Merge branch 'master' of git+ssh://brianp@git.freedesktop.org/git/mesa/mesa
[mesa.git] / src / mesa / swrast / s_linetemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * Line Rasterizer Template
28 *
29 * This file is #include'd to generate custom line rasterizers.
30 *
31 * The following macros may be defined to indicate what auxillary information
32 * must be interplated along the line:
33 * INTERP_Z - if defined, interpolate Z values
34 * INTERP_FOG - if defined, interpolate FOG values
35 * INTERP_RGBA - if defined, interpolate RGBA values
36 * INTERP_SPEC - if defined, interpolate specular RGB values
37 * INTERP_INDEX - if defined, interpolate color index values
38 * INTERP_TEX - if defined, interpolate unit 0 texcoords
39 * INTERP_MULTITEX - if defined, interpolate multi-texcoords
40 *
41 * When one can directly address pixels in the color buffer the following
42 * macros can be defined and used to directly compute pixel addresses during
43 * rasterization (see pixelPtr):
44 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
45 * BYTES_PER_ROW - number of bytes per row in the color buffer
46 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
47 * Y==0 at bottom of screen and increases upward.
48 *
49 * Similarly, for direct depth buffer access, this type is used for depth
50 * buffer addressing:
51 * DEPTH_TYPE - either GLushort or GLuint
52 *
53 * Optionally, one may provide one-time setup code
54 * SETUP_CODE - code which is to be executed once per line
55 *
56 * To actually "plot" each pixel the PLOT macro must be defined...
57 * PLOT(X,Y) - code to plot a pixel. Example:
58 * if (Z < *zPtr) {
59 * *zPtr = Z;
60 * color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
61 * FixedToInt(b0) );
62 * put_pixel( X, Y, color );
63 * }
64 *
65 * This code was designed for the origin to be in the lower-left corner.
66 *
67 */
68
69
70 static void
71 NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
72 {
73 SWspan span;
74 GLuint interpFlags = 0;
75 GLint x0 = (GLint) vert0->win[0];
76 GLint x1 = (GLint) vert1->win[0];
77 GLint y0 = (GLint) vert0->win[1];
78 GLint y1 = (GLint) vert1->win[1];
79 GLint dx, dy;
80 GLint numPixels;
81 GLint xstep, ystep;
82 #if defined(DEPTH_TYPE)
83 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
84 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
85 struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
86 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
87 GLint zPtrXstep, zPtrYstep;
88 DEPTH_TYPE *zPtr;
89 #elif defined(INTERP_Z)
90 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
91 /*ctx->Visual.depthBits;*/
92 #endif
93 #ifdef PIXEL_ADDRESS
94 PIXEL_TYPE *pixelPtr;
95 GLint pixelXstep, pixelYstep;
96 #endif
97
98 #ifdef SETUP_CODE
99 SETUP_CODE
100 #endif
101
102 /* Cull primitives with malformed coordinates.
103 */
104 {
105 GLfloat tmp = vert0->win[0] + vert0->win[1]
106 + vert1->win[0] + vert1->win[1];
107 if (IS_INF_OR_NAN(tmp))
108 return;
109 }
110
111 /*
112 printf("%s():\n", __FUNCTION__);
113 printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
114 vert0->win[0], vert0->win[1], vert0->win[2],
115 vert1->win[0], vert1->win[1], vert1->win[2]);
116 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
117 vert0->color[0], vert0->color[1], vert0->color[2],
118 vert1->color[0], vert1->color[1], vert1->color[2]);
119 printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
120 vert0->specular[0], vert0->specular[1], vert0->specular[2],
121 vert1->specular[0], vert1->specular[1], vert1->specular[2]);
122 */
123
124 /*
125 * Despite being clipped to the view volume, the line's window coordinates
126 * may just lie outside the window bounds. That is, if the legal window
127 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
128 * This quick and dirty code nudges the endpoints inside the window if
129 * necessary.
130 */
131 #ifdef CLIP_HACK
132 {
133 GLint w = ctx->DrawBuffer->Width;
134 GLint h = ctx->DrawBuffer->Height;
135 if ((x0==w) | (x1==w)) {
136 if ((x0==w) & (x1==w))
137 return;
138 x0 -= x0==w;
139 x1 -= x1==w;
140 }
141 if ((y0==h) | (y1==h)) {
142 if ((y0==h) & (y1==h))
143 return;
144 y0 -= y0==h;
145 y1 -= y1==h;
146 }
147 }
148 #endif
149
150 dx = x1 - x0;
151 dy = y1 - y0;
152 if (dx == 0 && dy == 0)
153 return;
154
155 #ifdef DEPTH_TYPE
156 zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0);
157 #endif
158 #ifdef PIXEL_ADDRESS
159 pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
160 #endif
161
162 if (dx<0) {
163 dx = -dx; /* make positive */
164 xstep = -1;
165 #ifdef DEPTH_TYPE
166 zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
167 #endif
168 #ifdef PIXEL_ADDRESS
169 pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
170 #endif
171 }
172 else {
173 xstep = 1;
174 #ifdef DEPTH_TYPE
175 zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
176 #endif
177 #ifdef PIXEL_ADDRESS
178 pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
179 #endif
180 }
181
182 if (dy<0) {
183 dy = -dy; /* make positive */
184 ystep = -1;
185 #ifdef DEPTH_TYPE
186 zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
187 #endif
188 #ifdef PIXEL_ADDRESS
189 pixelYstep = BYTES_PER_ROW;
190 #endif
191 }
192 else {
193 ystep = 1;
194 #ifdef DEPTH_TYPE
195 zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
196 #endif
197 #ifdef PIXEL_ADDRESS
198 pixelYstep = -(BYTES_PER_ROW);
199 #endif
200 }
201
202 ASSERT(dx >= 0);
203 ASSERT(dy >= 0);
204
205 numPixels = MAX2(dx, dy);
206
207 /*
208 * Span setup: compute start and step values for all interpolated values.
209 */
210 #ifdef INTERP_RGBA
211 interpFlags |= SPAN_RGBA;
212 if (ctx->Light.ShadeModel == GL_SMOOTH) {
213 span.red = ChanToFixed(vert0->color[0]);
214 span.green = ChanToFixed(vert0->color[1]);
215 span.blue = ChanToFixed(vert0->color[2]);
216 span.alpha = ChanToFixed(vert0->color[3]);
217 span.redStep = (ChanToFixed(vert1->color[0]) - span.red ) / numPixels;
218 span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
219 span.blueStep = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
220 span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
221 }
222 else {
223 span.red = ChanToFixed(vert1->color[0]);
224 span.green = ChanToFixed(vert1->color[1]);
225 span.blue = ChanToFixed(vert1->color[2]);
226 span.alpha = ChanToFixed(vert1->color[3]);
227 span.redStep = 0;
228 span.greenStep = 0;
229 span.blueStep = 0;
230 span.alphaStep = 0;
231 }
232 #endif
233 #ifdef INTERP_SPEC
234 interpFlags |= SPAN_SPEC;
235 if (ctx->Light.ShadeModel == GL_SMOOTH) {
236 span.specRed = ChanToFixed(vert0->specular[0]);
237 span.specGreen = ChanToFixed(vert0->specular[1]);
238 span.specBlue = ChanToFixed(vert0->specular[2]);
239 span.specRedStep = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
240 span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
241 span.specBlueStep = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
242 }
243 else {
244 span.specRed = ChanToFixed(vert1->specular[0]);
245 span.specGreen = ChanToFixed(vert1->specular[1]);
246 span.specBlue = ChanToFixed(vert1->specular[2]);
247 span.specRedStep = 0;
248 span.specGreenStep = 0;
249 span.specBlueStep = 0;
250 }
251 #endif
252 #ifdef INTERP_INDEX
253 interpFlags |= SPAN_INDEX;
254 if (ctx->Light.ShadeModel == GL_SMOOTH) {
255 span.index = FloatToFixed(vert0->index);
256 span.indexStep = FloatToFixed(vert1->index - vert0->index) / numPixels;
257 }
258 else {
259 span.index = FloatToFixed(vert1->index);
260 span.indexStep = 0;
261 }
262 #endif
263 #if defined(INTERP_Z) || defined(DEPTH_TYPE)
264 interpFlags |= SPAN_Z;
265 {
266 if (depthBits <= 16) {
267 span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
268 span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
269 }
270 else {
271 /* don't use fixed point */
272 span.z = (GLuint) vert0->win[2];
273 span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
274 }
275 }
276 #endif
277 #ifdef INTERP_FOG
278 interpFlags |= SPAN_FOG;
279 span.fog = vert0->fog;
280 span.fogStep = (vert1->fog - vert0->fog) / numPixels;
281 #endif
282 #ifdef INTERP_TEX
283 interpFlags |= SPAN_TEXTURE;
284 {
285 const GLfloat invw0 = vert0->win[3];
286 const GLfloat invw1 = vert1->win[3];
287 const GLfloat invLen = 1.0F / numPixels;
288 GLfloat ds, dt, dr, dq;
289 span.tex[0][0] = invw0 * vert0->texcoord[0][0];
290 span.tex[0][1] = invw0 * vert0->texcoord[0][1];
291 span.tex[0][2] = invw0 * vert0->texcoord[0][2];
292 span.tex[0][3] = invw0 * vert0->texcoord[0][3];
293 ds = (invw1 * vert1->texcoord[0][0]) - span.tex[0][0];
294 dt = (invw1 * vert1->texcoord[0][1]) - span.tex[0][1];
295 dr = (invw1 * vert1->texcoord[0][2]) - span.tex[0][2];
296 dq = (invw1 * vert1->texcoord[0][3]) - span.tex[0][3];
297 span.texStepX[0][0] = ds * invLen;
298 span.texStepX[0][1] = dt * invLen;
299 span.texStepX[0][2] = dr * invLen;
300 span.texStepX[0][3] = dq * invLen;
301 span.texStepY[0][0] = 0.0F;
302 span.texStepY[0][1] = 0.0F;
303 span.texStepY[0][2] = 0.0F;
304 span.texStepY[0][3] = 0.0F;
305 }
306 #endif
307 #ifdef INTERP_MULTITEX
308 interpFlags |= SPAN_TEXTURE;
309 {
310 const GLfloat invLen = 1.0F / numPixels;
311 GLuint u;
312 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
313 if (ctx->Texture.Unit[u]._ReallyEnabled) {
314 const GLfloat invw0 = vert0->win[3];
315 const GLfloat invw1 = vert1->win[3];
316 GLfloat ds, dt, dr, dq;
317 span.tex[u][0] = invw0 * vert0->texcoord[u][0];
318 span.tex[u][1] = invw0 * vert0->texcoord[u][1];
319 span.tex[u][2] = invw0 * vert0->texcoord[u][2];
320 span.tex[u][3] = invw0 * vert0->texcoord[u][3];
321 ds = (invw1 * vert1->texcoord[u][0]) - span.tex[u][0];
322 dt = (invw1 * vert1->texcoord[u][1]) - span.tex[u][1];
323 dr = (invw1 * vert1->texcoord[u][2]) - span.tex[u][2];
324 dq = (invw1 * vert1->texcoord[u][3]) - span.tex[u][3];
325 span.texStepX[u][0] = ds * invLen;
326 span.texStepX[u][1] = dt * invLen;
327 span.texStepX[u][2] = dr * invLen;
328 span.texStepX[u][3] = dq * invLen;
329 span.texStepY[u][0] = 0.0F;
330 span.texStepY[u][1] = 0.0F;
331 span.texStepY[u][2] = 0.0F;
332 span.texStepY[u][3] = 0.0F;
333 }
334 }
335 }
336 #endif
337
338 INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
339
340 /* Need these for fragment prog texcoord interpolation */
341 span.w = 1.0F;
342 span.dwdx = 0.0F;
343 span.dwdy = 0.0F;
344
345 /*
346 * Draw
347 */
348
349 if (dx > dy) {
350 /*** X-major line ***/
351 GLint i;
352 GLint errorInc = dy+dy;
353 GLint error = errorInc-dx;
354 GLint errorDec = error-dx;
355
356 for (i = 0; i < dx; i++) {
357 #ifdef DEPTH_TYPE
358 GLuint Z = FixedToDepth(span.z);
359 #endif
360 #ifdef PLOT
361 PLOT( x0, y0 );
362 #else
363 span.array->x[i] = x0;
364 span.array->y[i] = y0;
365 #endif
366 x0 += xstep;
367 #ifdef DEPTH_TYPE
368 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
369 span.z += span.zStep;
370 #endif
371 #ifdef PIXEL_ADDRESS
372 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
373 #endif
374 if (error<0) {
375 error += errorInc;
376 }
377 else {
378 error += errorDec;
379 y0 += ystep;
380 #ifdef DEPTH_TYPE
381 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
382 #endif
383 #ifdef PIXEL_ADDRESS
384 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
385 #endif
386 }
387 }
388 }
389 else {
390 /*** Y-major line ***/
391 GLint i;
392 GLint errorInc = dx+dx;
393 GLint error = errorInc-dy;
394 GLint errorDec = error-dy;
395
396 for (i=0;i<dy;i++) {
397 #ifdef DEPTH_TYPE
398 GLuint Z = FixedToDepth(span.z);
399 #endif
400 #ifdef PLOT
401 PLOT( x0, y0 );
402 #else
403 span.array->x[i] = x0;
404 span.array->y[i] = y0;
405 #endif
406 y0 += ystep;
407 #ifdef DEPTH_TYPE
408 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
409 span.z += span.zStep;
410 #endif
411 #ifdef PIXEL_ADDRESS
412 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
413 #endif
414 if (error<0) {
415 error += errorInc;
416 }
417 else {
418 error += errorDec;
419 x0 += xstep;
420 #ifdef DEPTH_TYPE
421 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
422 #endif
423 #ifdef PIXEL_ADDRESS
424 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
425 #endif
426 }
427 }
428 }
429
430 #ifdef RENDER_SPAN
431 RENDER_SPAN( span );
432 #endif
433
434 (void)span;
435
436 }
437
438
439 #undef NAME
440 #undef INTERP_Z
441 #undef INTERP_FOG
442 #undef INTERP_RGBA
443 #undef INTERP_SPEC
444 #undef INTERP_TEX
445 #undef INTERP_MULTITEX
446 #undef INTERP_INDEX
447 #undef PIXEL_ADDRESS
448 #undef PIXEL_TYPE
449 #undef DEPTH_TYPE
450 #undef BYTES_PER_ROW
451 #undef SETUP_CODE
452 #undef PLOT
453 #undef CLIP_HACK
454 #undef FixedToDepth
455 #undef RENDER_SPAN