New SWspanarrays attribs[] array.
[mesa.git] / src / mesa / swrast / s_aatritemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet. That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 * DO_Z - if defined, compute Z values
36 * DO_RGBA - if defined, compute RGBA values
37 * DO_INDEX - if defined, compute color index values
38 * DO_SPEC - if defined, compute specular RGB values
39 * DO_TEX - if defined, compute unit 0 STRQ texcoords
40 * DO_MULTITEX - if defined, compute all unit's STRQ texcoords
41 */
42
43 /*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
44 {
45 const GLfloat *p0 = v0->win;
46 const GLfloat *p1 = v1->win;
47 const GLfloat *p2 = v2->win;
48 const SWvertex *vMin, *vMid, *vMax;
49 GLint iyMin, iyMax;
50 GLfloat yMin, yMax;
51 GLboolean ltor;
52 GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */
53
54 SWspan span;
55
56 #ifdef DO_Z
57 GLfloat zPlane[4];
58 #endif
59 #ifdef DO_FOG
60 GLfloat fogPlane[4];
61 #else
62 GLfloat *fog = NULL;
63 #endif
64 #ifdef DO_RGBA
65 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66 #endif
67 #ifdef DO_INDEX
68 GLfloat iPlane[4];
69 #endif
70 #ifdef DO_SPEC
71 GLfloat srPlane[4], sgPlane[4], sbPlane[4];
72 #endif
73 #ifdef DO_TEX
74 GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
75 GLfloat texWidth, texHeight;
76 #elif defined(DO_MULTITEX)
77 GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture S */
78 GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture T */
79 GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture R */
80 GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4]; /* texture Q */
81 GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
82 GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
83 #endif
84 GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
85
86
87 INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
88
89 /* determine bottom to top order of vertices */
90 {
91 GLfloat y0 = v0->win[1];
92 GLfloat y1 = v1->win[1];
93 GLfloat y2 = v2->win[1];
94 if (y0 <= y1) {
95 if (y1 <= y2) {
96 vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */
97 }
98 else if (y2 <= y0) {
99 vMin = v2; vMid = v0; vMax = v1; /* y2<=y0<=y1 */
100 }
101 else {
102 vMin = v0; vMid = v2; vMax = v1; bf = -bf; /* y0<=y2<=y1 */
103 }
104 }
105 else {
106 if (y0 <= y2) {
107 vMin = v1; vMid = v0; vMax = v2; bf = -bf; /* y1<=y0<=y2 */
108 }
109 else if (y2 <= y1) {
110 vMin = v2; vMid = v1; vMax = v0; bf = -bf; /* y2<=y1<=y0 */
111 }
112 else {
113 vMin = v1; vMid = v2; vMax = v0; /* y1<=y2<=y0 */
114 }
115 }
116 }
117
118 majDx = vMax->win[0] - vMin->win[0];
119 majDy = vMax->win[1] - vMin->win[1];
120
121 {
122 const GLfloat botDx = vMid->win[0] - vMin->win[0];
123 const GLfloat botDy = vMid->win[1] - vMin->win[1];
124 const GLfloat area = majDx * botDy - botDx * majDy;
125 /* Do backface culling */
126 if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
127 return;
128 ltor = (GLboolean) (area < 0.0F);
129 }
130
131 /* Plane equation setup:
132 * We evaluate plane equations at window (x,y) coordinates in order
133 * to compute color, Z, fog, texcoords, etc. This isn't terribly
134 * efficient but it's easy and reliable.
135 */
136 #ifdef DO_Z
137 compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
138 span.arrayMask |= SPAN_Z;
139 #endif
140 #ifdef DO_FOG
141 compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
142 span.arrayMask |= SPAN_FOG;
143 #endif
144 #ifdef DO_RGBA
145 if (ctx->Light.ShadeModel == GL_SMOOTH) {
146 compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
147 compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
148 compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
149 compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
150 }
151 else {
152 constant_plane(v2->color[RCOMP], rPlane);
153 constant_plane(v2->color[GCOMP], gPlane);
154 constant_plane(v2->color[BCOMP], bPlane);
155 constant_plane(v2->color[ACOMP], aPlane);
156 }
157 span.arrayMask |= SPAN_RGBA;
158 #endif
159 #ifdef DO_INDEX
160 if (ctx->Light.ShadeModel == GL_SMOOTH) {
161 compute_plane(p0, p1, p2, (GLfloat) v0->index,
162 v1->index, v2->index, iPlane);
163 }
164 else {
165 constant_plane(v2->index, iPlane);
166 }
167 span.arrayMask |= SPAN_INDEX;
168 #endif
169 #ifdef DO_SPEC
170 if (ctx->Light.ShadeModel == GL_SMOOTH) {
171 compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
172 compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
173 compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
174 }
175 else {
176 constant_plane(v2->specular[RCOMP], srPlane);
177 constant_plane(v2->specular[GCOMP], sgPlane);
178 constant_plane(v2->specular[BCOMP], sbPlane);
179 }
180 span.arrayMask |= SPAN_SPEC;
181 #endif
182 #ifdef DO_TEX
183 {
184 const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
185 const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
186 const GLfloat invW0 = v0->win[3];
187 const GLfloat invW1 = v1->win[3];
188 const GLfloat invW2 = v2->win[3];
189 const GLfloat s0 = v0->texcoord[0][0] * invW0;
190 const GLfloat s1 = v1->texcoord[0][0] * invW1;
191 const GLfloat s2 = v2->texcoord[0][0] * invW2;
192 const GLfloat t0 = v0->texcoord[0][1] * invW0;
193 const GLfloat t1 = v1->texcoord[0][1] * invW1;
194 const GLfloat t2 = v2->texcoord[0][1] * invW2;
195 const GLfloat r0 = v0->texcoord[0][2] * invW0;
196 const GLfloat r1 = v1->texcoord[0][2] * invW1;
197 const GLfloat r2 = v2->texcoord[0][2] * invW2;
198 const GLfloat q0 = v0->texcoord[0][3] * invW0;
199 const GLfloat q1 = v1->texcoord[0][3] * invW1;
200 const GLfloat q2 = v2->texcoord[0][3] * invW2;
201 compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
202 compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
203 compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
204 compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
205 texWidth = (GLfloat) texImage->Width;
206 texHeight = (GLfloat) texImage->Height;
207 }
208 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
209 #elif defined(DO_MULTITEX)
210 {
211 GLuint u;
212 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
213 if (ctx->Texture.Unit[u]._ReallyEnabled) {
214 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
215 const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
216 const GLfloat invW0 = v0->win[3];
217 const GLfloat invW1 = v1->win[3];
218 const GLfloat invW2 = v2->win[3];
219 const GLfloat s0 = v0->texcoord[u][0] * invW0;
220 const GLfloat s1 = v1->texcoord[u][0] * invW1;
221 const GLfloat s2 = v2->texcoord[u][0] * invW2;
222 const GLfloat t0 = v0->texcoord[u][1] * invW0;
223 const GLfloat t1 = v1->texcoord[u][1] * invW1;
224 const GLfloat t2 = v2->texcoord[u][1] * invW2;
225 const GLfloat r0 = v0->texcoord[u][2] * invW0;
226 const GLfloat r1 = v1->texcoord[u][2] * invW1;
227 const GLfloat r2 = v2->texcoord[u][2] * invW2;
228 const GLfloat q0 = v0->texcoord[u][3] * invW0;
229 const GLfloat q1 = v1->texcoord[u][3] * invW1;
230 const GLfloat q2 = v2->texcoord[u][3] * invW2;
231 compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
232 compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
233 compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
234 compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
235 texWidth[u] = (GLfloat) texImage->Width;
236 texHeight[u] = (GLfloat) texImage->Height;
237 }
238 }
239 }
240 span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
241 #endif
242
243 /* Begin bottom-to-top scan over the triangle.
244 * The long edge will either be on the left or right side of the
245 * triangle. We always scan from the long edge toward the shorter
246 * edges, stopping when we find that coverage = 0. If the long edge
247 * is on the left we scan left-to-right. Else, we scan right-to-left.
248 */
249 yMin = vMin->win[1];
250 yMax = vMax->win[1];
251 iyMin = (GLint) yMin;
252 iyMax = (GLint) yMax + 1;
253
254 if (ltor) {
255 /* scan left to right */
256 const GLfloat *pMin = vMin->win;
257 const GLfloat *pMid = vMid->win;
258 const GLfloat *pMax = vMax->win;
259 const GLfloat dxdy = majDx / majDy;
260 const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
261 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
262 GLint iy;
263 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
264 GLint ix, startX = (GLint) (x - xAdj);
265 GLuint count;
266 GLfloat coverage = 0.0F;
267
268 /* skip over fragments with zero coverage */
269 while (startX < MAX_WIDTH) {
270 coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
271 if (coverage > 0.0F)
272 break;
273 startX++;
274 }
275
276 /* enter interior of triangle */
277 ix = startX;
278 count = 0;
279 while (coverage > 0.0F) {
280 /* (cx,cy) = center of fragment */
281 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
282 SWspanarrays *array = span.array;
283 #ifdef DO_INDEX
284 array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
285 #else
286 array->coverage[count] = coverage;
287 #endif
288 #ifdef DO_Z
289 array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
290 #endif
291 #ifdef DO_FOG
292 array->attribs[FRAG_ATTRIB_FOGC][count][0] = solve_plane(cx, cy, fogPlane);
293 #endif
294 #ifdef DO_RGBA
295 array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
296 array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
297 array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
298 array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
299 #endif
300 #ifdef DO_INDEX
301 array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
302 #endif
303 #ifdef DO_SPEC
304 array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
305 array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
306 array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
307 #endif
308 #ifdef DO_TEX
309 {
310 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
311 array->attribs[FRAG_ATTRIB_TEX0 + 0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
312 array->attribs[FRAG_ATTRIB_TEX0 + 0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
313 array->attribs[FRAG_ATTRIB_TEX0 + 0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
314 array->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
315 cx, cy, invQ,
316 texWidth, texHeight);
317 }
318 #elif defined(DO_MULTITEX)
319 {
320 GLuint unit;
321 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
322 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
323 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
324 array->attribs[FRAG_ATTRIB_TEX0 + unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
325 array->attribs[FRAG_ATTRIB_TEX0 + unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
326 array->attribs[FRAG_ATTRIB_TEX0 + unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
327 array->lambda[unit][count] = compute_lambda(sPlane[unit],
328 tPlane[unit], vPlane[unit], cx, cy, invQ,
329 texWidth[unit], texHeight[unit]);
330 }
331 }
332 }
333 #endif
334 ix++;
335 count++;
336 coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
337 }
338
339 if (ix <= startX)
340 continue;
341
342 span.x = startX;
343 span.y = iy;
344 span.end = (GLuint) ix - (GLuint) startX;
345 ASSERT(span.interpMask == 0);
346 #if defined(DO_RGBA)
347 _swrast_write_rgba_span(ctx, &span);
348 #else
349 _swrast_write_index_span(ctx, &span);
350 #endif
351 }
352 }
353 else {
354 /* scan right to left */
355 const GLfloat *pMin = vMin->win;
356 const GLfloat *pMid = vMid->win;
357 const GLfloat *pMax = vMax->win;
358 const GLfloat dxdy = majDx / majDy;
359 const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
360 GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
361 GLint iy;
362 for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
363 GLint ix, left, startX = (GLint) (x + xAdj);
364 GLuint count, n;
365 GLfloat coverage = 0.0F;
366
367 /* make sure we're not past the window edge */
368 if (startX >= ctx->DrawBuffer->_Xmax) {
369 startX = ctx->DrawBuffer->_Xmax - 1;
370 }
371
372 /* skip fragments with zero coverage */
373 while (startX >= 0) {
374 coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
375 if (coverage > 0.0F)
376 break;
377 startX--;
378 }
379
380 /* enter interior of triangle */
381 ix = startX;
382 count = 0;
383 while (coverage > 0.0F) {
384 /* (cx,cy) = center of fragment */
385 const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
386 SWspanarrays *array = span.array;
387 #ifdef DO_INDEX
388 array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
389 #else
390 array->coverage[ix] = coverage;
391 #endif
392 #ifdef DO_Z
393 array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
394 #endif
395 #ifdef DO_FOG
396 array->attribs[FRAG_ATTRIB_FOGC][ix][0] = solve_plane(cx, cy, fogPlane);
397 #endif
398 #ifdef DO_RGBA
399 array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
400 array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
401 array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
402 array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
403 #endif
404 #ifdef DO_INDEX
405 array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
406 #endif
407 #ifdef DO_SPEC
408 array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
409 array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
410 array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
411 #endif
412 #ifdef DO_TEX
413 {
414 const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
415 array->attribs[FRAG_ATTRIB_TEX0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
416 array->attribs[FRAG_ATTRIB_TEX0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
417 array->attribs[FRAG_ATTRIB_TEX0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
418 array->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
419 cx, cy, invQ, texWidth, texHeight);
420 }
421 #elif defined(DO_MULTITEX)
422 {
423 GLuint unit;
424 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
425 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
426 GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
427 array->attribs[FRAG_ATTRIB_TEX0 + unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
428 array->attribs[FRAG_ATTRIB_TEX0 + unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
429 array->attribs[FRAG_ATTRIB_TEX0 + unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
430 array->lambda[unit][ix] = compute_lambda(sPlane[unit],
431 tPlane[unit],
432 vPlane[unit],
433 cx, cy, invQ,
434 texWidth[unit],
435 texHeight[unit]);
436 }
437 }
438 }
439 #endif
440 ix--;
441 count++;
442 coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
443 }
444
445 if (startX <= ix)
446 continue;
447
448 n = (GLuint) startX - (GLuint) ix;
449
450 left = ix + 1;
451
452 /* shift all values to the left */
453 /* XXX this is temporary */
454 {
455 SWspanarrays *array = span.array;
456 GLint j;
457 for (j = 0; j < (GLint) n; j++) {
458 #ifdef DO_RGBA
459 COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
460 #endif
461 #ifdef DO_SPEC
462 COPY_CHAN4(array->spec[j], array->spec[j + left]);
463 #endif
464 #ifdef DO_INDEX
465 array->index[j] = array->index[j + left];
466 #endif
467 #ifdef DO_Z
468 array->z[j] = array->z[j + left];
469 #endif
470 #ifdef DO_FOG
471 array->attribs[FRAG_ATTRIB_FOGC][j][0]
472 = array->attribs[FRAG_ATTRIB_FOGC][j + left][0];
473 #endif
474 #ifdef DO_TEX
475 COPY_4V(array->attribs[FRAG_ATTRIB_TEX0 + 0][j], array->attribs[FRAG_ATTRIB_TEX0 + 0][j + left]);
476 #endif
477 #if defined(DO_MULTITEX) || defined(DO_TEX)
478 array->lambda[0][j] = array->lambda[0][j + left];
479 #endif
480 array->coverage[j] = array->coverage[j + left];
481 }
482 }
483 #ifdef DO_MULTITEX
484 /* shift texcoords */
485 {
486 SWspanarrays *array = span.array;
487 GLuint unit;
488 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
489 if (ctx->Texture.Unit[unit]._ReallyEnabled) {
490 GLint j;
491 for (j = 0; j < (GLint) n; j++) {
492 array->attribs[FRAG_ATTRIB_TEX0 + unit][j][0] = array->attribs[FRAG_ATTRIB_TEX0 + unit][j + left][0];
493 array->attribs[FRAG_ATTRIB_TEX0 + unit][j][1] = array->attribs[FRAG_ATTRIB_TEX0 + unit][j + left][1];
494 array->attribs[FRAG_ATTRIB_TEX0 + unit][j][2] = array->attribs[FRAG_ATTRIB_TEX0 + unit][j + left][2];
495 array->lambda[unit][j] = array->lambda[unit][j + left];
496 }
497 }
498 }
499 }
500 #endif
501
502 span.x = left;
503 span.y = iy;
504 span.end = n;
505 ASSERT(span.interpMask == 0);
506 #if defined(DO_RGBA)
507 _swrast_write_rgba_span(ctx, &span);
508 #else
509 _swrast_write_index_span(ctx, &span);
510 #endif
511 }
512 }
513 }
514
515
516 #ifdef DO_Z
517 #undef DO_Z
518 #endif
519
520 #ifdef DO_FOG
521 #undef DO_FOG
522 #endif
523
524 #ifdef DO_RGBA
525 #undef DO_RGBA
526 #endif
527
528 #ifdef DO_INDEX
529 #undef DO_INDEX
530 #endif
531
532 #ifdef DO_SPEC
533 #undef DO_SPEC
534 #endif
535
536 #ifdef DO_TEX
537 #undef DO_TEX
538 #endif
539
540 #ifdef DO_MULTITEX
541 #undef DO_MULTITEX
542 #endif
543
544 #ifdef DO_OCCLUSION_TEST
545 #undef DO_OCCLUSION_TEST
546 #endif