replace _mesa_ prefix with _swrast_, remove s_histogram.[ch]
[mesa.git] / src / mesa / swrast / s_linetemp.h
1 /* $Id: s_linetemp.h,v 1.18 2003/03/25 02:23:46 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 5.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Line Rasterizer Template
30 *
31 * This file is #include'd to generate custom line rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated along the line:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_FOG - if defined, interpolate FOG values
37 * INTERP_RGBA - if defined, interpolate RGBA values
38 * INTERP_SPEC - if defined, interpolate specular RGB values
39 * INTERP_INDEX - if defined, interpolate color index values
40 * INTERP_TEX - if defined, interpolate unit 0 texcoords
41 * INTERP_MULTITEX - if defined, interpolate multi-texcoords
42 *
43 * When one can directly address pixels in the color buffer the following
44 * macros can be defined and used to directly compute pixel addresses during
45 * rasterization (see pixelPtr):
46 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
47 * BYTES_PER_ROW - number of bytes per row in the color buffer
48 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
49 * Y==0 at bottom of screen and increases upward.
50 *
51 * Similarly, for direct depth buffer access, this type is used for depth
52 * buffer addressing:
53 * DEPTH_TYPE - either GLushort or GLuint
54 *
55 * Optionally, one may provide one-time setup code
56 * SETUP_CODE - code which is to be executed once per line
57 *
58 * To actually "plot" each pixel the PLOT macro must be defined...
59 * PLOT(X,Y) - code to plot a pixel. Example:
60 * if (Z < *zPtr) {
61 * *zPtr = Z;
62 * color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
63 * FixedToInt(b0) );
64 * put_pixel( X, Y, color );
65 * }
66 *
67 * This code was designed for the origin to be in the lower-left corner.
68 *
69 */
70
71
72 static void
73 NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
74 {
75 struct sw_span span;
76 GLuint interpFlags = 0;
77 GLint x0 = (GLint) vert0->win[0];
78 GLint x1 = (GLint) vert1->win[0];
79 GLint y0 = (GLint) vert0->win[1];
80 GLint y1 = (GLint) vert1->win[1];
81 GLint dx, dy;
82 GLint numPixels;
83 GLint xstep, ystep;
84 #if defined(DEPTH_TYPE)
85 const GLint depthBits = ctx->Visual.depthBits;
86 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
87 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
88 GLint zPtrXstep, zPtrYstep;
89 DEPTH_TYPE *zPtr;
90 #elif defined(INTERP_Z)
91 const GLint depthBits = ctx->Visual.depthBits;
92 #endif
93 #ifdef PIXEL_ADDRESS
94 PIXEL_TYPE *pixelPtr;
95 GLint pixelXstep, pixelYstep;
96 #endif
97
98 #ifdef SETUP_CODE
99 SETUP_CODE
100 #endif
101
102 /* Cull primitives with malformed coordinates.
103 */
104 {
105 GLfloat tmp = vert0->win[0] + vert0->win[1]
106 + vert1->win[0] + vert1->win[1];
107 if (IS_INF_OR_NAN(tmp))
108 return;
109 }
110
111 /*
112 printf("%s():\n", __FUNCTION__);
113 printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
114 vert0->win[0], vert0->win[1], vert0->win[2],
115 vert1->win[0], vert1->win[1], vert1->win[2]);
116 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
117 vert0->color[0], vert0->color[1], vert0->color[2],
118 vert1->color[0], vert1->color[1], vert1->color[2]);
119 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
120 vert0->specular[0], vert0->specular[1], vert0->specular[2],
121 vert1->specular[0], vert1->specular[1], vert1->specular[2]);
122 */
123
124 /*
125 * Despite being clipped to the view volume, the line's window coordinates
126 * may just lie outside the window bounds. That is, if the legal window
127 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
128 * This quick and dirty code nudges the endpoints inside the window if
129 * necessary.
130 */
131 #ifdef CLIP_HACK
132 {
133 GLint w = ctx->DrawBuffer->Width;
134 GLint h = ctx->DrawBuffer->Height;
135 if ((x0==w) | (x1==w)) {
136 if ((x0==w) & (x1==w))
137 return;
138 x0 -= x0==w;
139 x1 -= x1==w;
140 }
141 if ((y0==h) | (y1==h)) {
142 if ((y0==h) & (y1==h))
143 return;
144 y0 -= y0==h;
145 y1 -= y1==h;
146 }
147 }
148 #endif
149
150 dx = x1 - x0;
151 dy = y1 - y0;
152 if (dx == 0 && dy == 0)
153 return;
154
155 #ifdef DEPTH_TYPE
156 zPtr = (DEPTH_TYPE *) _swrast_zbuffer_address(ctx, x0, y0);
157 #endif
158 #ifdef PIXEL_ADDRESS
159 pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
160 #endif
161
162 if (dx<0) {
163 dx = -dx; /* make positive */
164 xstep = -1;
165 #ifdef DEPTH_TYPE
166 zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
167 #endif
168 #ifdef PIXEL_ADDRESS
169 pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
170 #endif
171 }
172 else {
173 xstep = 1;
174 #ifdef DEPTH_TYPE
175 zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
176 #endif
177 #ifdef PIXEL_ADDRESS
178 pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
179 #endif
180 }
181
182 if (dy<0) {
183 dy = -dy; /* make positive */
184 ystep = -1;
185 #ifdef DEPTH_TYPE
186 zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
187 #endif
188 #ifdef PIXEL_ADDRESS
189 pixelYstep = BYTES_PER_ROW;
190 #endif
191 }
192 else {
193 ystep = 1;
194 #ifdef DEPTH_TYPE
195 zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
196 #endif
197 #ifdef PIXEL_ADDRESS
198 pixelYstep = -(BYTES_PER_ROW);
199 #endif
200 }
201
202 ASSERT(dx >= 0);
203 ASSERT(dy >= 0);
204
205 numPixels = MAX2(dx, dy);
206
207 /*
208 * Span setup: compute start and step values for all interpolated values.
209 */
210 #ifdef INTERP_RGBA
211 interpFlags |= SPAN_RGBA;
212 if (ctx->Light.ShadeModel == GL_SMOOTH) {
213 span.red = ChanToFixed(vert0->color[0]);
214 span.green = ChanToFixed(vert0->color[1]);
215 span.blue = ChanToFixed(vert0->color[2]);
216 span.alpha = ChanToFixed(vert0->color[3]);
217 span.redStep = (ChanToFixed(vert1->color[0]) - span.red ) / numPixels;
218 span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
219 span.blueStep = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
220 span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
221 }
222 else {
223 span.red = ChanToFixed(vert1->color[0]);
224 span.green = ChanToFixed(vert1->color[1]);
225 span.blue = ChanToFixed(vert1->color[2]);
226 span.alpha = ChanToFixed(vert1->color[3]);
227 span.redStep = 0;
228 span.greenStep = 0;
229 span.blueStep = 0;
230 span.alphaStep = 0;
231 }
232 #endif
233 #ifdef INTERP_SPEC
234 interpFlags |= SPAN_SPEC;
235 if (ctx->Light.ShadeModel == GL_SMOOTH) {
236 span.specRed = ChanToFixed(vert0->specular[0]);
237 span.specGreen = ChanToFixed(vert0->specular[1]);
238 span.specBlue = ChanToFixed(vert0->specular[2]);
239 span.specRedStep = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
240 span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
241 span.specBlueStep = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
242 }
243 else {
244 span.specRed = ChanToFixed(vert1->specular[0]);
245 span.specGreen = ChanToFixed(vert1->specular[1]);
246 span.specBlue = ChanToFixed(vert1->specular[2]);
247 span.specRedStep = 0;
248 span.specGreenStep = 0;
249 span.specBlueStep = 0;
250 }
251 #endif
252 #ifdef INTERP_INDEX
253 interpFlags |= SPAN_INDEX;
254 if (ctx->Light.ShadeModel == GL_SMOOTH) {
255 span.index = IntToFixed(vert0->index);
256 span.indexStep = IntToFixed(vert1->index - vert0->index) / numPixels;
257 }
258 else {
259 span.index = IntToFixed(vert1->index);
260 span.indexStep = 0;
261 }
262 #endif
263 #if defined(INTERP_Z) || defined(DEPTH_TYPE)
264 interpFlags |= SPAN_Z;
265 {
266 if (depthBits <= 16) {
267 span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
268 span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
269 }
270 else {
271 /* don't use fixed point */
272 span.z = (GLint) vert0->win[2];
273 span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
274 }
275 }
276 #endif
277 #ifdef INTERP_FOG
278 interpFlags |= SPAN_FOG;
279 span.fog = vert0->fog;
280 span.fogStep = (vert1->fog - vert0->fog) / numPixels;
281 #endif
282 #ifdef INTERP_TEX
283 interpFlags |= SPAN_TEXTURE;
284 {
285 const GLfloat invw0 = vert0->win[3];
286 const GLfloat invw1 = vert1->win[3];
287 const GLfloat invLen = 1.0F / numPixels;
288 GLfloat ds, dt, dr, dq;
289 span.tex[0][0] = invw0 * vert0->texcoord[0][0];
290 span.tex[0][1] = invw0 * vert0->texcoord[0][1];
291 span.tex[0][2] = invw0 * vert0->texcoord[0][2];
292 span.tex[0][3] = invw0 * vert0->texcoord[0][3];
293 ds = (invw1 * vert1->texcoord[0][0]) - span.tex[0][0];
294 dt = (invw1 * vert1->texcoord[0][1]) - span.tex[0][1];
295 dr = (invw1 * vert1->texcoord[0][2]) - span.tex[0][2];
296 dq = (invw1 * vert1->texcoord[0][3]) - span.tex[0][3];
297 span.texStepX[0][0] = ds * invLen;
298 span.texStepX[0][1] = dt * invLen;
299 span.texStepX[0][2] = dr * invLen;
300 span.texStepX[0][3] = dq * invLen;
301 span.texStepY[0][0] = 0.0F;
302 span.texStepY[0][1] = 0.0F;
303 span.texStepY[0][2] = 0.0F;
304 span.texStepY[0][3] = 0.0F;
305 }
306 #endif
307 #ifdef INTERP_MULTITEX
308 interpFlags |= SPAN_TEXTURE;
309 {
310 const GLfloat invLen = 1.0F / numPixels;
311 GLuint u;
312 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
313 if (ctx->Texture.Unit[u]._ReallyEnabled) {
314 const GLfloat invw0 = vert0->win[3];
315 const GLfloat invw1 = vert1->win[3];
316 GLfloat ds, dt, dr, dq;
317 span.tex[u][0] = invw0 * vert0->texcoord[u][0];
318 span.tex[u][1] = invw0 * vert0->texcoord[u][1];
319 span.tex[u][2] = invw0 * vert0->texcoord[u][2];
320 span.tex[u][3] = invw0 * vert0->texcoord[u][3];
321 ds = (invw1 * vert1->texcoord[u][0]) - span.tex[u][0];
322 dt = (invw1 * vert1->texcoord[u][1]) - span.tex[u][1];
323 dr = (invw1 * vert1->texcoord[u][2]) - span.tex[u][2];
324 dq = (invw1 * vert1->texcoord[u][3]) - span.tex[u][3];
325 span.texStepX[u][0] = ds * invLen;
326 span.texStepX[u][1] = dt * invLen;
327 span.texStepX[u][2] = dr * invLen;
328 span.texStepX[u][3] = dq * invLen;
329 span.texStepY[u][0] = 0.0F;
330 span.texStepY[u][1] = 0.0F;
331 span.texStepY[u][2] = 0.0F;
332 span.texStepY[u][3] = 0.0F;
333 }
334 }
335 }
336 #endif
337
338 INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
339
340 /*
341 * Draw
342 */
343
344 if (dx > dy) {
345 /*** X-major line ***/
346 GLint i;
347 GLint errorInc = dy+dy;
348 GLint error = errorInc-dx;
349 GLint errorDec = error-dx;
350
351 for (i = 0; i < dx; i++) {
352 #ifdef DEPTH_TYPE
353 GLdepth Z = FixedToDepth(span.z);
354 #endif
355 #ifdef PLOT
356 PLOT( x0, y0 );
357 #else
358 span.array->x[i] = x0;
359 span.array->y[i] = y0;
360 #endif
361 x0 += xstep;
362 #ifdef DEPTH_TYPE
363 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
364 span.z += span.zStep;
365 #endif
366 #ifdef PIXEL_ADDRESS
367 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
368 #endif
369 if (error<0) {
370 error += errorInc;
371 }
372 else {
373 error += errorDec;
374 y0 += ystep;
375 #ifdef DEPTH_TYPE
376 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
377 #endif
378 #ifdef PIXEL_ADDRESS
379 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
380 #endif
381 }
382 }
383 }
384 else {
385 /*** Y-major line ***/
386 GLint i;
387 GLint errorInc = dx+dx;
388 GLint error = errorInc-dy;
389 GLint errorDec = error-dy;
390
391 for (i=0;i<dy;i++) {
392 #ifdef DEPTH_TYPE
393 GLdepth Z = FixedToDepth(span.z);
394 #endif
395 #ifdef PLOT
396 PLOT( x0, y0 );
397 #else
398 span.array->x[i] = x0;
399 span.array->y[i] = y0;
400 #endif
401 y0 += ystep;
402 #ifdef DEPTH_TYPE
403 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
404 span.z += span.zStep;
405 #endif
406 #ifdef PIXEL_ADDRESS
407 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
408 #endif
409 if (error<0) {
410 error += errorInc;
411 }
412 else {
413 error += errorDec;
414 x0 += xstep;
415 #ifdef DEPTH_TYPE
416 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
417 #endif
418 #ifdef PIXEL_ADDRESS
419 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
420 #endif
421 }
422 }
423 }
424
425 #ifdef RENDER_SPAN
426 RENDER_SPAN( span );
427 #endif
428
429 }
430
431
432 #undef NAME
433 #undef INTERP_Z
434 #undef INTERP_FOG
435 #undef INTERP_RGBA
436 #undef INTERP_SPEC
437 #undef INTERP_TEX
438 #undef INTERP_MULTITEX
439 #undef INTERP_INDEX
440 #undef PIXEL_ADDRESS
441 #undef PIXEL_TYPE
442 #undef DEPTH_TYPE
443 #undef BYTES_PER_ROW
444 #undef SETUP_CODE
445 #undef PLOT
446 #undef CLIP_HACK
447 #undef FixedToDepth
448 #undef RENDER_SPAN