLfloat invW0 = v0->win[3];
192 const GLfloat invW1 = v1->win[3];
193 const GLfloat invW2 = v2->win[3];
194 const GLfloat s0 = v0->texcoord[0][0] * invW0;
195 const GLfloat s1 = v1->texcoord[0][0] * invW1;
196 const GLfloat s2 = v2->texcoord[0][0] * invW2;
197 const GLfloat t0 = v0->texcoord[0][1] * invW0;
198 const GLfloat t1 = v1->texcoord[0][1] * invW1;
199 const GLfloat t2 = v2->texcoord[0][1] * invW2;
200 const GLfloat r0 = v0->texcoord[0][2] * invW0;
201 const GLfloat r1 = v1->texcoord[0][2] * invW1;
202 const GLfloat r2 = v2->texcoord[0][2] * invW2;
203 const GLfloat q0 = v0->texcoord[0][3] * invW0;
204 const GLfloat q1 = v1->texcoord[0][3] * invW1;
205 const GLfloat q2 = v2->texcoord[0][3] * invW2;
206 compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
207 compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
208 compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
209 compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
210 texWidth = (GLfloat) texImage->Width;
211 texHeight = (GLfloat) texImage->Height;
212 }
213 span->arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
214 #elif defined(DO_MULTITEX)
215 {
216 GLuint u;
217 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
218 if (ctx->Texture.Unit[u]._ReallyEnabled) {
219 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
220 const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
221 const GLfloat invW0 = v0->win[3];
222 const GLfloat invW1 = v1->win[3];
223 const GLfloat invW2 = v2->win[3];
224 const GLfloat s0 = v0->texcoord[u][0] * invW0;
225 const GLfloat s1 = v1->texcoord[u][0] * invW1;
226 const GLfloat s2 = v2->texcoord[u][0] * invW2;
227 const GLfloat t0 = v0->texcoord[u][1] * invW0;
228 const GLfloat t1 = v1->texcoord[u][1] * invW1;
229 const GLfloat t2 = v2->texcoord[u][1] * invW2;
230 const GLfloat r0 = v0->texcoord[u][2] * invW0;
231 const GLfloat r1 = v1->texcoord[u][2] * invW1;
232 const GLfloat r2 = v2->texcoord[u][2] * invW2;
233 const GLfloat q0 = v0->texcoord[u][3] * invW0;
234 const GLfloat q1 = v1->texcoord[u][3] * invW1;
235 const GLfloat q2 = v2->texcoord[u][3] * invW2;
236 compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
237 compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
238 compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
239 compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
240 texWidth[u] = (GLfloat) texImage->Width;
241 texHeight[u] = (GLfloat) texImage->Height;
242 }
243 }
244 }
245 span->arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
246 #endif
247
248 /* Begin bottom-to-top scan over the triangle.
249 * The long edge will either be on the left or right side of the
250 * triangle. We always scan from the long edge toward the shorter
251 * edges, stopping when we find that coverage = 0. If the long edge
252 * is on the left we scan left-to-right. Else, we scan right-to-left.
253 */
254 yMin = vMin->win[1];
255 yMax = vMax->win[1];
256 iyMin = (GLint) yMin;
257 iyMax = (GLint) yMax + 1;
258
259 if (ltor) {
260 /* scan left to right */
261 const GLfloat *pMin = vMin->win;
262 const GLfloat *pMid = vMid->win;
263 const GLfloat *pMax = vMax->win;
264 const GLfloat dxdy = majDx / majDy;
265 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
266 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
267 GLint iy;
268 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
269 GLint ix, startX = (GLint) (x - xAdj);
270 GLuint count;
271 GLfloat coverage = 0.0F;
272
273 /* skip over fragments with zero coverage */
274 while (startX < MAX_WIDTH) {
275 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
276 if (coverage > 0.0F)
277 break;
278 startX++;
279 }
280
281 /* enter interior of triangle */
282 ix = startX;
283 count = 0;
284 while (coverage > 0.0F) {
285 /* (cx,cy) = center of fragment */
286 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
287 #ifdef DO_INDEX
288 span->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
289 #else
290 span->coverage[count] = coverage;
291 #endif
292 #ifdef DO_Z
293 span->zArray[count] = (GLdepth) solve_plane(cx, cy, zPlane);
294 #endif
295 #ifdef DO_FOG
296 span->fogArray[count] = solve_plane(cx, cy, fogPlane);
297 #endif
298 #ifdef DO_RGBA
299 span->color.rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
300 span->color.rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
301 span->color.rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
302 span->color.rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
303 #endif
304 #ifdef DO_INDEX
305 span->color.index[count] = (GLint) solve_plane(cx, cy, iPlane);
306 #endif
307 #ifdef DO_SPEC
308 span->specArray[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
309 span->specArray[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
310 span->specArray[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
311 #endif
312 #ifdef DO_TEX
313 {
314 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
315 span->texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
316 span->texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
317 span->texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
318 span->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
319 cx, cy, invQ,
320 texWidth, texHeight);
321 }
322 #elif defined(DO_MULTITEX)
323 {
324 GLuint unit;
325 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
326 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
327 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
328 span->texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
329 span->texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
330 span->texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
331 span->lambda[unit][count] = compute_lambda(sPlane[unit],
332 tPlane[unit], vPlane[unit], cx, cy, invQ,
333 texWidth[unit], texHeight[unit]);
334 }
335 }
336 }
337 #endif
338 ix++;
339 count++;
340 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
341 }
342
343 if (ix <= startX)
344 continue;
345
346 span->x = startX;
347 span->y = iy;
348 span->end = (GLuint) ix - (GLuint) startX;
349 ASSERT(span->interpMask == 0);
350 #if defined(DO_MULTITEX) || defined(DO_TEX)
351 _mesa_write_texture_span(ctx, span);
352 #elif defined(DO_RGBA)
353 _mesa_write_rgba_span(ctx, span);
354 #elif defined(DO_INDEX)
355 _mesa_write_index_span(ctx, span);
356 #endif
357 }
358 }
359 else {
360 /* scan right to left */
361 const GLfloat *pMin = vMin->win;
362 const GLfloat *pMid = vMid->win;
363 const GLfloat *pMax = vMax->win;
364 const GLfloat dxdy = majDx / majDy;
365 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
366 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
367 GLint iy;
368 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
369 GLint ix, left, startX = (GLint) (x + xAdj);
370 GLuint count, n;
371 GLfloat coverage = 0.0F;
372
373 /* make sure we're not past the window edge */
374 if (startX >= ctx->DrawBuffer->_Xmax) {
375 startX = ctx->DrawBuffer->_Xmax - 1;
376 }
377
378 /* skip fragments with zero coverage */
379 while (startX >= 0) {
380 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
381 if (coverage > 0.0F)
382 break;
383 startX--;
384 }
385
386 /* enter interior of triangle */
387 ix = startX;
388 count = 0;
389 while (coverage > 0.0F) {
390 /* (cx,cy) = center of fragment */
391 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
392 #ifdef DO_INDEX
393 span->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
394 #else
395 span->coverage[ix] = coverage;
396 #endif
397 #ifdef DO_Z
398 span->zArray[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
399 #endif
400 #ifdef DO_FOG
401 span->fogArray[ix] = solve_plane(cx, cy, fogPlane);
402 #endif
403 #ifdef DO_RGBA
404 span->color.rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
405 span->color.rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
406 span->color.rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
407 span->color.rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
408 #endif
409 #ifdef DO_INDEX
410 span->color.index[ix] = (GLint) solve_plane(cx, cy, iPlane);
411 #endif
412 #ifdef DO_SPEC
413 span->specArray[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
414 span->specArray[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
415 span->specArray[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
416 #endif
417 #ifdef DO_TEX
418 {
419 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
420 span->texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
421 span->texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
422 span->texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
423 span->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
424 cx, cy, invQ, texWidth, texHeight);
425 }
426 #elif defined(DO_MULTITEX)
427 {
428 GLuint unit;
429 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
430 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
431 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
432 span->texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
433 span->texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
434 span->texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
435 span->lambda[unit][ix] = compute_lambda(sPlane[unit],
436 tPlane[unit],
437 vPlane[unit],
438 cx, cy, invQ,
439 texWidth[unit],
440 texHeight[unit]);
441 }
442 }
443 }
444 #endif
445 ix--;
446 count++;
447 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
448 }
449
450 if (startX <= ix)
451 continue;
452
453 n = (GLuint) startX - (GLuint) ix;
454
455 left = ix + 1;
456
457 /* shift all values to the left */
458 /* XXX this is temporary */
459 {
460 GLint j;
461 for (j = 0; j < (GLint) n; j++) {
462 #ifdef DO_RGBA
463 COPY_4V(span->color.rgba[j], span->color.rgba[j + left]);
464 #endif
465 #ifdef DO_SPEC
466 COPY_4V(span->specArray[j], span->specArray[j + left]);
467 #endif
468 #ifdef DO_INDEX
469 span->color.index[j] = span->color.index[j + left];
470 #endif
471 #ifdef DO_Z
472 span->zArray[j] = span->zArray[j + left];
473 #endif
474 #ifdef DO_FOG
475 span->fogArray[j] = span->fogArray[j + left];
476 #endif
477 #ifdef DO_TEX
478 COPY_4V(span->texcoords[0][j], span->texcoords[0][j + left]);
479 #endif
480 #if defined(DO_MULTITEX) || defined(DO_TEX)
481 span->lambda[0][j] = span->lambda[0][j + left];
482 #endif
483 span->coverage[j] = span->coverage[j + left];
484 }
485 }
486 #ifdef DO_MULTITEX
487 /* shift texcoords */
488 {
489 GLuint unit;
490 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
491 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
492 GLint j;
493 for (j = 0; j < (GLint) n; j++) {
494 span->texcoords[unit][j][0] = span->texcoords[unit][j + left][0];
495 span->texcoords[unit][j][1] = span->texcoords[unit][j + left][1];
496 span->texcoords[unit][j][2] = span->texcoords[unit][j + left][2];
497 span->lambda[unit][j] = span->lambda[unit][j + left];
498 }
499 }
500 }
501 }
502 #endif
503
504 span->x = left;
505 span->y = iy;
506 span->end = n;
507 ASSERT(span->interpMask == 0);
508 #if defined(DO_MULTITEX) || defined(DO_TEX)
509 _mesa_write_texture_span(ctx, span);
510 #elif defined(DO_RGBA)
511 _mesa_write_rgba_span(ctx, span);
512 #elif defined(DO_INDEX)
513 _mesa_write_index_span(ctx, span);
514 #endif
515 }
516 }
517 }
518
519
520 #ifdef DO_Z
521 #undef DO_Z
522 #endif
523
524 #ifdef DO_FOG
525 #undef DO_FOG
526 #endif
527
528 #ifdef DO_RGBA
529 #undef DO_RGBA
530 #endif
531
532 #ifdef DO_INDEX
533 #undef DO_INDEX
534 #endif
535
536 #ifdef DO_SPEC
537 #undef DO_SPEC
538 #endif
539
540 #ifdef DO_TEX
541 #undef DO_TEX
542 #endif
543
544 #ifdef DO_MULTITEX
545 #undef DO_MULTITEX
546 #endif
547
548 #ifdef DO_OCCLUSION_TEST
549 #undef DO_OCCLUSION_TEST
550 #endif