mesa: Change "BRIAN PAUL" to "THE AUTHORS" in license text.
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/colormac.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "main/state.h"
39 #include "main/samplerobj.h"
40 #include "program/prog_instruction.h"
41
42 #include "s_aatriangle.h"
43 #include "s_context.h"
44 #include "s_feedback.h"
45 #include "s_span.h"
46 #include "s_triangle.h"
47
48
49 /**
50 * Test if a triangle should be culled. Used for feedback and selection mode.
51 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
52 */
53 GLboolean
54 _swrast_culltriangle( struct gl_context *ctx,
55 const SWvertex *v0,
56 const SWvertex *v1,
57 const SWvertex *v2 )
58 {
59 SWcontext *swrast = SWRAST_CONTEXT(ctx);
60 GLfloat ex = v1->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
61 GLfloat ey = v1->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
62 GLfloat fx = v2->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
63 GLfloat fy = v2->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
64 GLfloat c = ex*fy-ey*fx;
65
66 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
67 return GL_FALSE;
68
69 return GL_TRUE;
70 }
71
72
73
74 /*
75 * Render a flat-shaded RGBA triangle.
76 */
77 #define NAME flat_rgba_triangle
78 #define INTERP_Z 1
79 #define SETUP_CODE \
80 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
81 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
82 span.interpMask |= SPAN_RGBA; \
83 span.red = ChanToFixed(v2->color[0]); \
84 span.green = ChanToFixed(v2->color[1]); \
85 span.blue = ChanToFixed(v2->color[2]); \
86 span.alpha = ChanToFixed(v2->color[3]); \
87 span.redStep = 0; \
88 span.greenStep = 0; \
89 span.blueStep = 0; \
90 span.alphaStep = 0;
91 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
92 #include "s_tritemp.h"
93
94
95
96 /*
97 * Render a smooth-shaded RGBA triangle.
98 */
99 #define NAME smooth_rgba_triangle
100 #define INTERP_Z 1
101 #define INTERP_RGB 1
102 #define INTERP_ALPHA 1
103 #define SETUP_CODE \
104 { \
105 /* texturing must be off */ \
106 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
107 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
108 }
109 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
110 #include "s_tritemp.h"
111
112
113
114 /*
115 * Render an RGB, GL_DECAL, textured triangle.
116 * Interpolate S,T only w/out mipmapping or perspective correction.
117 *
118 * No fog. No depth testing.
119 */
120 #define NAME simple_textured_triangle
121 #define INTERP_INT_TEX 1
122 #define S_SCALE twidth
123 #define T_SCALE theight
124
125 #define SETUP_CODE \
126 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
127 const struct gl_texture_object *obj = \
128 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
129 const struct gl_texture_image *texImg = \
130 obj->Image[0][obj->BaseLevel]; \
131 const struct swrast_texture_image *swImg = \
132 swrast_texture_image_const(texImg); \
133 const GLfloat twidth = (GLfloat) texImg->Width; \
134 const GLfloat theight = (GLfloat) texImg->Height; \
135 const GLint twidth_log2 = texImg->WidthLog2; \
136 const GLubyte *texture = (const GLubyte *) swImg->Map; \
137 const GLint smask = texImg->Width - 1; \
138 const GLint tmask = texImg->Height - 1; \
139 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
140 if (!rb || !texture) { \
141 return; \
142 }
143
144 #define RENDER_SPAN( span ) \
145 GLuint i; \
146 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
147 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
148 span.intTex[1] -= FIXED_HALF; \
149 for (i = 0; i < span.end; i++) { \
150 GLint s = FixedToInt(span.intTex[0]) & smask; \
151 GLint t = FixedToInt(span.intTex[1]) & tmask; \
152 GLint pos = (t << twidth_log2) + s; \
153 pos = pos + pos + pos; /* multiply by 3 */ \
154 rgba[i][RCOMP] = texture[pos+2]; \
155 rgba[i][GCOMP] = texture[pos+1]; \
156 rgba[i][BCOMP] = texture[pos+0]; \
157 rgba[i][ACOMP] = 0xff; \
158 span.intTex[0] += span.intTexStep[0]; \
159 span.intTex[1] += span.intTexStep[1]; \
160 } \
161 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \
162 span.x, span.y, rgba, NULL);
163
164 #include "s_tritemp.h"
165
166
167
168 /*
169 * Render an RGB, GL_DECAL, textured triangle.
170 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
171 * perspective correction.
172 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
173 *
174 * No fog.
175 */
176 #define NAME simple_z_textured_triangle
177 #define INTERP_Z 1
178 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
179 #define INTERP_INT_TEX 1
180 #define S_SCALE twidth
181 #define T_SCALE theight
182
183 #define SETUP_CODE \
184 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
185 const struct gl_texture_object *obj = \
186 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
187 const struct gl_texture_image *texImg = \
188 obj->Image[0][obj->BaseLevel]; \
189 const struct swrast_texture_image *swImg = \
190 swrast_texture_image_const(texImg); \
191 const GLfloat twidth = (GLfloat) texImg->Width; \
192 const GLfloat theight = (GLfloat) texImg->Height; \
193 const GLint twidth_log2 = texImg->WidthLog2; \
194 const GLubyte *texture = (const GLubyte *) swImg->Map; \
195 const GLint smask = texImg->Width - 1; \
196 const GLint tmask = texImg->Height - 1; \
197 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
198 if (!rb || !texture) { \
199 return; \
200 }
201
202 #define RENDER_SPAN( span ) \
203 GLuint i; \
204 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
205 GLubyte *mask = swrast->SpanArrays->mask; \
206 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
207 span.intTex[1] -= FIXED_HALF; \
208 for (i = 0; i < span.end; i++) { \
209 const GLuint z = FixedToDepth(span.z); \
210 if (z < zRow[i]) { \
211 GLint s = FixedToInt(span.intTex[0]) & smask; \
212 GLint t = FixedToInt(span.intTex[1]) & tmask; \
213 GLint pos = (t << twidth_log2) + s; \
214 pos = pos + pos + pos; /* multiply by 3 */ \
215 rgba[i][RCOMP] = texture[pos+2]; \
216 rgba[i][GCOMP] = texture[pos+1]; \
217 rgba[i][BCOMP] = texture[pos+0]; \
218 rgba[i][ACOMP] = 0xff; \
219 zRow[i] = z; \
220 mask[i] = 1; \
221 } \
222 else { \
223 mask[i] = 0; \
224 } \
225 span.intTex[0] += span.intTexStep[0]; \
226 span.intTex[1] += span.intTexStep[1]; \
227 span.z += span.zStep; \
228 } \
229 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \
230 span.end, span.x, span.y, rgba, mask);
231
232 #include "s_tritemp.h"
233
234
235 #if CHAN_TYPE != GL_FLOAT
236
237 struct affine_info
238 {
239 GLenum filter;
240 GLenum format;
241 GLenum envmode;
242 GLint smask, tmask;
243 GLint twidth_log2;
244 const GLchan *texture;
245 GLfixed er, eg, eb, ea;
246 GLint tbytesline, tsize;
247 };
248
249
250 static inline GLint
251 ilerp(GLint t, GLint a, GLint b)
252 {
253 return a + ((t * (b - a)) >> FIXED_SHIFT);
254 }
255
256 static inline GLint
257 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
258 {
259 const GLint temp0 = ilerp(ia, v00, v10);
260 const GLint temp1 = ilerp(ia, v01, v11);
261 return ilerp(ib, temp0, temp1);
262 }
263
264
265 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
266 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
267 * texture env modes.
268 */
269 static inline void
270 affine_span(struct gl_context *ctx, SWspan *span,
271 struct affine_info *info)
272 {
273 GLchan sample[4]; /* the filtered texture sample */
274 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
275
276 /* Instead of defining a function for each mode, a test is done
277 * between the outer and inner loops. This is to reduce code size
278 * and complexity. Observe that an optimizing compiler kills
279 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
280 */
281
282 #define NEAREST_RGB \
283 sample[RCOMP] = tex00[2]; \
284 sample[GCOMP] = tex00[1]; \
285 sample[BCOMP] = tex00[0]; \
286 sample[ACOMP] = CHAN_MAX;
287
288 #define LINEAR_RGB \
289 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
290 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
291 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
292 sample[ACOMP] = CHAN_MAX;
293
294 #define NEAREST_RGBA \
295 sample[RCOMP] = tex00[3]; \
296 sample[GCOMP] = tex00[2]; \
297 sample[BCOMP] = tex00[1]; \
298 sample[ACOMP] = tex00[0];
299
300 #define LINEAR_RGBA \
301 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
302 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
303 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
304 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
305
306 #define MODULATE \
307 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
308 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
309 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
310 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
311
312 #define DECAL \
313 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
314 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
315 >> (FIXED_SHIFT + 8); \
316 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
317 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
318 >> (FIXED_SHIFT + 8); \
319 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
320 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
321 >> (FIXED_SHIFT + 8); \
322 dest[ACOMP] = FixedToInt(span->alpha)
323
324 #define BLEND \
325 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
326 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
327 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
328 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
329 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
330 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
331 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
332
333 #define REPLACE COPY_CHAN4(dest, sample)
334
335 #define ADD \
336 { \
337 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
338 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
339 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
340 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
341 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
342 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
343 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
344 }
345
346 /* shortcuts */
347
348 #define NEAREST_RGB_REPLACE \
349 NEAREST_RGB; \
350 dest[0] = sample[0]; \
351 dest[1] = sample[1]; \
352 dest[2] = sample[2]; \
353 dest[3] = FixedToInt(span->alpha);
354
355 #define NEAREST_RGBA_REPLACE \
356 dest[RCOMP] = tex00[3]; \
357 dest[GCOMP] = tex00[2]; \
358 dest[BCOMP] = tex00[1]; \
359 dest[ACOMP] = tex00[0]
360
361 #define SPAN_NEAREST(DO_TEX, COMPS) \
362 for (i = 0; i < span->end; i++) { \
363 /* Isn't it necessary to use FixedFloor below?? */ \
364 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
365 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
366 GLint pos = (t << info->twidth_log2) + s; \
367 const GLchan *tex00 = info->texture + COMPS * pos; \
368 DO_TEX; \
369 span->red += span->redStep; \
370 span->green += span->greenStep; \
371 span->blue += span->blueStep; \
372 span->alpha += span->alphaStep; \
373 span->intTex[0] += span->intTexStep[0]; \
374 span->intTex[1] += span->intTexStep[1]; \
375 dest += 4; \
376 }
377
378 #define SPAN_LINEAR(DO_TEX, COMPS) \
379 for (i = 0; i < span->end; i++) { \
380 /* Isn't it necessary to use FixedFloor below?? */ \
381 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
382 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
383 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
384 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
385 const GLint pos = (t << info->twidth_log2) + s; \
386 const GLchan *tex00 = info->texture + COMPS * pos; \
387 const GLchan *tex10 = tex00 + info->tbytesline; \
388 const GLchan *tex01 = tex00 + COMPS; \
389 const GLchan *tex11 = tex10 + COMPS; \
390 if (t == info->tmask) { \
391 tex10 -= info->tsize; \
392 tex11 -= info->tsize; \
393 } \
394 if (s == info->smask) { \
395 tex01 -= info->tbytesline; \
396 tex11 -= info->tbytesline; \
397 } \
398 DO_TEX; \
399 span->red += span->redStep; \
400 span->green += span->greenStep; \
401 span->blue += span->blueStep; \
402 span->alpha += span->alphaStep; \
403 span->intTex[0] += span->intTexStep[0]; \
404 span->intTex[1] += span->intTexStep[1]; \
405 dest += 4; \
406 }
407
408
409 GLuint i;
410 GLchan *dest = span->array->rgba[0];
411
412 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
413 ctx->Texture._EnabledCoordUnits = 0x0;
414
415 span->intTex[0] -= FIXED_HALF;
416 span->intTex[1] -= FIXED_HALF;
417 switch (info->filter) {
418 case GL_NEAREST:
419 switch (info->format) {
420 case MESA_FORMAT_RGB888:
421 switch (info->envmode) {
422 case GL_MODULATE:
423 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
424 break;
425 case GL_DECAL:
426 case GL_REPLACE:
427 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
428 break;
429 case GL_BLEND:
430 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
431 break;
432 case GL_ADD:
433 SPAN_NEAREST(NEAREST_RGB;ADD,3);
434 break;
435 default:
436 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
437 return;
438 }
439 break;
440 case MESA_FORMAT_RGBA8888:
441 switch(info->envmode) {
442 case GL_MODULATE:
443 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
444 break;
445 case GL_DECAL:
446 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
447 break;
448 case GL_BLEND:
449 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
450 break;
451 case GL_ADD:
452 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
453 break;
454 case GL_REPLACE:
455 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
456 break;
457 default:
458 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
459 return;
460 }
461 break;
462 }
463 break;
464
465 case GL_LINEAR:
466 span->intTex[0] -= FIXED_HALF;
467 span->intTex[1] -= FIXED_HALF;
468 switch (info->format) {
469 case MESA_FORMAT_RGB888:
470 switch (info->envmode) {
471 case GL_MODULATE:
472 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
473 break;
474 case GL_DECAL:
475 case GL_REPLACE:
476 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
477 break;
478 case GL_BLEND:
479 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
480 break;
481 case GL_ADD:
482 SPAN_LINEAR(LINEAR_RGB;ADD,3);
483 break;
484 default:
485 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
486 return;
487 }
488 break;
489 case MESA_FORMAT_RGBA8888:
490 switch (info->envmode) {
491 case GL_MODULATE:
492 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
493 break;
494 case GL_DECAL:
495 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
496 break;
497 case GL_BLEND:
498 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
499 break;
500 case GL_ADD:
501 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
502 break;
503 case GL_REPLACE:
504 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
505 break;
506 default:
507 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
508 return;
509 }
510 break;
511 }
512 break;
513 }
514 span->interpMask &= ~SPAN_RGBA;
515 ASSERT(span->arrayMask & SPAN_RGBA);
516
517 _swrast_write_rgba_span(ctx, span);
518
519 /* re-enable texture units */
520 ctx->Texture._EnabledCoordUnits = texEnableSave;
521
522 #undef SPAN_NEAREST
523 #undef SPAN_LINEAR
524 }
525
526
527
528 /*
529 * Render an RGB/RGBA textured triangle without perspective correction.
530 */
531 #define NAME affine_textured_triangle
532 #define INTERP_Z 1
533 #define INTERP_RGB 1
534 #define INTERP_ALPHA 1
535 #define INTERP_INT_TEX 1
536 #define S_SCALE twidth
537 #define T_SCALE theight
538
539 #define SETUP_CODE \
540 struct affine_info info; \
541 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
542 const struct gl_texture_object *obj = \
543 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
544 const struct gl_texture_image *texImg = \
545 obj->Image[0][obj->BaseLevel]; \
546 const struct swrast_texture_image *swImg = \
547 swrast_texture_image_const(texImg); \
548 const GLfloat twidth = (GLfloat) texImg->Width; \
549 const GLfloat theight = (GLfloat) texImg->Height; \
550 info.texture = (const GLchan *) swImg->Map; \
551 info.twidth_log2 = texImg->WidthLog2; \
552 info.smask = texImg->Width - 1; \
553 info.tmask = texImg->Height - 1; \
554 info.format = texImg->TexFormat; \
555 info.filter = obj->Sampler.MinFilter; \
556 info.envmode = unit->EnvMode; \
557 info.er = 0; \
558 info.eg = 0; \
559 info.eb = 0; \
560 span.arrayMask |= SPAN_RGBA; \
561 \
562 if (info.envmode == GL_BLEND) { \
563 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
564 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
565 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
566 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
567 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
568 } \
569 if (!info.texture) { \
570 /* this shouldn't happen */ \
571 return; \
572 } \
573 \
574 switch (info.format) { \
575 case MESA_FORMAT_RGB888: \
576 info.tbytesline = texImg->Width * 3; \
577 break; \
578 case MESA_FORMAT_RGBA8888: \
579 info.tbytesline = texImg->Width * 4; \
580 break; \
581 default: \
582 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
583 return; \
584 } \
585 info.tsize = texImg->Height * info.tbytesline;
586
587 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
588
589 #include "s_tritemp.h"
590
591
592
593 struct persp_info
594 {
595 GLenum filter;
596 GLenum format;
597 GLenum envmode;
598 GLint smask, tmask;
599 GLint twidth_log2;
600 const GLchan *texture;
601 GLfixed er, eg, eb, ea; /* texture env color */
602 GLint tbytesline, tsize;
603 };
604
605
606 static inline void
607 fast_persp_span(struct gl_context *ctx, SWspan *span,
608 struct persp_info *info)
609 {
610 GLchan sample[4]; /* the filtered texture sample */
611
612 /* Instead of defining a function for each mode, a test is done
613 * between the outer and inner loops. This is to reduce code size
614 * and complexity. Observe that an optimizing compiler kills
615 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
616 */
617 #define SPAN_NEAREST(DO_TEX,COMP) \
618 for (i = 0; i < span->end; i++) { \
619 GLdouble invQ = tex_coord[2] ? \
620 (1.0 / tex_coord[2]) : 1.0; \
621 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
622 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
623 GLint s = IFLOOR(s_tmp) & info->smask; \
624 GLint t = IFLOOR(t_tmp) & info->tmask; \
625 GLint pos = (t << info->twidth_log2) + s; \
626 const GLchan *tex00 = info->texture + COMP * pos; \
627 DO_TEX; \
628 span->red += span->redStep; \
629 span->green += span->greenStep; \
630 span->blue += span->blueStep; \
631 span->alpha += span->alphaStep; \
632 tex_coord[0] += tex_step[0]; \
633 tex_coord[1] += tex_step[1]; \
634 tex_coord[2] += tex_step[2]; \
635 dest += 4; \
636 }
637
638 #define SPAN_LINEAR(DO_TEX,COMP) \
639 for (i = 0; i < span->end; i++) { \
640 GLdouble invQ = tex_coord[2] ? \
641 (1.0 / tex_coord[2]) : 1.0; \
642 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
643 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
644 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
645 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
646 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
647 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
648 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
649 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
650 const GLint pos = (t << info->twidth_log2) + s; \
651 const GLchan *tex00 = info->texture + COMP * pos; \
652 const GLchan *tex10 = tex00 + info->tbytesline; \
653 const GLchan *tex01 = tex00 + COMP; \
654 const GLchan *tex11 = tex10 + COMP; \
655 if (t == info->tmask) { \
656 tex10 -= info->tsize; \
657 tex11 -= info->tsize; \
658 } \
659 if (s == info->smask) { \
660 tex01 -= info->tbytesline; \
661 tex11 -= info->tbytesline; \
662 } \
663 DO_TEX; \
664 span->red += span->redStep; \
665 span->green += span->greenStep; \
666 span->blue += span->blueStep; \
667 span->alpha += span->alphaStep; \
668 tex_coord[0] += tex_step[0]; \
669 tex_coord[1] += tex_step[1]; \
670 tex_coord[2] += tex_step[2]; \
671 dest += 4; \
672 }
673
674 GLuint i;
675 GLfloat tex_coord[3], tex_step[3];
676 GLchan *dest = span->array->rgba[0];
677
678 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
679 ctx->Texture._EnabledCoordUnits = 0;
680
681 tex_coord[0] = span->attrStart[VARYING_SLOT_TEX0][0] * (info->smask + 1);
682 tex_step[0] = span->attrStepX[VARYING_SLOT_TEX0][0] * (info->smask + 1);
683 tex_coord[1] = span->attrStart[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
684 tex_step[1] = span->attrStepX[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
685 /* span->attrStart[VARYING_SLOT_TEX0][2] only if 3D-texturing, here only 2D */
686 tex_coord[2] = span->attrStart[VARYING_SLOT_TEX0][3];
687 tex_step[2] = span->attrStepX[VARYING_SLOT_TEX0][3];
688
689 switch (info->filter) {
690 case GL_NEAREST:
691 switch (info->format) {
692 case MESA_FORMAT_RGB888:
693 switch (info->envmode) {
694 case GL_MODULATE:
695 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
696 break;
697 case GL_DECAL:
698 case GL_REPLACE:
699 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
700 break;
701 case GL_BLEND:
702 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
703 break;
704 case GL_ADD:
705 SPAN_NEAREST(NEAREST_RGB;ADD,3);
706 break;
707 default:
708 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
709 return;
710 }
711 break;
712 case MESA_FORMAT_RGBA8888:
713 switch(info->envmode) {
714 case GL_MODULATE:
715 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
716 break;
717 case GL_DECAL:
718 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
719 break;
720 case GL_BLEND:
721 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
722 break;
723 case GL_ADD:
724 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
725 break;
726 case GL_REPLACE:
727 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
728 break;
729 default:
730 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
731 return;
732 }
733 break;
734 }
735 break;
736
737 case GL_LINEAR:
738 switch (info->format) {
739 case MESA_FORMAT_RGB888:
740 switch (info->envmode) {
741 case GL_MODULATE:
742 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
743 break;
744 case GL_DECAL:
745 case GL_REPLACE:
746 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
747 break;
748 case GL_BLEND:
749 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
750 break;
751 case GL_ADD:
752 SPAN_LINEAR(LINEAR_RGB;ADD,3);
753 break;
754 default:
755 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
756 return;
757 }
758 break;
759 case MESA_FORMAT_RGBA8888:
760 switch (info->envmode) {
761 case GL_MODULATE:
762 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
763 break;
764 case GL_DECAL:
765 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
766 break;
767 case GL_BLEND:
768 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
769 break;
770 case GL_ADD:
771 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
772 break;
773 case GL_REPLACE:
774 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
775 break;
776 default:
777 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
778 return;
779 }
780 break;
781 }
782 break;
783 }
784
785 ASSERT(span->arrayMask & SPAN_RGBA);
786 _swrast_write_rgba_span(ctx, span);
787
788 #undef SPAN_NEAREST
789 #undef SPAN_LINEAR
790
791 /* restore state */
792 ctx->Texture._EnabledCoordUnits = texEnableSave;
793 }
794
795
796 /*
797 * Render an perspective corrected RGB/RGBA textured triangle.
798 * The Q (aka V in Mesa) coordinate must be zero such that the divide
799 * by interpolated Q/W comes out right.
800 *
801 */
802 #define NAME persp_textured_triangle
803 #define INTERP_Z 1
804 #define INTERP_RGB 1
805 #define INTERP_ALPHA 1
806 #define INTERP_ATTRIBS 1
807
808 #define SETUP_CODE \
809 struct persp_info info; \
810 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
811 const struct gl_texture_object *obj = \
812 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
813 const struct gl_texture_image *texImg = \
814 obj->Image[0][obj->BaseLevel]; \
815 const struct swrast_texture_image *swImg = \
816 swrast_texture_image_const(texImg); \
817 info.texture = (const GLchan *) swImg->Map; \
818 info.twidth_log2 = texImg->WidthLog2; \
819 info.smask = texImg->Width - 1; \
820 info.tmask = texImg->Height - 1; \
821 info.format = texImg->TexFormat; \
822 info.filter = obj->Sampler.MinFilter; \
823 info.envmode = unit->EnvMode; \
824 info.er = 0; \
825 info.eg = 0; \
826 info.eb = 0; \
827 \
828 if (info.envmode == GL_BLEND) { \
829 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
830 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
831 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
832 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
833 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
834 } \
835 if (!info.texture) { \
836 /* this shouldn't happen */ \
837 return; \
838 } \
839 \
840 switch (info.format) { \
841 case MESA_FORMAT_RGB888: \
842 info.tbytesline = texImg->Width * 3; \
843 break; \
844 case MESA_FORMAT_RGBA8888: \
845 info.tbytesline = texImg->Width * 4; \
846 break; \
847 default: \
848 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
849 return; \
850 } \
851 info.tsize = texImg->Height * info.tbytesline;
852
853 #define RENDER_SPAN( span ) \
854 span.interpMask &= ~SPAN_RGBA; \
855 span.arrayMask |= SPAN_RGBA; \
856 fast_persp_span(ctx, &span, &info);
857
858 #include "s_tritemp.h"
859
860 #endif /*CHAN_TYPE != GL_FLOAT*/
861
862
863
864 /*
865 * Render an RGBA triangle with arbitrary attributes.
866 */
867 #define NAME general_triangle
868 #define INTERP_Z 1
869 #define INTERP_RGB 1
870 #define INTERP_ALPHA 1
871 #define INTERP_ATTRIBS 1
872 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
873 #include "s_tritemp.h"
874
875
876
877
878 /*
879 * Special tri function for occlusion testing
880 */
881 #define NAME occlusion_zless_16_triangle
882 #define INTERP_Z 1
883 #define SETUP_CODE \
884 struct gl_renderbuffer *rb = \
885 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \
886 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
887 ASSERT(ctx->Depth.Test); \
888 ASSERT(!ctx->Depth.Mask); \
889 ASSERT(ctx->Depth.Func == GL_LESS); \
890 assert(rb->Format == MESA_FORMAT_Z16); \
891 if (!q) { \
892 return; \
893 }
894 #define RENDER_SPAN( span ) \
895 { \
896 GLuint i; \
897 const GLushort *zRow = (const GLushort *) \
898 _swrast_pixel_address(rb, span.x, span.y); \
899 for (i = 0; i < span.end; i++) { \
900 GLuint z = FixedToDepth(span.z); \
901 if (z < zRow[i]) { \
902 q->Result++; \
903 } \
904 span.z += span.zStep; \
905 } \
906 }
907 #include "s_tritemp.h"
908
909
910
911 static void
912 nodraw_triangle( struct gl_context *ctx,
913 const SWvertex *v0,
914 const SWvertex *v1,
915 const SWvertex *v2 )
916 {
917 (void) (ctx && v0 && v1 && v2);
918 }
919
920
921 /*
922 * This is used when separate specular color is enabled, but not
923 * texturing. We add the specular color to the primary color,
924 * draw the triangle, then restore the original primary color.
925 * Inefficient, but seldom needed.
926 */
927 void
928 _swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
929 const SWvertex *v1, const SWvertex *v2)
930 {
931 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
932 SWvertex *ncv1 = (SWvertex *)v1;
933 SWvertex *ncv2 = (SWvertex *)v2;
934 GLfloat rSum, gSum, bSum;
935 GLchan cSave[3][4];
936
937 /* save original colors */
938 COPY_CHAN4( cSave[0], ncv0->color );
939 COPY_CHAN4( cSave[1], ncv1->color );
940 COPY_CHAN4( cSave[2], ncv2->color );
941 /* sum v0 */
942 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[VARYING_SLOT_COL1][0];
943 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[VARYING_SLOT_COL1][1];
944 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[VARYING_SLOT_COL1][2];
945 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
946 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
948 /* sum v1 */
949 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[VARYING_SLOT_COL1][0];
950 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[VARYING_SLOT_COL1][1];
951 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[VARYING_SLOT_COL1][2];
952 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
953 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
955 /* sum v2 */
956 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[VARYING_SLOT_COL1][0];
957 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[VARYING_SLOT_COL1][1];
958 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[VARYING_SLOT_COL1][2];
959 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
960 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
962 /* draw */
963 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
964 /* restore original colors */
965 COPY_CHAN4( ncv0->color, cSave[0] );
966 COPY_CHAN4( ncv1->color, cSave[1] );
967 COPY_CHAN4( ncv2->color, cSave[2] );
968 }
969
970
971
972 #ifdef DEBUG
973
974 /* record the current triangle function name */
975 const char *_mesa_triFuncName = NULL;
976
977 #define USE(triFunc) \
978 do { \
979 _mesa_triFuncName = #triFunc; \
980 /*printf("%s\n", _mesa_triFuncName);*/ \
981 swrast->Triangle = triFunc; \
982 } while (0)
983
984 #else
985
986 #define USE(triFunc) swrast->Triangle = triFunc;
987
988 #endif
989
990
991
992
993 /*
994 * Determine which triangle rendering function to use given the current
995 * rendering context.
996 *
997 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
998 * remove tests to this code.
999 */
1000 void
1001 _swrast_choose_triangle( struct gl_context *ctx )
1002 {
1003 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1004
1005 if (ctx->Polygon.CullFlag &&
1006 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1007 USE(nodraw_triangle);
1008 return;
1009 }
1010
1011 if (ctx->RenderMode==GL_RENDER) {
1012 struct gl_renderbuffer *depthRb =
1013 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
1014
1015 if (ctx->Polygon.SmoothFlag) {
1016 _swrast_set_aa_triangle_function(ctx);
1017 ASSERT(swrast->Triangle);
1018 return;
1019 }
1020
1021 /* special case for occlusion testing */
1022 if (ctx->Query.CurrentOcclusionObject &&
1023 ctx->Depth.Test &&
1024 ctx->Depth.Mask == GL_FALSE &&
1025 ctx->Depth.Func == GL_LESS &&
1026 !ctx->Stencil._Enabled &&
1027 depthRb &&
1028 depthRb->Format == MESA_FORMAT_Z16) {
1029 if (ctx->Color.ColorMask[0][0] == 0 &&
1030 ctx->Color.ColorMask[0][1] == 0 &&
1031 ctx->Color.ColorMask[0][2] == 0 &&
1032 ctx->Color.ColorMask[0][3] == 0) {
1033 USE(occlusion_zless_16_triangle);
1034 return;
1035 }
1036 }
1037
1038 /*
1039 * XXX should examine swrast->_ActiveAttribMask to determine what
1040 * needs to be interpolated.
1041 */
1042 if (ctx->Texture._EnabledCoordUnits ||
1043 _swrast_use_fragment_program(ctx) ||
1044 ctx->ATIFragmentShader._Enabled ||
1045 _mesa_need_secondary_color(ctx) ||
1046 swrast->_FogEnabled) {
1047 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1048 const struct gl_texture_object *texObj2D;
1049 const struct gl_sampler_object *samp;
1050 const struct gl_texture_image *texImg;
1051 const struct swrast_texture_image *swImg;
1052 GLenum minFilter, magFilter, envMode;
1053 gl_format format;
1054 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
1055 if (ctx->Texture.Unit[0].Sampler)
1056 samp = ctx->Texture.Unit[0].Sampler;
1057 else if (texObj2D)
1058 samp = &texObj2D->Sampler;
1059 else
1060 samp = NULL;
1061
1062 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1063 swImg = swrast_texture_image_const(texImg);
1064
1065 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
1066 minFilter = texObj2D ? samp->MinFilter : GL_NONE;
1067 magFilter = texObj2D ? samp->MagFilter : GL_NONE;
1068 envMode = ctx->Texture.Unit[0].EnvMode;
1069
1070 /* First see if we can use an optimized 2-D texture function */
1071 if (ctx->Texture._EnabledCoordUnits == 0x1
1072 && !_swrast_use_fragment_program(ctx)
1073 && !ctx->ATIFragmentShader._Enabled
1074 && ctx->Texture._EnabledUnits == 0x1
1075 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1076 && samp->WrapS == GL_REPEAT
1077 && samp->WrapT == GL_REPEAT
1078 && texObj2D->_Swizzle == SWIZZLE_NOOP
1079 && swImg->_IsPowerOfTwo
1080 && texImg->Border == 0
1081 && texImg->Width == swImg->RowStride
1082 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888)
1083 && minFilter == magFilter
1084 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1085 && !swrast->_FogEnabled
1086 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
1087 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
1088 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1089 if (minFilter == GL_NEAREST
1090 && format == MESA_FORMAT_RGB888
1091 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1092 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1093 && ctx->Depth.Func == GL_LESS
1094 && ctx->Depth.Mask == GL_TRUE)
1095 || swrast->_RasterMask == TEXTURE_BIT)
1096 && ctx->Polygon.StippleFlag == GL_FALSE
1097 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1098 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1099 USE(simple_z_textured_triangle);
1100 }
1101 else {
1102 USE(simple_textured_triangle);
1103 }
1104 }
1105 else {
1106 #if CHAN_BITS != 8
1107 USE(general_triangle);
1108 #else
1109 if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) {
1110 /* We only handle RGBA8888 correctly on little endian
1111 * in the optimized code above.
1112 */
1113 USE(general_triangle);
1114 }
1115 else {
1116 USE(affine_textured_triangle);
1117 }
1118 #endif
1119 }
1120 }
1121 else {
1122 #if CHAN_BITS != 8
1123 USE(general_triangle);
1124 #else
1125 USE(persp_textured_triangle);
1126 #endif
1127 }
1128 }
1129 else {
1130 /* general case textured triangles */
1131 USE(general_triangle);
1132 }
1133 }
1134 else {
1135 ASSERT(!swrast->_FogEnabled);
1136 ASSERT(!_mesa_need_secondary_color(ctx));
1137 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1138 /* smooth shaded, no texturing, stippled or some raster ops */
1139 #if CHAN_BITS != 8
1140 USE(general_triangle);
1141 #else
1142 USE(smooth_rgba_triangle);
1143 #endif
1144 }
1145 else {
1146 /* flat shaded, no texturing, stippled or some raster ops */
1147 #if CHAN_BITS != 8
1148 USE(general_triangle);
1149 #else
1150 USE(flat_rgba_triangle);
1151 #endif
1152 }
1153 }
1154 }
1155 else if (ctx->RenderMode==GL_FEEDBACK) {
1156 USE(_swrast_feedback_triangle);
1157 }
1158 else {
1159 /* GL_SELECT mode */
1160 USE(_swrast_select_triangle);
1161 }
1162 }