3aaa3395e4c155324017fdbdcd394410bb7c8cd4
[mesa.git] / src / mesa / swrast / s_span.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file swrast/s_span.c
28 * \brief Span processing functions used by all rasterization functions.
29 * This is where all the per-fragment tests are performed
30 * \author Brian Paul
31 */
32
33 #include "glheader.h"
34 #include "colormac.h"
35 #include "context.h"
36 #include "macros.h"
37 #include "imports.h"
38 #include "image.h"
39
40 #include "s_atifragshader.h"
41 #include "s_alpha.h"
42 #include "s_blend.h"
43 #include "s_context.h"
44 #include "s_depth.h"
45 #include "s_fog.h"
46 #include "s_logic.h"
47 #include "s_masking.h"
48 #include "s_fragprog.h"
49 #include "s_span.h"
50 #include "s_stencil.h"
51 #include "s_texcombine.h"
52
53
54 /**
55 * Set default fragment attributes for the span using the
56 * current raster values. Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59 void
60 _swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
61 {
62 /* Z*/
63 {
64 const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
65 if (ctx->DrawBuffer->Visual.depthBits <= 16)
66 span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
67 else
68 span->z = (GLint) (ctx->Current.RasterPos[2] * depthMax + 0.5F);
69 span->zStep = 0;
70 span->interpMask |= SPAN_Z;
71 }
72
73 /* W (for perspective correction) */
74 span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
75 span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
76 span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
77
78 /* primary color, or color index */
79 if (ctx->Visual.rgbMode) {
80 GLchan r, g, b, a;
81 UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
82 UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
83 UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
84 UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
85 #if CHAN_TYPE == GL_FLOAT
86 span->red = r;
87 span->green = g;
88 span->blue = b;
89 span->alpha = a;
90 #else
91 span->red = IntToFixed(r);
92 span->green = IntToFixed(g);
93 span->blue = IntToFixed(b);
94 span->alpha = IntToFixed(a);
95 #endif
96 span->redStep = 0;
97 span->greenStep = 0;
98 span->blueStep = 0;
99 span->alphaStep = 0;
100 span->interpMask |= SPAN_RGBA;
101
102 COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
103 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
104 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
105 }
106 else {
107 span->index = FloatToFixed(ctx->Current.RasterIndex);
108 span->indexStep = 0;
109 span->interpMask |= SPAN_INDEX;
110 }
111
112 /* Secondary color */
113 if (ctx->Visual.rgbMode && (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled))
114 {
115 COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
116 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
117 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
118 }
119
120 /* fog */
121 {
122 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
123 GLfloat fogVal; /* a coord or a blend factor */
124 if (swrast->_PreferPixelFog) {
125 /* fog blend factors will be computed from fog coordinates per pixel */
126 fogVal = ctx->Current.RasterDistance;
127 }
128 else {
129 /* fog blend factor should be computed from fogcoord now */
130 fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
131 }
132 span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
133 span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
134 span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
135 }
136
137 /* texcoords */
138 {
139 GLuint i;
140 for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
141 const GLuint attr = FRAG_ATTRIB_TEX0 + i;
142 const GLfloat *tc = ctx->Current.RasterTexCoords[i];
143 if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
144 COPY_4V(span->attrStart[attr], tc);
145 }
146 else if (tc[3] > 0.0F) {
147 /* use (s/q, t/q, r/q, 1) */
148 span->attrStart[attr][0] = tc[0] / tc[3];
149 span->attrStart[attr][1] = tc[1] / tc[3];
150 span->attrStart[attr][2] = tc[2] / tc[3];
151 span->attrStart[attr][3] = 1.0;
152 }
153 else {
154 ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
155 }
156 ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
157 ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
158 }
159 }
160 }
161
162
163 /**
164 * Interpolate the active attributes (and'd with attrMask) to
165 * fill in span->array->attribs[].
166 * Perspective correction will be done. The point/line/triangle function
167 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
168 */
169 static INLINE void
170 interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
171 {
172 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
173
174 ATTRIB_LOOP_BEGIN
175 if (attrMask & (1 << attr)) {
176 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
177 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
178 const GLfloat dv0dx = span->attrStepX[attr][0];
179 const GLfloat dv1dx = span->attrStepX[attr][1];
180 const GLfloat dv2dx = span->attrStepX[attr][2];
181 const GLfloat dv3dx = span->attrStepX[attr][3];
182 GLfloat v0 = span->attrStart[attr][0];
183 GLfloat v1 = span->attrStart[attr][1];
184 GLfloat v2 = span->attrStart[attr][2];
185 GLfloat v3 = span->attrStart[attr][3];
186 GLuint k;
187 for (k = 0; k < span->end; k++) {
188 const GLfloat invW = 1.0f / w;
189 span->array->attribs[attr][k][0] = v0 * invW;
190 span->array->attribs[attr][k][1] = v1 * invW;
191 span->array->attribs[attr][k][2] = v2 * invW;
192 span->array->attribs[attr][k][3] = v3 * invW;
193 v0 += dv0dx;
194 v1 += dv1dx;
195 v2 += dv2dx;
196 v3 += dv3dx;
197 w += dwdx;
198 }
199 span->arrayAttribs |= (1 << attr);
200 }
201 ATTRIB_LOOP_END
202 }
203
204
205 /**
206 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
207 * color array.
208 */
209 static INLINE void
210 interpolate_int_colors(GLcontext *ctx, SWspan *span)
211 {
212 const GLuint n = span->end;
213 GLuint i;
214
215 #if CHAN_BITS != 32
216 ASSERT(!(span->arrayMask & SPAN_RGBA));
217 #endif
218
219 switch (span->array->ChanType) {
220 #if CHAN_BITS != 32
221 case GL_UNSIGNED_BYTE:
222 {
223 GLubyte (*rgba)[4] = span->array->rgba8;
224 if (span->interpMask & SPAN_FLAT) {
225 GLubyte color[4];
226 color[RCOMP] = FixedToInt(span->red);
227 color[GCOMP] = FixedToInt(span->green);
228 color[BCOMP] = FixedToInt(span->blue);
229 color[ACOMP] = FixedToInt(span->alpha);
230 for (i = 0; i < n; i++) {
231 COPY_4UBV(rgba[i], color);
232 }
233 }
234 else {
235 GLfixed r = span->red;
236 GLfixed g = span->green;
237 GLfixed b = span->blue;
238 GLfixed a = span->alpha;
239 GLint dr = span->redStep;
240 GLint dg = span->greenStep;
241 GLint db = span->blueStep;
242 GLint da = span->alphaStep;
243 for (i = 0; i < n; i++) {
244 rgba[i][RCOMP] = FixedToChan(r);
245 rgba[i][GCOMP] = FixedToChan(g);
246 rgba[i][BCOMP] = FixedToChan(b);
247 rgba[i][ACOMP] = FixedToChan(a);
248 r += dr;
249 g += dg;
250 b += db;
251 a += da;
252 }
253 }
254 }
255 break;
256 case GL_UNSIGNED_SHORT:
257 {
258 GLushort (*rgba)[4] = span->array->rgba16;
259 if (span->interpMask & SPAN_FLAT) {
260 GLushort color[4];
261 color[RCOMP] = FixedToInt(span->red);
262 color[GCOMP] = FixedToInt(span->green);
263 color[BCOMP] = FixedToInt(span->blue);
264 color[ACOMP] = FixedToInt(span->alpha);
265 for (i = 0; i < n; i++) {
266 COPY_4V(rgba[i], color);
267 }
268 }
269 else {
270 GLushort (*rgba)[4] = span->array->rgba16;
271 GLfixed r, g, b, a;
272 GLint dr, dg, db, da;
273 r = span->red;
274 g = span->green;
275 b = span->blue;
276 a = span->alpha;
277 dr = span->redStep;
278 dg = span->greenStep;
279 db = span->blueStep;
280 da = span->alphaStep;
281 for (i = 0; i < n; i++) {
282 rgba[i][RCOMP] = FixedToChan(r);
283 rgba[i][GCOMP] = FixedToChan(g);
284 rgba[i][BCOMP] = FixedToChan(b);
285 rgba[i][ACOMP] = FixedToChan(a);
286 r += dr;
287 g += dg;
288 b += db;
289 a += da;
290 }
291 }
292 }
293 break;
294 #endif
295 case GL_FLOAT:
296 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
297 break;
298 default:
299 _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
300 }
301 span->arrayMask |= SPAN_RGBA;
302 }
303
304
305 /**
306 * Populate the FRAG_ATTRIB_COL0 array.
307 */
308 static INLINE void
309 interpolate_float_colors(SWspan *span)
310 {
311 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
312 const GLuint n = span->end;
313 GLuint i;
314
315 assert(!(span->arrayAttribs & FRAG_BIT_COL0));
316
317 if (span->arrayMask & SPAN_RGBA) {
318 /* convert array of int colors */
319 for (i = 0; i < n; i++) {
320 col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
321 col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
322 col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
323 col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
324 }
325 }
326 else {
327 /* interpolate red/green/blue/alpha to get float colors */
328 ASSERT(span->interpMask & SPAN_RGBA);
329 if (span->interpMask & SPAN_FLAT) {
330 GLfloat r = FixedToFloat(span->red);
331 GLfloat g = FixedToFloat(span->green);
332 GLfloat b = FixedToFloat(span->blue);
333 GLfloat a = FixedToFloat(span->alpha);
334 for (i = 0; i < n; i++) {
335 ASSIGN_4V(col0[i], r, g, b, a);
336 }
337 }
338 else {
339 GLfloat r = FixedToFloat(span->red);
340 GLfloat g = FixedToFloat(span->green);
341 GLfloat b = FixedToFloat(span->blue);
342 GLfloat a = FixedToFloat(span->alpha);
343 GLfloat dr = FixedToFloat(span->redStep);
344 GLfloat dg = FixedToFloat(span->greenStep);
345 GLfloat db = FixedToFloat(span->blueStep);
346 GLfloat da = FixedToFloat(span->alphaStep);
347 for (i = 0; i < n; i++) {
348 col0[i][0] = r;
349 col0[i][1] = g;
350 col0[i][2] = b;
351 col0[i][3] = a;
352 r += dr;
353 g += dg;
354 b += db;
355 a += da;
356 }
357 }
358 }
359
360 span->arrayAttribs |= FRAG_BIT_COL0;
361 span->array->ChanType = GL_FLOAT;
362 }
363
364
365
366 /* Fill in the span.color.index array from the interpolation values */
367 static INLINE void
368 interpolate_indexes(GLcontext *ctx, SWspan *span)
369 {
370 GLfixed index = span->index;
371 const GLint indexStep = span->indexStep;
372 const GLuint n = span->end;
373 GLuint *indexes = span->array->index;
374 GLuint i;
375 (void) ctx;
376
377 ASSERT(!(span->arrayMask & SPAN_INDEX));
378
379 if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) {
380 /* constant color */
381 index = FixedToInt(index);
382 for (i = 0; i < n; i++) {
383 indexes[i] = index;
384 }
385 }
386 else {
387 /* interpolate */
388 for (i = 0; i < n; i++) {
389 indexes[i] = FixedToInt(index);
390 index += indexStep;
391 }
392 }
393 span->arrayMask |= SPAN_INDEX;
394 span->interpMask &= ~SPAN_INDEX;
395 }
396
397
398 /**
399 * Fill in the span.zArray array from the span->z, zStep values.
400 */
401 void
402 _swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
403 {
404 const GLuint n = span->end;
405 GLuint i;
406
407 ASSERT(!(span->arrayMask & SPAN_Z));
408
409 if (ctx->DrawBuffer->Visual.depthBits <= 16) {
410 GLfixed zval = span->z;
411 GLuint *z = span->array->z;
412 for (i = 0; i < n; i++) {
413 z[i] = FixedToInt(zval);
414 zval += span->zStep;
415 }
416 }
417 else {
418 /* Deep Z buffer, no fixed->int shift */
419 GLuint zval = span->z;
420 GLuint *z = span->array->z;
421 for (i = 0; i < n; i++) {
422 z[i] = zval;
423 zval += span->zStep;
424 }
425 }
426 span->interpMask &= ~SPAN_Z;
427 span->arrayMask |= SPAN_Z;
428 }
429
430
431 /**
432 * Compute mipmap LOD from partial derivatives.
433 * This the ideal solution, as given in the OpenGL spec.
434 */
435 #if 0
436 static GLfloat
437 compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
438 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
439 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
440 {
441 GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
442 GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
443 GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
444 GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
445 GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
446 GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
447 GLfloat rho = MAX2(x, y);
448 GLfloat lambda = LOG2(rho);
449 return lambda;
450 }
451 #endif
452
453
454 /**
455 * Compute mipmap LOD from partial derivatives.
456 * This is a faster approximation than above function.
457 */
458 GLfloat
459 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
460 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
461 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
462 {
463 GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
464 GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
465 GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
466 GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
467 GLfloat maxU, maxV, rho, lambda;
468 dsdx2 = FABSF(dsdx2);
469 dsdy2 = FABSF(dsdy2);
470 dtdx2 = FABSF(dtdx2);
471 dtdy2 = FABSF(dtdy2);
472 maxU = MAX2(dsdx2, dsdy2) * texW;
473 maxV = MAX2(dtdx2, dtdy2) * texH;
474 rho = MAX2(maxU, maxV);
475 lambda = LOG2(rho);
476 return lambda;
477 }
478
479
480 /**
481 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
482 * using the attrStart/Step values.
483 *
484 * This function only used during fixed-function fragment processing.
485 *
486 * Note: in the places where we divide by Q (or mult by invQ) we're
487 * really doing two things: perspective correction and texcoord
488 * projection. Remember, for texcoord (s,t,r,q) we need to index
489 * texels with (s/q, t/q, r/q).
490 */
491 static void
492 interpolate_texcoords(GLcontext *ctx, SWspan *span)
493 {
494 const GLuint maxUnit
495 = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
496 GLuint u;
497
498 /* XXX CoordUnits vs. ImageUnits */
499 for (u = 0; u < maxUnit; u++) {
500 if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
501 const GLuint attr = FRAG_ATTRIB_TEX0 + u;
502 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
503 GLfloat texW, texH;
504 GLboolean needLambda;
505 GLfloat (*texcoord)[4] = span->array->attribs[attr];
506 GLfloat *lambda = span->array->lambda[u];
507 const GLfloat dsdx = span->attrStepX[attr][0];
508 const GLfloat dsdy = span->attrStepY[attr][0];
509 const GLfloat dtdx = span->attrStepX[attr][1];
510 const GLfloat dtdy = span->attrStepY[attr][1];
511 const GLfloat drdx = span->attrStepX[attr][2];
512 const GLfloat dqdx = span->attrStepX[attr][3];
513 const GLfloat dqdy = span->attrStepY[attr][3];
514 GLfloat s = span->attrStart[attr][0];
515 GLfloat t = span->attrStart[attr][1];
516 GLfloat r = span->attrStart[attr][2];
517 GLfloat q = span->attrStart[attr][3];
518
519 if (obj) {
520 const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
521 needLambda = (obj->MinFilter != obj->MagFilter)
522 || ctx->FragmentProgram._Current;
523 texW = img->WidthScale;
524 texH = img->HeightScale;
525 }
526 else {
527 /* using a fragment program */
528 texW = 1.0;
529 texH = 1.0;
530 needLambda = GL_FALSE;
531 }
532
533 if (needLambda) {
534 GLuint i;
535 if (ctx->FragmentProgram._Current
536 || ctx->ATIFragmentShader._Enabled) {
537 /* do perspective correction but don't divide s, t, r by q */
538 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
539 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
540 for (i = 0; i < span->end; i++) {
541 const GLfloat invW = 1.0F / w;
542 texcoord[i][0] = s * invW;
543 texcoord[i][1] = t * invW;
544 texcoord[i][2] = r * invW;
545 texcoord[i][3] = q * invW;
546 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
547 dqdx, dqdy, texW, texH,
548 s, t, q, invW);
549 s += dsdx;
550 t += dtdx;
551 r += drdx;
552 q += dqdx;
553 w += dwdx;
554 }
555 }
556 else {
557 for (i = 0; i < span->end; i++) {
558 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
559 texcoord[i][0] = s * invQ;
560 texcoord[i][1] = t * invQ;
561 texcoord[i][2] = r * invQ;
562 texcoord[i][3] = q;
563 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
564 dqdx, dqdy, texW, texH,
565 s, t, q, invQ);
566 s += dsdx;
567 t += dtdx;
568 r += drdx;
569 q += dqdx;
570 }
571 }
572 span->arrayMask |= SPAN_LAMBDA;
573 }
574 else {
575 GLuint i;
576 if (ctx->FragmentProgram._Current ||
577 ctx->ATIFragmentShader._Enabled) {
578 /* do perspective correction but don't divide s, t, r by q */
579 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
580 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
581 for (i = 0; i < span->end; i++) {
582 const GLfloat invW = 1.0F / w;
583 texcoord[i][0] = s * invW;
584 texcoord[i][1] = t * invW;
585 texcoord[i][2] = r * invW;
586 texcoord[i][3] = q * invW;
587 lambda[i] = 0.0;
588 s += dsdx;
589 t += dtdx;
590 r += drdx;
591 q += dqdx;
592 w += dwdx;
593 }
594 }
595 else if (dqdx == 0.0F) {
596 /* Ortho projection or polygon's parallel to window X axis */
597 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
598 for (i = 0; i < span->end; i++) {
599 texcoord[i][0] = s * invQ;
600 texcoord[i][1] = t * invQ;
601 texcoord[i][2] = r * invQ;
602 texcoord[i][3] = q;
603 lambda[i] = 0.0;
604 s += dsdx;
605 t += dtdx;
606 r += drdx;
607 }
608 }
609 else {
610 for (i = 0; i < span->end; i++) {
611 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
612 texcoord[i][0] = s * invQ;
613 texcoord[i][1] = t * invQ;
614 texcoord[i][2] = r * invQ;
615 texcoord[i][3] = q;
616 lambda[i] = 0.0;
617 s += dsdx;
618 t += dtdx;
619 r += drdx;
620 q += dqdx;
621 }
622 }
623 } /* lambda */
624 } /* if */
625 } /* for */
626 }
627
628
629 /**
630 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
631 */
632 static INLINE void
633 interpolate_wpos(GLcontext *ctx, SWspan *span)
634 {
635 GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
636 GLuint i;
637 const GLfloat zScale = 1.0 / ctx->DrawBuffer->_DepthMaxF;
638 GLfloat w, dw;
639
640 if (span->arrayMask & SPAN_XY) {
641 for (i = 0; i < span->end; i++) {
642 wpos[i][0] = (GLfloat) span->array->x[i];
643 wpos[i][1] = (GLfloat) span->array->y[i];
644 }
645 }
646 else {
647 for (i = 0; i < span->end; i++) {
648 wpos[i][0] = (GLfloat) span->x + i;
649 wpos[i][1] = (GLfloat) span->y;
650 }
651 }
652
653 w = span->attrStart[FRAG_ATTRIB_WPOS][3];
654 dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
655 for (i = 0; i < span->end; i++) {
656 wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
657 wpos[i][3] = w;
658 w += dw;
659 }
660 }
661
662
663 /**
664 * Apply the current polygon stipple pattern to a span of pixels.
665 */
666 static INLINE void
667 stipple_polygon_span(GLcontext *ctx, SWspan *span)
668 {
669 GLubyte *mask = span->array->mask;
670
671 ASSERT(ctx->Polygon.StippleFlag);
672
673 if (span->arrayMask & SPAN_XY) {
674 /* arrays of x/y pixel coords */
675 GLuint i;
676 for (i = 0; i < span->end; i++) {
677 const GLint col = span->array->x[i] % 32;
678 const GLint row = span->array->y[i] % 32;
679 const GLuint stipple = ctx->PolygonStipple[row];
680 if (((1 << col) & stipple) == 0) {
681 mask[i] = 0;
682 }
683 }
684 }
685 else {
686 /* horizontal span of pixels */
687 const GLuint highBit = 1 << 31;
688 const GLuint stipple = ctx->PolygonStipple[span->y % 32];
689 GLuint i, m = highBit >> (GLuint) (span->x % 32);
690 for (i = 0; i < span->end; i++) {
691 if ((m & stipple) == 0) {
692 mask[i] = 0;
693 }
694 m = m >> 1;
695 if (m == 0) {
696 m = highBit;
697 }
698 }
699 }
700 span->writeAll = GL_FALSE;
701 }
702
703
704 /**
705 * Clip a pixel span to the current buffer/window boundaries:
706 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
707 * window clipping and scissoring.
708 * Return: GL_TRUE some pixels still visible
709 * GL_FALSE nothing visible
710 */
711 static INLINE GLuint
712 clip_span( GLcontext *ctx, SWspan *span )
713 {
714 const GLint xmin = ctx->DrawBuffer->_Xmin;
715 const GLint xmax = ctx->DrawBuffer->_Xmax;
716 const GLint ymin = ctx->DrawBuffer->_Ymin;
717 const GLint ymax = ctx->DrawBuffer->_Ymax;
718
719 if (span->arrayMask & SPAN_XY) {
720 /* arrays of x/y pixel coords */
721 const GLint *x = span->array->x;
722 const GLint *y = span->array->y;
723 const GLint n = span->end;
724 GLubyte *mask = span->array->mask;
725 GLint i;
726 if (span->arrayMask & SPAN_MASK) {
727 /* note: using & intead of && to reduce branches */
728 for (i = 0; i < n; i++) {
729 mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
730 & (y[i] >= ymin) & (y[i] < ymax);
731 }
732 }
733 else {
734 /* note: using & intead of && to reduce branches */
735 for (i = 0; i < n; i++) {
736 mask[i] = (x[i] >= xmin) & (x[i] < xmax)
737 & (y[i] >= ymin) & (y[i] < ymax);
738 }
739 }
740 return GL_TRUE; /* some pixels visible */
741 }
742 else {
743 /* horizontal span of pixels */
744 const GLint x = span->x;
745 const GLint y = span->y;
746 const GLint n = span->end;
747
748 /* Trivial rejection tests */
749 if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
750 span->end = 0;
751 return GL_FALSE; /* all pixels clipped */
752 }
753
754 /* Clip to the left */
755 if (x < xmin) {
756 ASSERT(x + n > xmin);
757 span->writeAll = GL_FALSE;
758 _mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte));
759 }
760
761 /* Clip to right */
762 if (x + n > xmax) {
763 ASSERT(x < xmax);
764 span->end = xmax - x;
765 }
766
767 return GL_TRUE; /* some pixels visible */
768 }
769 }
770
771
772 /**
773 * Apply all the per-fragment opertions to a span of color index fragments
774 * and write them to the enabled color drawbuffers.
775 * The 'span' parameter can be considered to be const. Note that
776 * span->interpMask and span->arrayMask may be changed but will be restored
777 * to their original values before returning.
778 */
779 void
780 _swrast_write_index_span( GLcontext *ctx, SWspan *span)
781 {
782 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
783 const GLbitfield origInterpMask = span->interpMask;
784 const GLbitfield origArrayMask = span->arrayMask;
785
786 ASSERT(span->end <= MAX_WIDTH);
787 ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE ||
788 span->primitive == GL_POLYGON || span->primitive == GL_BITMAP);
789 ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX);
790 /*
791 ASSERT((span->interpMask & span->arrayMask) == 0);
792 */
793
794 if (span->arrayMask & SPAN_MASK) {
795 /* mask was initialized by caller, probably glBitmap */
796 span->writeAll = GL_FALSE;
797 }
798 else {
799 _mesa_memset(span->array->mask, 1, span->end);
800 span->writeAll = GL_TRUE;
801 }
802
803 /* Clipping */
804 if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
805 if (!clip_span(ctx, span)) {
806 return;
807 }
808 }
809
810 /* Depth bounds test */
811 if (ctx->Depth.BoundsTest && ctx->DrawBuffer->Visual.depthBits > 0) {
812 if (!_swrast_depth_bounds_test(ctx, span)) {
813 return;
814 }
815 }
816
817 #ifdef DEBUG
818 /* Make sure all fragments are within window bounds */
819 if (span->arrayMask & SPAN_XY) {
820 GLuint i;
821 for (i = 0; i < span->end; i++) {
822 if (span->array->mask[i]) {
823 assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin);
824 assert(span->array->x[i] < ctx->DrawBuffer->_Xmax);
825 assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin);
826 assert(span->array->y[i] < ctx->DrawBuffer->_Ymax);
827 }
828 }
829 }
830 #endif
831
832 /* Polygon Stippling */
833 if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
834 stipple_polygon_span(ctx, span);
835 }
836
837 /* Stencil and Z testing */
838 if (ctx->Depth.Test || ctx->Stencil.Enabled) {
839 if (!(span->arrayMask & SPAN_Z))
840 _swrast_span_interpolate_z(ctx, span);
841
842 if (ctx->Stencil.Enabled) {
843 if (!_swrast_stencil_and_ztest_span(ctx, span)) {
844 span->arrayMask = origArrayMask;
845 return;
846 }
847 }
848 else {
849 ASSERT(ctx->Depth.Test);
850 if (!_swrast_depth_test_span(ctx, span)) {
851 span->interpMask = origInterpMask;
852 span->arrayMask = origArrayMask;
853 return;
854 }
855 }
856 }
857
858 #if FEATURE_ARB_occlusion_query
859 if (ctx->Query.CurrentOcclusionObject) {
860 /* update count of 'passed' fragments */
861 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
862 GLuint i;
863 for (i = 0; i < span->end; i++)
864 q->Result += span->array->mask[i];
865 }
866 #endif
867
868 /* we have to wait until after occlusion to do this test */
869 if (ctx->Color.DrawBuffer == GL_NONE || ctx->Color.IndexMask == 0) {
870 /* write no pixels */
871 span->arrayMask = origArrayMask;
872 return;
873 }
874
875 /* Interpolate the color indexes if needed */
876 if (swrast->_FogEnabled ||
877 ctx->Color.IndexLogicOpEnabled ||
878 ctx->Color.IndexMask != 0xffffffff ||
879 (span->arrayMask & SPAN_COVERAGE)) {
880 if (!(span->arrayMask & SPAN_INDEX) /*span->interpMask & SPAN_INDEX*/) {
881 interpolate_indexes(ctx, span);
882 }
883 }
884
885 /* Fog */
886 if (swrast->_FogEnabled) {
887 _swrast_fog_ci_span(ctx, span);
888 }
889
890 /* Antialias coverage application */
891 if (span->arrayMask & SPAN_COVERAGE) {
892 const GLfloat *coverage = span->array->coverage;
893 GLuint *index = span->array->index;
894 GLuint i;
895 for (i = 0; i < span->end; i++) {
896 ASSERT(coverage[i] < 16);
897 index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]);
898 }
899 }
900
901 /*
902 * Write to renderbuffers
903 */
904 {
905 struct gl_framebuffer *fb = ctx->DrawBuffer;
906 const GLuint output = 0; /* only frag progs can write to other outputs */
907 const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output];
908 GLuint indexSave[MAX_WIDTH];
909 GLuint buf;
910
911 if (numDrawBuffers > 1) {
912 /* save indexes for second, third renderbuffer writes */
913 _mesa_memcpy(indexSave, span->array->index,
914 span->end * sizeof(indexSave[0]));
915 }
916
917 for (buf = 0; buf < fb->_NumColorDrawBuffers[output]; buf++) {
918 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf];
919 ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
920
921 if (ctx->Color.IndexLogicOpEnabled) {
922 _swrast_logicop_ci_span(ctx, rb, span);
923 }
924
925 if (ctx->Color.IndexMask != 0xffffffff) {
926 _swrast_mask_ci_span(ctx, rb, span);
927 }
928
929 if (!(span->arrayMask & SPAN_INDEX) && span->indexStep == 0) {
930 /* all fragments have same color index */
931 GLubyte index8;
932 GLushort index16;
933 GLuint index32;
934 void *value;
935
936 if (rb->DataType == GL_UNSIGNED_BYTE) {
937 index8 = FixedToInt(span->index);
938 value = &index8;
939 }
940 else if (rb->DataType == GL_UNSIGNED_SHORT) {
941 index16 = FixedToInt(span->index);
942 value = &index16;
943 }
944 else {
945 ASSERT(rb->DataType == GL_UNSIGNED_INT);
946 index32 = FixedToInt(span->index);
947 value = &index32;
948 }
949
950 if (span->arrayMask & SPAN_XY) {
951 rb->PutMonoValues(ctx, rb, span->end, span->array->x,
952 span->array->y, value, span->array->mask);
953 }
954 else {
955 rb->PutMonoRow(ctx, rb, span->end, span->x, span->y,
956 value, span->array->mask);
957 }
958 }
959 else {
960 /* each fragment is a different color */
961 GLubyte index8[MAX_WIDTH];
962 GLushort index16[MAX_WIDTH];
963 void *values;
964
965 if (rb->DataType == GL_UNSIGNED_BYTE) {
966 GLuint k;
967 for (k = 0; k < span->end; k++) {
968 index8[k] = (GLubyte) span->array->index[k];
969 }
970 values = index8;
971 }
972 else if (rb->DataType == GL_UNSIGNED_SHORT) {
973 GLuint k;
974 for (k = 0; k < span->end; k++) {
975 index16[k] = (GLushort) span->array->index[k];
976 }
977 values = index16;
978 }
979 else {
980 ASSERT(rb->DataType == GL_UNSIGNED_INT);
981 values = span->array->index;
982 }
983
984 if (span->arrayMask & SPAN_XY) {
985 rb->PutValues(ctx, rb, span->end,
986 span->array->x, span->array->y,
987 values, span->array->mask);
988 }
989 else {
990 rb->PutRow(ctx, rb, span->end, span->x, span->y,
991 values, span->array->mask);
992 }
993 }
994
995 if (buf + 1 < numDrawBuffers) {
996 /* restore original span values */
997 _mesa_memcpy(span->array->index, indexSave,
998 span->end * sizeof(indexSave[0]));
999 }
1000 } /* for buf */
1001 }
1002
1003 span->interpMask = origInterpMask;
1004 span->arrayMask = origArrayMask;
1005 }
1006
1007
1008 /**
1009 * Add specular colors to primary colors.
1010 * Only called during fixed-function operation.
1011 * Result is float color array (FRAG_ATTRIB_COL0).
1012 */
1013 static INLINE void
1014 add_specular(GLcontext *ctx, SWspan *span)
1015 {
1016 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1017 const GLubyte *mask = span->array->mask;
1018 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1019 GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
1020 GLuint i;
1021
1022 ASSERT(!ctx->FragmentProgram._Current);
1023 ASSERT(span->arrayMask & SPAN_RGBA);
1024 ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
1025
1026 if (span->array->ChanType == GL_FLOAT) {
1027 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1028 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1029 }
1030 }
1031 else {
1032 /* need float colors */
1033 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1034 interpolate_float_colors(span);
1035 }
1036 }
1037
1038 if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
1039 /* XXX could avoid this and interpolate COL1 in the loop below */
1040 interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
1041 }
1042
1043 ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
1044 ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
1045
1046 for (i = 0; i < span->end; i++) {
1047 if (mask[i]) {
1048 col0[i][0] += col1[i][0];
1049 col0[i][1] += col1[i][1];
1050 col0[i][2] += col1[i][2];
1051 }
1052 }
1053
1054 span->array->ChanType = GL_FLOAT;
1055 }
1056
1057
1058 /**
1059 * Apply antialiasing coverage value to alpha values.
1060 */
1061 static INLINE void
1062 apply_aa_coverage(SWspan *span)
1063 {
1064 const GLfloat *coverage = span->array->coverage;
1065 GLuint i;
1066 if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1067 GLubyte (*rgba)[4] = span->array->rgba8;
1068 for (i = 0; i < span->end; i++) {
1069 const GLfloat a = rgba[i][ACOMP] * coverage[i];
1070 rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
1071 ASSERT(coverage[i] >= 0.0);
1072 ASSERT(coverage[i] <= 1.0);
1073 }
1074 }
1075 else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
1076 GLushort (*rgba)[4] = span->array->rgba16;
1077 for (i = 0; i < span->end; i++) {
1078 const GLfloat a = rgba[i][ACOMP] * coverage[i];
1079 rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
1080 }
1081 }
1082 else {
1083 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1084 for (i = 0; i < span->end; i++) {
1085 rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
1086 /* clamp later */
1087 }
1088 }
1089 }
1090
1091
1092 /**
1093 * Clamp span's float colors to [0,1]
1094 */
1095 static INLINE void
1096 clamp_colors(SWspan *span)
1097 {
1098 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
1099 GLuint i;
1100 ASSERT(span->array->ChanType == GL_FLOAT);
1101 for (i = 0; i < span->end; i++) {
1102 rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
1103 rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
1104 rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
1105 rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
1106 }
1107 }
1108
1109
1110 /**
1111 * Convert the span's color arrays to the given type.
1112 * The only way 'output' can be greater than one is when we have a fragment
1113 * program that writes to gl_FragData[1] or higher.
1114 * \param output which fragment program color output is being processed
1115 */
1116 static INLINE void
1117 convert_color_type(SWspan *span, GLenum newType, GLuint output)
1118 {
1119 GLvoid *src, *dst;
1120
1121 if (output > 0 || span->array->ChanType == GL_FLOAT) {
1122 src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
1123 span->array->ChanType = GL_FLOAT;
1124 }
1125 else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
1126 src = span->array->rgba8;
1127 }
1128 else {
1129 ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
1130 src = span->array->rgba16;
1131 }
1132
1133 if (newType == GL_UNSIGNED_BYTE) {
1134 dst = span->array->rgba8;
1135 }
1136 else if (newType == GL_UNSIGNED_SHORT) {
1137 dst = span->array->rgba16;
1138 }
1139 else {
1140 dst = span->array->attribs[FRAG_ATTRIB_COL0];
1141 }
1142
1143 _mesa_convert_colors(span->array->ChanType, src,
1144 newType, dst,
1145 span->end, span->array->mask);
1146
1147 span->array->ChanType = newType;
1148 }
1149
1150
1151
1152 /**
1153 * Apply fragment shader, fragment program or normal texturing to span.
1154 */
1155 static INLINE void
1156 shade_texture_span(GLcontext *ctx, SWspan *span)
1157 {
1158 GLbitfield inputsRead;
1159
1160 /* Determine which fragment attributes are actually needed */
1161 if (ctx->FragmentProgram._Current) {
1162 inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
1163 }
1164 else {
1165 /* XXX we could be a bit smarter about this */
1166 inputsRead = ~0;
1167 }
1168
1169 if (ctx->FragmentProgram._Current ||
1170 ctx->ATIFragmentShader._Enabled) {
1171 /* programmable shading */
1172 if (span->primitive == GL_BITMAP) {
1173 if (span->array->ChanType != GL_FLOAT)
1174 convert_color_type(span, GL_FLOAT, 0);
1175 interpolate_active_attribs(ctx, span, ~FRAG_ATTRIB_COL0);
1176 }
1177 else {
1178 /* point, line, triangle */
1179 interpolate_active_attribs(ctx, span, ~0);
1180 }
1181 span->array->ChanType = GL_FLOAT;
1182
1183 if (!(span->arrayMask & SPAN_Z))
1184 _swrast_span_interpolate_z (ctx, span);
1185
1186 #if 0
1187 if (inputsRead & FRAG_BIT_WPOS)
1188 #else
1189 /* XXX always interpolate wpos so that DDX/DDY work */
1190 #endif
1191 interpolate_wpos(ctx, span);
1192
1193 /* Run fragment program/shader now */
1194 if (ctx->FragmentProgram._Current) {
1195 _swrast_exec_fragment_program(ctx, span);
1196 }
1197 else {
1198 ASSERT(ctx->ATIFragmentShader._Enabled);
1199 _swrast_exec_fragment_shader(ctx, span);
1200 }
1201 }
1202 else if (ctx->Texture._EnabledUnits) {
1203 /* conventional texturing */
1204
1205 #if CHAN_BITS == 32
1206 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1207 interpolate_int_colors(ctx, span);
1208 }
1209 #else
1210 if (!(span->arrayMask & SPAN_RGBA))
1211 interpolate_int_colors(ctx, span);
1212 #endif
1213 if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1214 interpolate_texcoords(ctx, span);
1215
1216 _swrast_texture_span(ctx, span);
1217 }
1218 }
1219
1220
1221
1222 /**
1223 * Apply all the per-fragment operations to a span.
1224 * This now includes texturing (_swrast_write_texture_span() is history).
1225 * This function may modify any of the array values in the span.
1226 * span->interpMask and span->arrayMask may be changed but will be restored
1227 * to their original values before returning.
1228 */
1229 void
1230 _swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1231 {
1232 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1233 const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask);
1234 const GLbitfield origInterpMask = span->interpMask;
1235 const GLbitfield origArrayMask = span->arrayMask;
1236 const GLbitfield origArrayAttribs = span->arrayAttribs;
1237 const GLenum chanType = span->array->ChanType;
1238 const GLboolean shader = (ctx->FragmentProgram._Current
1239 || ctx->ATIFragmentShader._Enabled);
1240 const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledUnits;
1241 struct gl_framebuffer *fb = ctx->DrawBuffer;
1242 GLuint output;
1243
1244 /*
1245 printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
1246 span->interpMask, span->arrayMask);
1247 */
1248
1249 ASSERT(span->primitive == GL_POINT ||
1250 span->primitive == GL_LINE ||
1251 span->primitive == GL_POLYGON ||
1252 span->primitive == GL_BITMAP);
1253 ASSERT(span->end <= MAX_WIDTH);
1254
1255 /* Fragment write masks */
1256 if (span->arrayMask & SPAN_MASK) {
1257 /* mask was initialized by caller, probably glBitmap */
1258 span->writeAll = GL_FALSE;
1259 }
1260 else {
1261 _mesa_memset(span->array->mask, 1, span->end);
1262 span->writeAll = GL_TRUE;
1263 }
1264
1265 /* Clip to window/scissor box */
1266 if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) {
1267 if (!clip_span(ctx, span)) {
1268 return;
1269 }
1270 }
1271
1272 #ifdef DEBUG
1273 /* Make sure all fragments are within window bounds */
1274 if (span->arrayMask & SPAN_XY) {
1275 GLuint i;
1276 for (i = 0; i < span->end; i++) {
1277 if (span->array->mask[i]) {
1278 assert(span->array->x[i] >= fb->_Xmin);
1279 assert(span->array->x[i] < fb->_Xmax);
1280 assert(span->array->y[i] >= fb->_Ymin);
1281 assert(span->array->y[i] < fb->_Ymax);
1282 }
1283 }
1284 }
1285 #endif
1286
1287 /* Polygon Stippling */
1288 if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1289 stipple_polygon_span(ctx, span);
1290 }
1291
1292 /* This is the normal place to compute the fragment color/Z
1293 * from texturing or shading.
1294 */
1295 if (shaderOrTexture && !swrast->_DeferredTexture) {
1296 shade_texture_span(ctx, span);
1297 }
1298
1299 /* Do the alpha test */
1300 if (ctx->Color.AlphaEnabled) {
1301 if (!_swrast_alpha_test(ctx, span)) {
1302 goto end;
1303 }
1304 }
1305
1306 /* Stencil and Z testing */
1307 if (ctx->Stencil.Enabled || ctx->Depth.Test) {
1308 if (!(span->arrayMask & SPAN_Z))
1309 _swrast_span_interpolate_z(ctx, span);
1310
1311 if (ctx->Stencil.Enabled && fb->Visual.stencilBits > 0) {
1312 /* Combined Z/stencil tests */
1313 if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1314 goto end;
1315 }
1316 }
1317 else if (fb->Visual.depthBits > 0) {
1318 /* Just regular depth testing */
1319 ASSERT(ctx->Depth.Test);
1320 ASSERT(span->arrayMask & SPAN_Z);
1321 if (!_swrast_depth_test_span(ctx, span)) {
1322 goto end;
1323 }
1324 }
1325 }
1326
1327 #if FEATURE_ARB_occlusion_query
1328 if (ctx->Query.CurrentOcclusionObject) {
1329 /* update count of 'passed' fragments */
1330 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1331 GLuint i;
1332 for (i = 0; i < span->end; i++)
1333 q->Result += span->array->mask[i];
1334 }
1335 #endif
1336
1337 /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1338 * the occlusion test.
1339 */
1340 if (colorMask == 0x0) {
1341 goto end;
1342 }
1343
1344 /* If we were able to defer fragment color computation to now, there's
1345 * a good chance that many fragments will have already been killed by
1346 * Z/stencil testing.
1347 */
1348 if (shaderOrTexture && swrast->_DeferredTexture) {
1349 shade_texture_span(ctx, span);
1350 }
1351
1352 #if CHAN_BITS == 32
1353 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1354 interpolate_int_colors(ctx, span);
1355 }
1356 #else
1357 if ((span->arrayMask & SPAN_RGBA) == 0) {
1358 interpolate_int_colors(ctx, span);
1359 }
1360 #endif
1361
1362 ASSERT(span->arrayMask & SPAN_RGBA);
1363
1364 if (!shader) {
1365 /* Add base and specular colors */
1366 if (ctx->Fog.ColorSumEnabled ||
1367 (ctx->Light.Enabled &&
1368 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1369 add_specular(ctx, span);
1370 }
1371 }
1372
1373 /* Fog */
1374 if (swrast->_FogEnabled) {
1375 _swrast_fog_rgba_span(ctx, span);
1376 }
1377
1378 /* Antialias coverage application */
1379 if (span->arrayMask & SPAN_COVERAGE) {
1380 apply_aa_coverage(span);
1381 }
1382
1383 /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1384 if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1385 span->array->ChanType == GL_FLOAT) {
1386 clamp_colors(span);
1387 }
1388
1389 /*
1390 * Write to renderbuffers
1391 */
1392 /* Loop over color outputs (GL_ARB_draw_buffers) written by frag prog */
1393 for (output = 0; output < swrast->_NumColorOutputs; output++) {
1394 if (swrast->_ColorOutputsMask & (1 << output)) {
1395 const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output];
1396 GLchan rgbaSave[MAX_WIDTH][4];
1397 GLuint buf;
1398
1399 ASSERT(numDrawBuffers > 0);
1400
1401 if (fb->_ColorDrawBuffers[output][0]->DataType
1402 != span->array->ChanType || output > 0) {
1403 convert_color_type(span,
1404 fb->_ColorDrawBuffers[output][0]->DataType,
1405 output);
1406 }
1407
1408 if (numDrawBuffers > 1) {
1409 /* save colors for second, third renderbuffer writes */
1410 _mesa_memcpy(rgbaSave, span->array->rgba,
1411 4 * span->end * sizeof(GLchan));
1412 }
1413
1414 /* Loop over renderbuffers (i.e. GL_FRONT_AND_BACK) */
1415 for (buf = 0; buf < numDrawBuffers; buf++) {
1416 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf];
1417 ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1418
1419 if (ctx->Color._LogicOpEnabled) {
1420 _swrast_logicop_rgba_span(ctx, rb, span);
1421 }
1422 else if (ctx->Color.BlendEnabled) {
1423 _swrast_blend_span(ctx, rb, span);
1424 }
1425
1426 if (colorMask != 0xffffffff) {
1427 _swrast_mask_rgba_span(ctx, rb, span);
1428 }
1429
1430 if (span->arrayMask & SPAN_XY) {
1431 /* array of pixel coords */
1432 ASSERT(rb->PutValues);
1433 rb->PutValues(ctx, rb, span->end,
1434 span->array->x, span->array->y,
1435 span->array->rgba, span->array->mask);
1436 }
1437 else {
1438 /* horizontal run of pixels */
1439 ASSERT(rb->PutRow);
1440 rb->PutRow(ctx, rb, span->end, span->x, span->y,
1441 span->array->rgba,
1442 span->writeAll ? NULL: span->array->mask);
1443 }
1444
1445 if (buf + 1 < numDrawBuffers) {
1446 /* restore original span values */
1447 _mesa_memcpy(span->array->rgba, rgbaSave,
1448 4 * span->end * sizeof(GLchan));
1449 }
1450 } /* for buf */
1451 } /* if output is written to */
1452 } /* for output */
1453
1454 end:
1455 /* restore these values before returning */
1456 span->interpMask = origInterpMask;
1457 span->arrayMask = origArrayMask;
1458 span->arrayAttribs = origArrayAttribs;
1459 span->array->ChanType = chanType;
1460 }
1461
1462
1463 /**
1464 * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
1465 * reading ouside the buffer's boundaries.
1466 * \param dstType datatype for returned colors
1467 * \param rgba the returned colors
1468 */
1469 void
1470 _swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1471 GLuint n, GLint x, GLint y, GLenum dstType,
1472 GLvoid *rgba)
1473 {
1474 const GLint bufWidth = (GLint) rb->Width;
1475 const GLint bufHeight = (GLint) rb->Height;
1476
1477 if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1478 /* completely above, below, or right */
1479 /* XXX maybe leave rgba values undefined? */
1480 _mesa_bzero(rgba, 4 * n * sizeof(GLchan));
1481 }
1482 else {
1483 GLint skip, length;
1484 if (x < 0) {
1485 /* left edge clipping */
1486 skip = -x;
1487 length = (GLint) n - skip;
1488 if (length < 0) {
1489 /* completely left of window */
1490 return;
1491 }
1492 if (length > bufWidth) {
1493 length = bufWidth;
1494 }
1495 }
1496 else if ((GLint) (x + n) > bufWidth) {
1497 /* right edge clipping */
1498 skip = 0;
1499 length = bufWidth - x;
1500 if (length < 0) {
1501 /* completely to right of window */
1502 return;
1503 }
1504 }
1505 else {
1506 /* no clipping */
1507 skip = 0;
1508 length = (GLint) n;
1509 }
1510
1511 ASSERT(rb);
1512 ASSERT(rb->GetRow);
1513 ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1514
1515 if (rb->DataType == dstType) {
1516 rb->GetRow(ctx, rb, length, x + skip, y,
1517 (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1518 }
1519 else {
1520 GLuint temp[MAX_WIDTH * 4];
1521 rb->GetRow(ctx, rb, length, x + skip, y, temp);
1522 _mesa_convert_colors(rb->DataType, temp,
1523 dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1524 length, NULL);
1525 }
1526 }
1527 }
1528
1529
1530 /**
1531 * Read CI pixels from a renderbuffer. Clipping will be done to prevent
1532 * reading ouside the buffer's boundaries.
1533 */
1534 void
1535 _swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1536 GLuint n, GLint x, GLint y, GLuint index[] )
1537 {
1538 const GLint bufWidth = (GLint) rb->Width;
1539 const GLint bufHeight = (GLint) rb->Height;
1540
1541 if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1542 /* completely above, below, or right */
1543 _mesa_bzero(index, n * sizeof(GLuint));
1544 }
1545 else {
1546 GLint skip, length;
1547 if (x < 0) {
1548 /* left edge clipping */
1549 skip = -x;
1550 length = (GLint) n - skip;
1551 if (length < 0) {
1552 /* completely left of window */
1553 return;
1554 }
1555 if (length > bufWidth) {
1556 length = bufWidth;
1557 }
1558 }
1559 else if ((GLint) (x + n) > bufWidth) {
1560 /* right edge clipping */
1561 skip = 0;
1562 length = bufWidth - x;
1563 if (length < 0) {
1564 /* completely to right of window */
1565 return;
1566 }
1567 }
1568 else {
1569 /* no clipping */
1570 skip = 0;
1571 length = (GLint) n;
1572 }
1573
1574 ASSERT(rb->GetRow);
1575 ASSERT(rb->_BaseFormat == GL_COLOR_INDEX);
1576
1577 if (rb->DataType == GL_UNSIGNED_BYTE) {
1578 GLubyte index8[MAX_WIDTH];
1579 GLint i;
1580 rb->GetRow(ctx, rb, length, x + skip, y, index8);
1581 for (i = 0; i < length; i++)
1582 index[skip + i] = index8[i];
1583 }
1584 else if (rb->DataType == GL_UNSIGNED_SHORT) {
1585 GLushort index16[MAX_WIDTH];
1586 GLint i;
1587 rb->GetRow(ctx, rb, length, x + skip, y, index16);
1588 for (i = 0; i < length; i++)
1589 index[skip + i] = index16[i];
1590 }
1591 else if (rb->DataType == GL_UNSIGNED_INT) {
1592 rb->GetRow(ctx, rb, length, x + skip, y, index + skip);
1593 }
1594 }
1595 }
1596
1597
1598 /**
1599 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1600 * reading values outside the buffer bounds.
1601 * We can use this for reading any format/type of renderbuffer.
1602 * \param valueSize is the size in bytes of each value (pixel) put into the
1603 * values array.
1604 */
1605 void
1606 _swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1607 GLuint count, const GLint x[], const GLint y[],
1608 void *values, GLuint valueSize)
1609 {
1610 GLuint i, inCount = 0, inStart = 0;
1611
1612 for (i = 0; i < count; i++) {
1613 if (x[i] >= 0 && y[i] >= 0 &&
1614 x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1615 /* inside */
1616 if (inCount == 0)
1617 inStart = i;
1618 inCount++;
1619 }
1620 else {
1621 if (inCount > 0) {
1622 /* read [inStart, inStart + inCount) */
1623 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1624 (GLubyte *) values + inStart * valueSize);
1625 inCount = 0;
1626 }
1627 }
1628 }
1629 if (inCount > 0) {
1630 /* read last values */
1631 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1632 (GLubyte *) values + inStart * valueSize);
1633 }
1634 }
1635
1636
1637 /**
1638 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1639 * \param valueSize size of each value (pixel) in bytes
1640 */
1641 void
1642 _swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1643 GLuint count, GLint x, GLint y,
1644 const GLvoid *values, GLuint valueSize)
1645 {
1646 GLint skip = 0;
1647
1648 if (y < 0 || y >= (GLint) rb->Height)
1649 return; /* above or below */
1650
1651 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1652 return; /* entirely left or right */
1653
1654 if ((GLint) (x + count) > (GLint) rb->Width) {
1655 /* right clip */
1656 GLint clip = x + count - rb->Width;
1657 count -= clip;
1658 }
1659
1660 if (x < 0) {
1661 /* left clip */
1662 skip = -x;
1663 x = 0;
1664 count -= skip;
1665 }
1666
1667 rb->PutRow(ctx, rb, count, x, y,
1668 (const GLubyte *) values + skip * valueSize, NULL);
1669 }
1670
1671
1672 /**
1673 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1674 * \param valueSize size of each value (pixel) in bytes
1675 */
1676 void
1677 _swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1678 GLuint count, GLint x, GLint y,
1679 GLvoid *values, GLuint valueSize)
1680 {
1681 GLint skip = 0;
1682
1683 if (y < 0 || y >= (GLint) rb->Height)
1684 return; /* above or below */
1685
1686 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1687 return; /* entirely left or right */
1688
1689 if (x + count > rb->Width) {
1690 /* right clip */
1691 GLint clip = x + count - rb->Width;
1692 count -= clip;
1693 }
1694
1695 if (x < 0) {
1696 /* left clip */
1697 skip = -x;
1698 x = 0;
1699 count -= skip;
1700 }
1701
1702 rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1703 }
1704
1705
1706 /**
1707 * Get RGBA pixels from the given renderbuffer. Put the pixel colors into
1708 * the span's specular color arrays. The specular color arrays should no
1709 * longer be needed by time this function is called.
1710 * Used by blending, logicop and masking functions.
1711 * \return pointer to the colors we read.
1712 */
1713 void *
1714 _swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1715 SWspan *span)
1716 {
1717 const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1718 void *rbPixels;
1719
1720 /*
1721 * Point rbPixels to a temporary space (use specular color arrays).
1722 */
1723 rbPixels = span->array->attribs[FRAG_ATTRIB_COL1];
1724
1725 /* Get destination values from renderbuffer */
1726 if (span->arrayMask & SPAN_XY) {
1727 _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1728 rbPixels, pixelSize);
1729 }
1730 else {
1731 _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1732 rbPixels, pixelSize);
1733 }
1734
1735 return rbPixels;
1736 }