Allow RBUG to start blocked
[mesa.git] / src / mesa / swrast / s_span.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27 /**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34 #include "main/glheader.h"
35 #include "main/colormac.h"
36 #include "main/macros.h"
37 #include "main/imports.h"
38 #include "main/image.h"
39
40 #include "s_atifragshader.h"
41 #include "s_alpha.h"
42 #include "s_blend.h"
43 #include "s_context.h"
44 #include "s_depth.h"
45 #include "s_fog.h"
46 #include "s_logic.h"
47 #include "s_masking.h"
48 #include "s_fragprog.h"
49 #include "s_span.h"
50 #include "s_stencil.h"
51 #include "s_texcombine.h"
52
53
54 /**
55 * Set default fragment attributes for the span using the
56 * current raster values. Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59 void
60 _swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
61 {
62 GLchan r, g, b, a;
63 /* Z*/
64 {
65 const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
66 if (ctx->DrawBuffer->Visual.depthBits <= 16)
67 span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
68 else {
69 GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
70 tmpf = MIN2(tmpf, depthMax);
71 span->z = (GLint)tmpf;
72 }
73 span->zStep = 0;
74 span->interpMask |= SPAN_Z;
75 }
76
77 /* W (for perspective correction) */
78 span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
79 span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
80 span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
81
82 /* primary color, or color index */
83 UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
84 UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
85 UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
86 UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
87 #if CHAN_TYPE == GL_FLOAT
88 span->red = r;
89 span->green = g;
90 span->blue = b;
91 span->alpha = a;
92 #else
93 span->red = IntToFixed(r);
94 span->green = IntToFixed(g);
95 span->blue = IntToFixed(b);
96 span->alpha = IntToFixed(a);
97 #endif
98 span->redStep = 0;
99 span->greenStep = 0;
100 span->blueStep = 0;
101 span->alphaStep = 0;
102 span->interpMask |= SPAN_RGBA;
103
104 COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
105 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
106 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107
108 /* Secondary color */
109 if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
110 {
111 COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
112 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
113 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114 }
115
116 /* fog */
117 {
118 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
119 GLfloat fogVal; /* a coord or a blend factor */
120 if (swrast->_PreferPixelFog) {
121 /* fog blend factors will be computed from fog coordinates per pixel */
122 fogVal = ctx->Current.RasterDistance;
123 }
124 else {
125 /* fog blend factor should be computed from fogcoord now */
126 fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
127 }
128 span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
129 span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
130 span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
131 }
132
133 /* texcoords */
134 {
135 GLuint i;
136 for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
137 const GLuint attr = FRAG_ATTRIB_TEX0 + i;
138 const GLfloat *tc = ctx->Current.RasterTexCoords[i];
139 if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
140 COPY_4V(span->attrStart[attr], tc);
141 }
142 else if (tc[3] > 0.0F) {
143 /* use (s/q, t/q, r/q, 1) */
144 span->attrStart[attr][0] = tc[0] / tc[3];
145 span->attrStart[attr][1] = tc[1] / tc[3];
146 span->attrStart[attr][2] = tc[2] / tc[3];
147 span->attrStart[attr][3] = 1.0;
148 }
149 else {
150 ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
151 }
152 ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
153 ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154 }
155 }
156 }
157
158
159 /**
160 * Interpolate the active attributes (and'd with attrMask) to
161 * fill in span->array->attribs[].
162 * Perspective correction will be done. The point/line/triangle function
163 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
164 */
165 static INLINE void
166 interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
167 {
168 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
169
170 /*
171 * Don't overwrite existing array values, such as colors that may have
172 * been produced by glDraw/CopyPixels.
173 */
174 attrMask &= ~span->arrayAttribs;
175
176 ATTRIB_LOOP_BEGIN
177 if (attrMask & (1 << attr)) {
178 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
179 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
180 const GLfloat dv0dx = span->attrStepX[attr][0];
181 const GLfloat dv1dx = span->attrStepX[attr][1];
182 const GLfloat dv2dx = span->attrStepX[attr][2];
183 const GLfloat dv3dx = span->attrStepX[attr][3];
184 GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
185 GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
186 GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
187 GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
188 GLuint k;
189 for (k = 0; k < span->end; k++) {
190 const GLfloat invW = 1.0f / w;
191 span->array->attribs[attr][k][0] = v0 * invW;
192 span->array->attribs[attr][k][1] = v1 * invW;
193 span->array->attribs[attr][k][2] = v2 * invW;
194 span->array->attribs[attr][k][3] = v3 * invW;
195 v0 += dv0dx;
196 v1 += dv1dx;
197 v2 += dv2dx;
198 v3 += dv3dx;
199 w += dwdx;
200 }
201 ASSERT((span->arrayAttribs & (1 << attr)) == 0);
202 span->arrayAttribs |= (1 << attr);
203 }
204 ATTRIB_LOOP_END
205 }
206
207
208 /**
209 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
210 * color array.
211 */
212 static INLINE void
213 interpolate_int_colors(struct gl_context *ctx, SWspan *span)
214 {
215 #if CHAN_BITS != 32
216 const GLuint n = span->end;
217 GLuint i;
218
219 ASSERT(!(span->arrayMask & SPAN_RGBA));
220 #endif
221
222 switch (span->array->ChanType) {
223 #if CHAN_BITS != 32
224 case GL_UNSIGNED_BYTE:
225 {
226 GLubyte (*rgba)[4] = span->array->rgba8;
227 if (span->interpMask & SPAN_FLAT) {
228 GLubyte color[4];
229 color[RCOMP] = FixedToInt(span->red);
230 color[GCOMP] = FixedToInt(span->green);
231 color[BCOMP] = FixedToInt(span->blue);
232 color[ACOMP] = FixedToInt(span->alpha);
233 for (i = 0; i < n; i++) {
234 COPY_4UBV(rgba[i], color);
235 }
236 }
237 else {
238 GLfixed r = span->red;
239 GLfixed g = span->green;
240 GLfixed b = span->blue;
241 GLfixed a = span->alpha;
242 GLint dr = span->redStep;
243 GLint dg = span->greenStep;
244 GLint db = span->blueStep;
245 GLint da = span->alphaStep;
246 for (i = 0; i < n; i++) {
247 rgba[i][RCOMP] = FixedToChan(r);
248 rgba[i][GCOMP] = FixedToChan(g);
249 rgba[i][BCOMP] = FixedToChan(b);
250 rgba[i][ACOMP] = FixedToChan(a);
251 r += dr;
252 g += dg;
253 b += db;
254 a += da;
255 }
256 }
257 }
258 break;
259 case GL_UNSIGNED_SHORT:
260 {
261 GLushort (*rgba)[4] = span->array->rgba16;
262 if (span->interpMask & SPAN_FLAT) {
263 GLushort color[4];
264 color[RCOMP] = FixedToInt(span->red);
265 color[GCOMP] = FixedToInt(span->green);
266 color[BCOMP] = FixedToInt(span->blue);
267 color[ACOMP] = FixedToInt(span->alpha);
268 for (i = 0; i < n; i++) {
269 COPY_4V(rgba[i], color);
270 }
271 }
272 else {
273 GLushort (*rgba)[4] = span->array->rgba16;
274 GLfixed r, g, b, a;
275 GLint dr, dg, db, da;
276 r = span->red;
277 g = span->green;
278 b = span->blue;
279 a = span->alpha;
280 dr = span->redStep;
281 dg = span->greenStep;
282 db = span->blueStep;
283 da = span->alphaStep;
284 for (i = 0; i < n; i++) {
285 rgba[i][RCOMP] = FixedToChan(r);
286 rgba[i][GCOMP] = FixedToChan(g);
287 rgba[i][BCOMP] = FixedToChan(b);
288 rgba[i][ACOMP] = FixedToChan(a);
289 r += dr;
290 g += dg;
291 b += db;
292 a += da;
293 }
294 }
295 }
296 break;
297 #endif
298 case GL_FLOAT:
299 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
300 break;
301 default:
302 _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
303 span->array->ChanType);
304 }
305 span->arrayMask |= SPAN_RGBA;
306 }
307
308
309 /**
310 * Populate the FRAG_ATTRIB_COL0 array.
311 */
312 static INLINE void
313 interpolate_float_colors(SWspan *span)
314 {
315 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
316 const GLuint n = span->end;
317 GLuint i;
318
319 assert(!(span->arrayAttribs & FRAG_BIT_COL0));
320
321 if (span->arrayMask & SPAN_RGBA) {
322 /* convert array of int colors */
323 for (i = 0; i < n; i++) {
324 col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
325 col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
326 col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
327 col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
328 }
329 }
330 else {
331 /* interpolate red/green/blue/alpha to get float colors */
332 ASSERT(span->interpMask & SPAN_RGBA);
333 if (span->interpMask & SPAN_FLAT) {
334 GLfloat r = FixedToFloat(span->red);
335 GLfloat g = FixedToFloat(span->green);
336 GLfloat b = FixedToFloat(span->blue);
337 GLfloat a = FixedToFloat(span->alpha);
338 for (i = 0; i < n; i++) {
339 ASSIGN_4V(col0[i], r, g, b, a);
340 }
341 }
342 else {
343 GLfloat r = FixedToFloat(span->red);
344 GLfloat g = FixedToFloat(span->green);
345 GLfloat b = FixedToFloat(span->blue);
346 GLfloat a = FixedToFloat(span->alpha);
347 GLfloat dr = FixedToFloat(span->redStep);
348 GLfloat dg = FixedToFloat(span->greenStep);
349 GLfloat db = FixedToFloat(span->blueStep);
350 GLfloat da = FixedToFloat(span->alphaStep);
351 for (i = 0; i < n; i++) {
352 col0[i][0] = r;
353 col0[i][1] = g;
354 col0[i][2] = b;
355 col0[i][3] = a;
356 r += dr;
357 g += dg;
358 b += db;
359 a += da;
360 }
361 }
362 }
363
364 span->arrayAttribs |= FRAG_BIT_COL0;
365 span->array->ChanType = GL_FLOAT;
366 }
367
368
369
370 /**
371 * Fill in the span.zArray array from the span->z, zStep values.
372 */
373 void
374 _swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
375 {
376 const GLuint n = span->end;
377 GLuint i;
378
379 ASSERT(!(span->arrayMask & SPAN_Z));
380
381 if (ctx->DrawBuffer->Visual.depthBits <= 16) {
382 GLfixed zval = span->z;
383 GLuint *z = span->array->z;
384 for (i = 0; i < n; i++) {
385 z[i] = FixedToInt(zval);
386 zval += span->zStep;
387 }
388 }
389 else {
390 /* Deep Z buffer, no fixed->int shift */
391 GLuint zval = span->z;
392 GLuint *z = span->array->z;
393 for (i = 0; i < n; i++) {
394 z[i] = zval;
395 zval += span->zStep;
396 }
397 }
398 span->interpMask &= ~SPAN_Z;
399 span->arrayMask |= SPAN_Z;
400 }
401
402
403 /**
404 * Compute mipmap LOD from partial derivatives.
405 * This the ideal solution, as given in the OpenGL spec.
406 */
407 GLfloat
408 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
409 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
410 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
411 {
412 GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
413 GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
414 GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
415 GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
416 GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
417 GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
418 GLfloat rho = MAX2(x, y);
419 GLfloat lambda = LOG2(rho);
420 return lambda;
421 }
422
423
424 /**
425 * Compute mipmap LOD from partial derivatives.
426 * This is a faster approximation than above function.
427 */
428 #if 0
429 GLfloat
430 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
431 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
432 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
433 {
434 GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
435 GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
436 GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
437 GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
438 GLfloat maxU, maxV, rho, lambda;
439 dsdx2 = FABSF(dsdx2);
440 dsdy2 = FABSF(dsdy2);
441 dtdx2 = FABSF(dtdx2);
442 dtdy2 = FABSF(dtdy2);
443 maxU = MAX2(dsdx2, dsdy2) * texW;
444 maxV = MAX2(dtdx2, dtdy2) * texH;
445 rho = MAX2(maxU, maxV);
446 lambda = LOG2(rho);
447 return lambda;
448 }
449 #endif
450
451
452 /**
453 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
454 * using the attrStart/Step values.
455 *
456 * This function only used during fixed-function fragment processing.
457 *
458 * Note: in the places where we divide by Q (or mult by invQ) we're
459 * really doing two things: perspective correction and texcoord
460 * projection. Remember, for texcoord (s,t,r,q) we need to index
461 * texels with (s/q, t/q, r/q).
462 */
463 static void
464 interpolate_texcoords(struct gl_context *ctx, SWspan *span)
465 {
466 const GLuint maxUnit
467 = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
468 GLuint u;
469
470 /* XXX CoordUnits vs. ImageUnits */
471 for (u = 0; u < maxUnit; u++) {
472 if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
473 const GLuint attr = FRAG_ATTRIB_TEX0 + u;
474 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
475 GLfloat texW, texH;
476 GLboolean needLambda;
477 GLfloat (*texcoord)[4] = span->array->attribs[attr];
478 GLfloat *lambda = span->array->lambda[u];
479 const GLfloat dsdx = span->attrStepX[attr][0];
480 const GLfloat dsdy = span->attrStepY[attr][0];
481 const GLfloat dtdx = span->attrStepX[attr][1];
482 const GLfloat dtdy = span->attrStepY[attr][1];
483 const GLfloat drdx = span->attrStepX[attr][2];
484 const GLfloat dqdx = span->attrStepX[attr][3];
485 const GLfloat dqdy = span->attrStepY[attr][3];
486 GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
487 GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
488 GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
489 GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
490
491 if (obj) {
492 const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
493 const struct swrast_texture_image *swImg =
494 swrast_texture_image_const(img);
495
496 needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter)
497 || ctx->FragmentProgram._Current;
498 /* LOD is calculated directly in the ansiotropic filter, we can
499 * skip the normal lambda function as the result is ignored.
500 */
501 if (obj->Sampler.MaxAnisotropy > 1.0 &&
502 obj->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
503 needLambda = GL_FALSE;
504 }
505 texW = swImg->WidthScale;
506 texH = swImg->HeightScale;
507 }
508 else {
509 /* using a fragment program */
510 texW = 1.0;
511 texH = 1.0;
512 needLambda = GL_FALSE;
513 }
514
515 if (needLambda) {
516 GLuint i;
517 if (ctx->FragmentProgram._Current
518 || ctx->ATIFragmentShader._Enabled) {
519 /* do perspective correction but don't divide s, t, r by q */
520 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
521 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
522 for (i = 0; i < span->end; i++) {
523 const GLfloat invW = 1.0F / w;
524 texcoord[i][0] = s * invW;
525 texcoord[i][1] = t * invW;
526 texcoord[i][2] = r * invW;
527 texcoord[i][3] = q * invW;
528 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
529 dqdx, dqdy, texW, texH,
530 s, t, q, invW);
531 s += dsdx;
532 t += dtdx;
533 r += drdx;
534 q += dqdx;
535 w += dwdx;
536 }
537 }
538 else {
539 for (i = 0; i < span->end; i++) {
540 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
541 texcoord[i][0] = s * invQ;
542 texcoord[i][1] = t * invQ;
543 texcoord[i][2] = r * invQ;
544 texcoord[i][3] = q;
545 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
546 dqdx, dqdy, texW, texH,
547 s, t, q, invQ);
548 s += dsdx;
549 t += dtdx;
550 r += drdx;
551 q += dqdx;
552 }
553 }
554 span->arrayMask |= SPAN_LAMBDA;
555 }
556 else {
557 GLuint i;
558 if (ctx->FragmentProgram._Current ||
559 ctx->ATIFragmentShader._Enabled) {
560 /* do perspective correction but don't divide s, t, r by q */
561 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
562 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
563 for (i = 0; i < span->end; i++) {
564 const GLfloat invW = 1.0F / w;
565 texcoord[i][0] = s * invW;
566 texcoord[i][1] = t * invW;
567 texcoord[i][2] = r * invW;
568 texcoord[i][3] = q * invW;
569 lambda[i] = 0.0;
570 s += dsdx;
571 t += dtdx;
572 r += drdx;
573 q += dqdx;
574 w += dwdx;
575 }
576 }
577 else if (dqdx == 0.0F) {
578 /* Ortho projection or polygon's parallel to window X axis */
579 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
580 for (i = 0; i < span->end; i++) {
581 texcoord[i][0] = s * invQ;
582 texcoord[i][1] = t * invQ;
583 texcoord[i][2] = r * invQ;
584 texcoord[i][3] = q;
585 lambda[i] = 0.0;
586 s += dsdx;
587 t += dtdx;
588 r += drdx;
589 }
590 }
591 else {
592 for (i = 0; i < span->end; i++) {
593 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
594 texcoord[i][0] = s * invQ;
595 texcoord[i][1] = t * invQ;
596 texcoord[i][2] = r * invQ;
597 texcoord[i][3] = q;
598 lambda[i] = 0.0;
599 s += dsdx;
600 t += dtdx;
601 r += drdx;
602 q += dqdx;
603 }
604 }
605 } /* lambda */
606 } /* if */
607 } /* for */
608 }
609
610
611 /**
612 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
613 */
614 static INLINE void
615 interpolate_wpos(struct gl_context *ctx, SWspan *span)
616 {
617 GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
618 GLuint i;
619 const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
620 GLfloat w, dw;
621
622 if (span->arrayMask & SPAN_XY) {
623 for (i = 0; i < span->end; i++) {
624 wpos[i][0] = (GLfloat) span->array->x[i];
625 wpos[i][1] = (GLfloat) span->array->y[i];
626 }
627 }
628 else {
629 for (i = 0; i < span->end; i++) {
630 wpos[i][0] = (GLfloat) span->x + i;
631 wpos[i][1] = (GLfloat) span->y;
632 }
633 }
634
635 dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
636 w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
637 for (i = 0; i < span->end; i++) {
638 wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
639 wpos[i][3] = w;
640 w += dw;
641 }
642 }
643
644
645 /**
646 * Apply the current polygon stipple pattern to a span of pixels.
647 */
648 static INLINE void
649 stipple_polygon_span(struct gl_context *ctx, SWspan *span)
650 {
651 GLubyte *mask = span->array->mask;
652
653 ASSERT(ctx->Polygon.StippleFlag);
654
655 if (span->arrayMask & SPAN_XY) {
656 /* arrays of x/y pixel coords */
657 GLuint i;
658 for (i = 0; i < span->end; i++) {
659 const GLint col = span->array->x[i] % 32;
660 const GLint row = span->array->y[i] % 32;
661 const GLuint stipple = ctx->PolygonStipple[row];
662 if (((1 << col) & stipple) == 0) {
663 mask[i] = 0;
664 }
665 }
666 }
667 else {
668 /* horizontal span of pixels */
669 const GLuint highBit = 1 << 31;
670 const GLuint stipple = ctx->PolygonStipple[span->y % 32];
671 GLuint i, m = highBit >> (GLuint) (span->x % 32);
672 for (i = 0; i < span->end; i++) {
673 if ((m & stipple) == 0) {
674 mask[i] = 0;
675 }
676 m = m >> 1;
677 if (m == 0) {
678 m = highBit;
679 }
680 }
681 }
682 span->writeAll = GL_FALSE;
683 }
684
685
686 /**
687 * Clip a pixel span to the current buffer/window boundaries:
688 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
689 * window clipping and scissoring.
690 * Return: GL_TRUE some pixels still visible
691 * GL_FALSE nothing visible
692 */
693 static INLINE GLuint
694 clip_span( struct gl_context *ctx, SWspan *span )
695 {
696 const GLint xmin = ctx->DrawBuffer->_Xmin;
697 const GLint xmax = ctx->DrawBuffer->_Xmax;
698 const GLint ymin = ctx->DrawBuffer->_Ymin;
699 const GLint ymax = ctx->DrawBuffer->_Ymax;
700
701 span->leftClip = 0;
702
703 if (span->arrayMask & SPAN_XY) {
704 /* arrays of x/y pixel coords */
705 const GLint *x = span->array->x;
706 const GLint *y = span->array->y;
707 const GLint n = span->end;
708 GLubyte *mask = span->array->mask;
709 GLint i;
710 if (span->arrayMask & SPAN_MASK) {
711 /* note: using & intead of && to reduce branches */
712 for (i = 0; i < n; i++) {
713 mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
714 & (y[i] >= ymin) & (y[i] < ymax);
715 }
716 }
717 else {
718 /* note: using & intead of && to reduce branches */
719 for (i = 0; i < n; i++) {
720 mask[i] = (x[i] >= xmin) & (x[i] < xmax)
721 & (y[i] >= ymin) & (y[i] < ymax);
722 }
723 }
724 return GL_TRUE; /* some pixels visible */
725 }
726 else {
727 /* horizontal span of pixels */
728 const GLint x = span->x;
729 const GLint y = span->y;
730 GLint n = span->end;
731
732 /* Trivial rejection tests */
733 if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
734 span->end = 0;
735 return GL_FALSE; /* all pixels clipped */
736 }
737
738 /* Clip to right */
739 if (x + n > xmax) {
740 ASSERT(x < xmax);
741 n = span->end = xmax - x;
742 }
743
744 /* Clip to the left */
745 if (x < xmin) {
746 const GLint leftClip = xmin - x;
747 GLuint i;
748
749 ASSERT(leftClip > 0);
750 ASSERT(x + n > xmin);
751
752 /* Clip 'leftClip' pixels from the left side.
753 * The span->leftClip field will be applied when we interpolate
754 * fragment attributes.
755 * For arrays of values, shift them left.
756 */
757 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
758 if (span->interpMask & (1 << i)) {
759 GLuint j;
760 for (j = 0; j < 4; j++) {
761 span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
762 }
763 }
764 }
765
766 span->red += leftClip * span->redStep;
767 span->green += leftClip * span->greenStep;
768 span->blue += leftClip * span->blueStep;
769 span->alpha += leftClip * span->alphaStep;
770 span->index += leftClip * span->indexStep;
771 span->z += leftClip * span->zStep;
772 span->intTex[0] += leftClip * span->intTexStep[0];
773 span->intTex[1] += leftClip * span->intTexStep[1];
774
775 #define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
776 memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
777
778 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
779 if (span->arrayAttribs & (1 << i)) {
780 /* shift array elements left by 'leftClip' */
781 SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
782 }
783 }
784
785 SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
786 SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
787 SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
788 SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
789 SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
790 SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
791 SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
792 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
793 SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
794 }
795 SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
796
797 #undef SHIFT_ARRAY
798
799 span->leftClip = leftClip;
800 span->x = xmin;
801 span->end -= leftClip;
802 span->writeAll = GL_FALSE;
803 }
804
805 ASSERT(span->x >= xmin);
806 ASSERT(span->x + span->end <= xmax);
807 ASSERT(span->y >= ymin);
808 ASSERT(span->y < ymax);
809
810 return GL_TRUE; /* some pixels visible */
811 }
812 }
813
814
815 /**
816 * Add specular colors to primary colors.
817 * Only called during fixed-function operation.
818 * Result is float color array (FRAG_ATTRIB_COL0).
819 */
820 static INLINE void
821 add_specular(struct gl_context *ctx, SWspan *span)
822 {
823 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
824 const GLubyte *mask = span->array->mask;
825 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
826 GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
827 GLuint i;
828
829 ASSERT(!ctx->FragmentProgram._Current);
830 ASSERT(span->arrayMask & SPAN_RGBA);
831 ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
832 (void) swrast; /* silence warning */
833
834 if (span->array->ChanType == GL_FLOAT) {
835 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
836 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
837 }
838 }
839 else {
840 /* need float colors */
841 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
842 interpolate_float_colors(span);
843 }
844 }
845
846 if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
847 /* XXX could avoid this and interpolate COL1 in the loop below */
848 interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
849 }
850
851 ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
852 ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
853
854 for (i = 0; i < span->end; i++) {
855 if (mask[i]) {
856 col0[i][0] += col1[i][0];
857 col0[i][1] += col1[i][1];
858 col0[i][2] += col1[i][2];
859 }
860 }
861
862 span->array->ChanType = GL_FLOAT;
863 }
864
865
866 /**
867 * Apply antialiasing coverage value to alpha values.
868 */
869 static INLINE void
870 apply_aa_coverage(SWspan *span)
871 {
872 const GLfloat *coverage = span->array->coverage;
873 GLuint i;
874 if (span->array->ChanType == GL_UNSIGNED_BYTE) {
875 GLubyte (*rgba)[4] = span->array->rgba8;
876 for (i = 0; i < span->end; i++) {
877 const GLfloat a = rgba[i][ACOMP] * coverage[i];
878 rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
879 ASSERT(coverage[i] >= 0.0);
880 ASSERT(coverage[i] <= 1.0);
881 }
882 }
883 else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
884 GLushort (*rgba)[4] = span->array->rgba16;
885 for (i = 0; i < span->end; i++) {
886 const GLfloat a = rgba[i][ACOMP] * coverage[i];
887 rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
888 }
889 }
890 else {
891 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
892 for (i = 0; i < span->end; i++) {
893 rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
894 /* clamp later */
895 }
896 }
897 }
898
899
900 /**
901 * Clamp span's float colors to [0,1]
902 */
903 static INLINE void
904 clamp_colors(SWspan *span)
905 {
906 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
907 GLuint i;
908 ASSERT(span->array->ChanType == GL_FLOAT);
909 for (i = 0; i < span->end; i++) {
910 rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
911 rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
912 rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
913 rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
914 }
915 }
916
917
918 /**
919 * Convert the span's color arrays to the given type.
920 * The only way 'output' can be greater than zero is when we have a fragment
921 * program that writes to gl_FragData[1] or higher.
922 * \param output which fragment program color output is being processed
923 */
924 static INLINE void
925 convert_color_type(SWspan *span, GLenum newType, GLuint output)
926 {
927 GLvoid *src, *dst;
928
929 if (output > 0 || span->array->ChanType == GL_FLOAT) {
930 src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
931 span->array->ChanType = GL_FLOAT;
932 }
933 else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
934 src = span->array->rgba8;
935 }
936 else {
937 ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
938 src = span->array->rgba16;
939 }
940
941 if (newType == GL_UNSIGNED_BYTE) {
942 dst = span->array->rgba8;
943 }
944 else if (newType == GL_UNSIGNED_SHORT) {
945 dst = span->array->rgba16;
946 }
947 else {
948 dst = span->array->attribs[FRAG_ATTRIB_COL0];
949 }
950
951 _mesa_convert_colors(span->array->ChanType, src,
952 newType, dst,
953 span->end, span->array->mask);
954
955 span->array->ChanType = newType;
956 span->array->rgba = dst;
957 }
958
959
960
961 /**
962 * Apply fragment shader, fragment program or normal texturing to span.
963 */
964 static INLINE void
965 shade_texture_span(struct gl_context *ctx, SWspan *span)
966 {
967 if (ctx->FragmentProgram._Current ||
968 ctx->ATIFragmentShader._Enabled) {
969 /* programmable shading */
970 if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
971 convert_color_type(span, GL_FLOAT, 0);
972 }
973 else {
974 span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
975 }
976
977 if (span->primitive != GL_POINT ||
978 (span->interpMask & SPAN_RGBA) ||
979 ctx->Point.PointSprite) {
980 /* for single-pixel points, we populated the arrays already */
981 interpolate_active_attribs(ctx, span, ~0);
982 }
983 span->array->ChanType = GL_FLOAT;
984
985 if (!(span->arrayMask & SPAN_Z))
986 _swrast_span_interpolate_z (ctx, span);
987
988 #if 0
989 if (inputsRead & FRAG_BIT_WPOS)
990 #else
991 /* XXX always interpolate wpos so that DDX/DDY work */
992 #endif
993 interpolate_wpos(ctx, span);
994
995 /* Run fragment program/shader now */
996 if (ctx->FragmentProgram._Current) {
997 _swrast_exec_fragment_program(ctx, span);
998 }
999 else {
1000 ASSERT(ctx->ATIFragmentShader._Enabled);
1001 _swrast_exec_fragment_shader(ctx, span);
1002 }
1003 }
1004 else if (ctx->Texture._EnabledCoordUnits) {
1005 /* conventional texturing */
1006
1007 #if CHAN_BITS == 32
1008 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1009 interpolate_int_colors(ctx, span);
1010 }
1011 #else
1012 if (!(span->arrayMask & SPAN_RGBA))
1013 interpolate_int_colors(ctx, span);
1014 #endif
1015 if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1016 interpolate_texcoords(ctx, span);
1017
1018 _swrast_texture_span(ctx, span);
1019 }
1020 }
1021
1022
1023
1024 /**
1025 * Apply all the per-fragment operations to a span.
1026 * This now includes texturing (_swrast_write_texture_span() is history).
1027 * This function may modify any of the array values in the span.
1028 * span->interpMask and span->arrayMask may be changed but will be restored
1029 * to their original values before returning.
1030 */
1031 void
1032 _swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1033 {
1034 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1035 const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1036 const GLbitfield origInterpMask = span->interpMask;
1037 const GLbitfield origArrayMask = span->arrayMask;
1038 const GLbitfield origArrayAttribs = span->arrayAttribs;
1039 const GLenum origChanType = span->array->ChanType;
1040 void * const origRgba = span->array->rgba;
1041 const GLboolean shader = (ctx->FragmentProgram._Current
1042 || ctx->ATIFragmentShader._Enabled);
1043 const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1044 struct gl_framebuffer *fb = ctx->DrawBuffer;
1045
1046 /*
1047 printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
1048 span->interpMask, span->arrayMask);
1049 */
1050
1051 ASSERT(span->primitive == GL_POINT ||
1052 span->primitive == GL_LINE ||
1053 span->primitive == GL_POLYGON ||
1054 span->primitive == GL_BITMAP);
1055
1056 /* Fragment write masks */
1057 if (span->arrayMask & SPAN_MASK) {
1058 /* mask was initialized by caller, probably glBitmap */
1059 span->writeAll = GL_FALSE;
1060 }
1061 else {
1062 memset(span->array->mask, 1, span->end);
1063 span->writeAll = GL_TRUE;
1064 }
1065
1066 /* Clip to window/scissor box */
1067 if (!clip_span(ctx, span)) {
1068 return;
1069 }
1070
1071 ASSERT(span->end <= MAX_WIDTH);
1072
1073 /* Depth bounds test */
1074 if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1075 if (!_swrast_depth_bounds_test(ctx, span)) {
1076 return;
1077 }
1078 }
1079
1080 #ifdef DEBUG
1081 /* Make sure all fragments are within window bounds */
1082 if (span->arrayMask & SPAN_XY) {
1083 /* array of pixel locations */
1084 GLuint i;
1085 for (i = 0; i < span->end; i++) {
1086 if (span->array->mask[i]) {
1087 assert(span->array->x[i] >= fb->_Xmin);
1088 assert(span->array->x[i] < fb->_Xmax);
1089 assert(span->array->y[i] >= fb->_Ymin);
1090 assert(span->array->y[i] < fb->_Ymax);
1091 }
1092 }
1093 }
1094 #endif
1095
1096 /* Polygon Stippling */
1097 if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1098 stipple_polygon_span(ctx, span);
1099 }
1100
1101 /* This is the normal place to compute the fragment color/Z
1102 * from texturing or shading.
1103 */
1104 if (shaderOrTexture && !swrast->_DeferredTexture) {
1105 shade_texture_span(ctx, span);
1106 }
1107
1108 /* Do the alpha test */
1109 if (ctx->Color.AlphaEnabled) {
1110 if (!_swrast_alpha_test(ctx, span)) {
1111 /* all fragments failed test */
1112 goto end;
1113 }
1114 }
1115
1116 /* Stencil and Z testing */
1117 if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1118 if (!(span->arrayMask & SPAN_Z))
1119 _swrast_span_interpolate_z(ctx, span);
1120
1121 if (ctx->Transform.DepthClamp)
1122 _swrast_depth_clamp_span(ctx, span);
1123
1124 if (ctx->Stencil._Enabled) {
1125 /* Combined Z/stencil tests */
1126 if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1127 /* all fragments failed test */
1128 goto end;
1129 }
1130 }
1131 else if (fb->Visual.depthBits > 0) {
1132 /* Just regular depth testing */
1133 ASSERT(ctx->Depth.Test);
1134 ASSERT(span->arrayMask & SPAN_Z);
1135 if (!_swrast_depth_test_span(ctx, span)) {
1136 /* all fragments failed test */
1137 goto end;
1138 }
1139 }
1140 }
1141
1142 if (ctx->Query.CurrentOcclusionObject) {
1143 /* update count of 'passed' fragments */
1144 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1145 GLuint i;
1146 for (i = 0; i < span->end; i++)
1147 q->Result += span->array->mask[i];
1148 }
1149
1150 /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1151 * the occlusion test.
1152 */
1153 if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1154 /* no colors to write */
1155 goto end;
1156 }
1157
1158 /* If we were able to defer fragment color computation to now, there's
1159 * a good chance that many fragments will have already been killed by
1160 * Z/stencil testing.
1161 */
1162 if (shaderOrTexture && swrast->_DeferredTexture) {
1163 shade_texture_span(ctx, span);
1164 }
1165
1166 #if CHAN_BITS == 32
1167 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1168 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1169 }
1170 #else
1171 if ((span->arrayMask & SPAN_RGBA) == 0) {
1172 interpolate_int_colors(ctx, span);
1173 }
1174 #endif
1175
1176 ASSERT(span->arrayMask & SPAN_RGBA);
1177
1178 if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1179 /* Add primary and specular (diffuse + specular) colors */
1180 if (!shader) {
1181 if (ctx->Fog.ColorSumEnabled ||
1182 (ctx->Light.Enabled &&
1183 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1184 add_specular(ctx, span);
1185 }
1186 }
1187 }
1188
1189 /* Fog */
1190 if (swrast->_FogEnabled) {
1191 _swrast_fog_rgba_span(ctx, span);
1192 }
1193
1194 /* Antialias coverage application */
1195 if (span->arrayMask & SPAN_COVERAGE) {
1196 apply_aa_coverage(span);
1197 }
1198
1199 /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1200 if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1201 span->array->ChanType == GL_FLOAT) {
1202 clamp_colors(span);
1203 }
1204
1205 /*
1206 * Write to renderbuffers.
1207 * Depending on glDrawBuffer() state and the which color outputs are
1208 * written by the fragment shader, we may either replicate one color to
1209 * all renderbuffers or write a different color to each renderbuffer.
1210 * multiFragOutputs=TRUE for the later case.
1211 */
1212 {
1213 const GLuint numBuffers = fb->_NumColorDrawBuffers;
1214 const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1215 const GLboolean multiFragOutputs =
1216 (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1217 GLuint buf;
1218
1219 for (buf = 0; buf < numBuffers; buf++) {
1220 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1221
1222 /* color[fragOutput] will be written to buffer[buf] */
1223
1224 if (rb) {
1225 GLchan rgbaSave[MAX_WIDTH][4];
1226 const GLuint fragOutput = multiFragOutputs ? buf : 0;
1227
1228 /* set span->array->rgba to colors for render buffer's datatype */
1229 if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1230 convert_color_type(span, rb->DataType, fragOutput);
1231 }
1232 else {
1233 if (rb->DataType == GL_UNSIGNED_BYTE) {
1234 span->array->rgba = span->array->rgba8;
1235 }
1236 else if (rb->DataType == GL_UNSIGNED_SHORT) {
1237 span->array->rgba = (void *) span->array->rgba16;
1238 }
1239 else {
1240 span->array->rgba = (void *)
1241 span->array->attribs[FRAG_ATTRIB_COL0];
1242 }
1243 }
1244
1245 if (!multiFragOutputs && numBuffers > 1) {
1246 /* save colors for second, third renderbuffer writes */
1247 memcpy(rgbaSave, span->array->rgba,
1248 4 * span->end * sizeof(GLchan));
1249 }
1250
1251 ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
1252 rb->_BaseFormat == GL_ALPHA);
1253
1254 if (ctx->Color.ColorLogicOpEnabled) {
1255 _swrast_logicop_rgba_span(ctx, rb, span);
1256 }
1257 else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1258 _swrast_blend_span(ctx, rb, span);
1259 }
1260
1261 if (colorMask[buf] != 0xffffffff) {
1262 _swrast_mask_rgba_span(ctx, rb, span, buf);
1263 }
1264
1265 if (span->arrayMask & SPAN_XY) {
1266 /* array of pixel coords */
1267 ASSERT(rb->PutValues);
1268 rb->PutValues(ctx, rb, span->end,
1269 span->array->x, span->array->y,
1270 span->array->rgba, span->array->mask);
1271 }
1272 else {
1273 /* horizontal run of pixels */
1274 ASSERT(rb->PutRow);
1275 rb->PutRow(ctx, rb, span->end, span->x, span->y,
1276 span->array->rgba,
1277 span->writeAll ? NULL: span->array->mask);
1278 }
1279
1280 if (!multiFragOutputs && numBuffers > 1) {
1281 /* restore original span values */
1282 memcpy(span->array->rgba, rgbaSave,
1283 4 * span->end * sizeof(GLchan));
1284 }
1285
1286 } /* if rb */
1287 } /* for buf */
1288 }
1289
1290 end:
1291 /* restore these values before returning */
1292 span->interpMask = origInterpMask;
1293 span->arrayMask = origArrayMask;
1294 span->arrayAttribs = origArrayAttribs;
1295 span->array->ChanType = origChanType;
1296 span->array->rgba = origRgba;
1297 }
1298
1299
1300 /**
1301 * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
1302 * reading ouside the buffer's boundaries.
1303 * \param dstType datatype for returned colors
1304 * \param rgba the returned colors
1305 */
1306 void
1307 _swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1308 GLuint n, GLint x, GLint y, GLenum dstType,
1309 GLvoid *rgba)
1310 {
1311 const GLint bufWidth = (GLint) rb->Width;
1312 const GLint bufHeight = (GLint) rb->Height;
1313
1314 if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1315 /* completely above, below, or right */
1316 /* XXX maybe leave rgba values undefined? */
1317 memset(rgba, 0, 4 * n * sizeof(GLchan));
1318 }
1319 else {
1320 GLint skip, length;
1321 if (x < 0) {
1322 /* left edge clipping */
1323 skip = -x;
1324 length = (GLint) n - skip;
1325 if (length < 0) {
1326 /* completely left of window */
1327 return;
1328 }
1329 if (length > bufWidth) {
1330 length = bufWidth;
1331 }
1332 }
1333 else if ((GLint) (x + n) > bufWidth) {
1334 /* right edge clipping */
1335 skip = 0;
1336 length = bufWidth - x;
1337 if (length < 0) {
1338 /* completely to right of window */
1339 return;
1340 }
1341 }
1342 else {
1343 /* no clipping */
1344 skip = 0;
1345 length = (GLint) n;
1346 }
1347
1348 ASSERT(rb);
1349 ASSERT(rb->GetRow);
1350 ASSERT(rb->_BaseFormat == GL_RGBA ||
1351 rb->_BaseFormat == GL_RGB ||
1352 rb->_BaseFormat == GL_RG ||
1353 rb->_BaseFormat == GL_RED ||
1354 rb->_BaseFormat == GL_LUMINANCE ||
1355 rb->_BaseFormat == GL_INTENSITY ||
1356 rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
1357 rb->_BaseFormat == GL_ALPHA);
1358
1359 if (rb->DataType == dstType) {
1360 rb->GetRow(ctx, rb, length, x + skip, y,
1361 (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1362 }
1363 else {
1364 GLuint temp[MAX_WIDTH * 4];
1365 rb->GetRow(ctx, rb, length, x + skip, y, temp);
1366 _mesa_convert_colors(rb->DataType, temp,
1367 dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1368 length, NULL);
1369 }
1370 }
1371 }
1372
1373
1374 /**
1375 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1376 * reading values outside the buffer bounds.
1377 * We can use this for reading any format/type of renderbuffer.
1378 * \param valueSize is the size in bytes of each value (pixel) put into the
1379 * values array.
1380 */
1381 void
1382 _swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1383 GLuint count, const GLint x[], const GLint y[],
1384 void *values, GLuint valueSize)
1385 {
1386 GLuint i, inCount = 0, inStart = 0;
1387
1388 for (i = 0; i < count; i++) {
1389 if (x[i] >= 0 && y[i] >= 0 &&
1390 x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1391 /* inside */
1392 if (inCount == 0)
1393 inStart = i;
1394 inCount++;
1395 }
1396 else {
1397 if (inCount > 0) {
1398 /* read [inStart, inStart + inCount) */
1399 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1400 (GLubyte *) values + inStart * valueSize);
1401 inCount = 0;
1402 }
1403 }
1404 }
1405 if (inCount > 0) {
1406 /* read last values */
1407 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1408 (GLubyte *) values + inStart * valueSize);
1409 }
1410 }
1411
1412
1413 /**
1414 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1415 * \param valueSize size of each value (pixel) in bytes
1416 */
1417 void
1418 _swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1419 GLuint count, GLint x, GLint y,
1420 const GLvoid *values, GLuint valueSize)
1421 {
1422 GLint skip = 0;
1423
1424 if (y < 0 || y >= (GLint) rb->Height)
1425 return; /* above or below */
1426
1427 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1428 return; /* entirely left or right */
1429
1430 if ((GLint) (x + count) > (GLint) rb->Width) {
1431 /* right clip */
1432 GLint clip = x + count - rb->Width;
1433 count -= clip;
1434 }
1435
1436 if (x < 0) {
1437 /* left clip */
1438 skip = -x;
1439 x = 0;
1440 count -= skip;
1441 }
1442
1443 rb->PutRow(ctx, rb, count, x, y,
1444 (const GLubyte *) values + skip * valueSize, NULL);
1445 }
1446
1447
1448 /**
1449 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1450 * \param valueSize size of each value (pixel) in bytes
1451 */
1452 void
1453 _swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1454 GLuint count, GLint x, GLint y,
1455 GLvoid *values, GLuint valueSize)
1456 {
1457 GLint skip = 0;
1458
1459 if (y < 0 || y >= (GLint) rb->Height)
1460 return; /* above or below */
1461
1462 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1463 return; /* entirely left or right */
1464
1465 if (x + count > rb->Width) {
1466 /* right clip */
1467 GLint clip = x + count - rb->Width;
1468 count -= clip;
1469 }
1470
1471 if (x < 0) {
1472 /* left clip */
1473 skip = -x;
1474 x = 0;
1475 count -= skip;
1476 }
1477
1478 rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1479 }
1480
1481
1482 /**
1483 * Get RGBA pixels from the given renderbuffer.
1484 * Used by blending, logicop and masking functions.
1485 * \return pointer to the colors we read.
1486 */
1487 void *
1488 _swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1489 SWspan *span)
1490 {
1491 const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1492 void *rbPixels;
1493
1494 /* Point rbPixels to a temporary space */
1495 rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1496
1497 /* Get destination values from renderbuffer */
1498 if (span->arrayMask & SPAN_XY) {
1499 _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1500 rbPixels, pixelSize);
1501 }
1502 else {
1503 _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1504 rbPixels, pixelSize);
1505 }
1506
1507 return rbPixels;
1508 }