fix bug in GL_MIRRORED_REPEAT_ARB (Ian Romanick)
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /* $Id: s_triangle.c,v 1.62 2002/09/23 16:37:15 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * When the device driver doesn't implement triangle rasterization it
30 * can hook in _swrast_Triangle, which eventually calls one of these
31 * functions to draw triangles.
32 */
33
34 #include "glheader.h"
35 #include "context.h"
36 #include "colormac.h"
37 #include "macros.h"
38 #include "mem.h"
39 #include "mmath.h"
40 #include "texformat.h"
41 #include "teximage.h"
42 #include "texstate.h"
43
44 #include "s_aatriangle.h"
45 #include "s_context.h"
46 #include "s_depth.h"
47 #include "s_feedback.h"
48 #include "s_span.h"
49 #include "s_triangle.h"
50
51
52 /*
53 * Just used for feedback mode.
54 */
55 GLboolean _mesa_cull_triangle( GLcontext *ctx,
56 const SWvertex *v0,
57 const SWvertex *v1,
58 const SWvertex *v2 )
59 {
60 GLfloat ex = v1->win[0] - v0->win[0];
61 GLfloat ey = v1->win[1] - v0->win[1];
62 GLfloat fx = v2->win[0] - v0->win[0];
63 GLfloat fy = v2->win[1] - v0->win[1];
64 GLfloat c = ex*fy-ey*fx;
65
66 if (c * SWRAST_CONTEXT(ctx)->_backface_sign > 0)
67 return 0;
68
69 return 1;
70 }
71
72
73
74 /*
75 * Render a flat-shaded color index triangle.
76 */
77 static void flat_ci_triangle( GLcontext *ctx,
78 const SWvertex *v0,
79 const SWvertex *v1,
80 const SWvertex *v2 )
81 {
82 #define INTERP_Z 1
83 #define INTERP_FOG 1
84
85 #define SETUP_CODE \
86 span.interpMask |= SPAN_INDEX; \
87 span.index = IntToFixed(v2->index); \
88 span.indexStep = 0;
89
90 #define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span);
91
92 #include "s_tritemp.h"
93 }
94
95
96
97 /*
98 * Render a smooth-shaded color index triangle.
99 */
100 static void smooth_ci_triangle( GLcontext *ctx,
101 const SWvertex *v0,
102 const SWvertex *v1,
103 const SWvertex *v2 )
104 {
105 #define INTERP_Z 1
106 #define INTERP_FOG 1
107 #define INTERP_INDEX 1
108
109 #define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span);
110
111 #include "s_tritemp.h"
112 }
113
114
115
116 /*
117 * Render a flat-shaded RGBA triangle.
118 */
119 static void flat_rgba_triangle( GLcontext *ctx,
120 const SWvertex *v0,
121 const SWvertex *v1,
122 const SWvertex *v2 )
123 {
124 #define INTERP_Z 1
125 #define INTERP_FOG 1
126 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
127
128 #define SETUP_CODE \
129 ASSERT(ctx->Texture._EnabledUnits == 0); \
130 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
131 span.interpMask |= SPAN_RGBA; \
132 span.red = ChanToFixed(v2->color[0]); \
133 span.green = ChanToFixed(v2->color[1]); \
134 span.blue = ChanToFixed(v2->color[2]); \
135 span.alpha = ChanToFixed(v2->color[3]); \
136 span.redStep = 0; \
137 span.greenStep = 0; \
138 span.blueStep = 0; \
139 span.alphaStep = 0;
140
141 #define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span);
142
143 #include "s_tritemp.h"
144 }
145
146
147
148 /*
149 * Render a smooth-shaded RGBA triangle.
150 */
151 static void smooth_rgba_triangle( GLcontext *ctx,
152 const SWvertex *v0,
153 const SWvertex *v1,
154 const SWvertex *v2 )
155 {
156
157 #define INTERP_Z 1
158 #define INTERP_FOG 1
159 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
160 #define INTERP_RGB 1
161 #define INTERP_ALPHA 1
162
163 #define SETUP_CODE \
164 { \
165 /* texturing must be off */ \
166 ASSERT(ctx->Texture._EnabledUnits == 0); \
167 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
168 }
169
170 #define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span);
171
172 #include "s_tritemp.h"
173
174 }
175
176
177 /*
178 * Render an RGB, GL_DECAL, textured triangle.
179 * Interpolate S,T only w/out mipmapping or perspective correction.
180 *
181 * No fog.
182 */
183 static void simple_textured_triangle( GLcontext *ctx,
184 const SWvertex *v0,
185 const SWvertex *v1,
186 const SWvertex *v2 )
187 {
188 #define INTERP_INT_TEX 1
189 #define S_SCALE twidth
190 #define T_SCALE theight
191
192 #define SETUP_CODE \
193 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
194 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
195 const GLint b = obj->BaseLevel; \
196 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
197 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
198 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \
199 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \
200 const GLint smask = obj->Image[b]->Width - 1; \
201 const GLint tmask = obj->Image[b]->Height - 1; \
202 if (!texture) { \
203 /* this shouldn't happen */ \
204 return; \
205 }
206
207 #define RENDER_SPAN( span ) \
208 GLuint i; \
209 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
210 span.intTex[1] -= FIXED_HALF; \
211 for (i = 0; i < span.end; i++) { \
212 GLint s = FixedToInt(span.intTex[0]) & smask; \
213 GLint t = FixedToInt(span.intTex[1]) & tmask; \
214 GLint pos = (t << twidth_log2) + s; \
215 pos = pos + pos + pos; /* multiply by 3 */ \
216 span.array->rgb[i][RCOMP] = texture[pos]; \
217 span.array->rgb[i][GCOMP] = texture[pos+1]; \
218 span.array->rgb[i][BCOMP] = texture[pos+2]; \
219 span.intTex[0] += span.intTexStep[0]; \
220 span.intTex[1] += span.intTexStep[1]; \
221 } \
222 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
223 (CONST GLchan (*)[3]) span.array->rgb,\
224 NULL );
225
226 #include "s_tritemp.h"
227 }
228
229
230 /*
231 * Render an RGB, GL_DECAL, textured triangle.
232 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
233 * perspective correction.
234 *
235 * No fog.
236 */
237 static void simple_z_textured_triangle( GLcontext *ctx,
238 const SWvertex *v0,
239 const SWvertex *v1,
240 const SWvertex *v2 )
241 {
242 #define INTERP_Z 1
243 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
244 #define INTERP_INT_TEX 1
245 #define S_SCALE twidth
246 #define T_SCALE theight
247
248 #define SETUP_CODE \
249 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
250 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
251 const GLint b = obj->BaseLevel; \
252 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
253 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
254 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \
255 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \
256 const GLint smask = obj->Image[b]->Width - 1; \
257 const GLint tmask = obj->Image[b]->Height - 1; \
258 if (!texture) { \
259 /* this shouldn't happen */ \
260 return; \
261 }
262
263 #define RENDER_SPAN( span ) \
264 GLuint i; \
265 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
266 span.intTex[1] -= FIXED_HALF; \
267 for (i = 0; i < span.end; i++) { \
268 const GLdepth z = FixedToDepth(span.z); \
269 if (z < zRow[i]) { \
270 GLint s = FixedToInt(span.intTex[0]) & smask; \
271 GLint t = FixedToInt(span.intTex[1]) & tmask; \
272 GLint pos = (t << twidth_log2) + s; \
273 pos = pos + pos + pos; /* multiply by 3 */ \
274 span.array->rgb[i][RCOMP] = texture[pos]; \
275 span.array->rgb[i][GCOMP] = texture[pos+1]; \
276 span.array->rgb[i][BCOMP] = texture[pos+2]; \
277 zRow[i] = z; \
278 span.array->mask[i] = 1; \
279 } \
280 else { \
281 span.array->mask[i] = 0; \
282 } \
283 span.intTex[0] += span.intTexStep[0]; \
284 span.intTex[1] += span.intTexStep[1]; \
285 span.z += span.zStep; \
286 } \
287 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
288 (CONST GLchan (*)[3]) span.array->rgb,\
289 span.array->mask );
290
291 #include "s_tritemp.h"
292 }
293
294
295 #if CHAN_TYPE != GL_FLOAT
296
297 struct affine_info
298 {
299 GLenum filter;
300 GLenum format;
301 GLenum envmode;
302 GLint smask, tmask;
303 GLint twidth_log2;
304 const GLchan *texture;
305 GLfixed er, eg, eb, ea;
306 GLint tbytesline, tsize;
307 };
308
309
310 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
311 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
312 * texture env modes.
313 */
314 static INLINE void
315 affine_span(GLcontext *ctx, struct sw_span *span,
316 struct affine_info *info)
317 {
318 GLchan sample[4]; /* the filtered texture sample */
319
320 /* Instead of defining a function for each mode, a test is done
321 * between the outer and inner loops. This is to reduce code size
322 * and complexity. Observe that an optimizing compiler kills
323 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
324 */
325
326 #define NEAREST_RGB \
327 sample[RCOMP] = tex00[RCOMP]; \
328 sample[GCOMP] = tex00[GCOMP]; \
329 sample[BCOMP] = tex00[BCOMP]; \
330 sample[ACOMP] = CHAN_MAX
331
332 #define LINEAR_RGB \
333 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
334 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \
335 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
336 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \
337 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
338 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \
339 sample[ACOMP] = CHAN_MAX
340
341 #define NEAREST_RGBA COPY_CHAN4(sample, tex00)
342
343 #define LINEAR_RGBA \
344 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
345 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\
346 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
347 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\
348 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
349 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\
350 sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) + \
351 tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT
352
353 #define MODULATE \
354 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
355 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
356 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
357 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
358
359 #define DECAL \
360 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
361 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
362 >> (FIXED_SHIFT + 8); \
363 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
364 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
365 >> (FIXED_SHIFT + 8); \
366 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
367 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
368 >> (FIXED_SHIFT + 8); \
369 dest[ACOMP] = FixedToInt(span->alpha)
370
371 #define BLEND \
372 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
373 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
374 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
375 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
376 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
377 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
378 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
379
380 #define REPLACE COPY_CHAN4(dest, sample)
381
382 #define ADD \
383 { \
384 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
385 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
386 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
387 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
388 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
389 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
390 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
391 }
392
393 /* shortcuts */
394
395 #define NEAREST_RGB_REPLACE \
396 NEAREST_RGB; \
397 dest[0] = sample[0]; \
398 dest[1] = sample[1]; \
399 dest[2] = sample[2]; \
400 dest[3] = FixedToInt(span->alpha);
401
402 #define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
403
404 #define SPAN_NEAREST(DO_TEX,COMP) \
405 for (i = 0; i < span->end; i++) { \
406 /* Isn't it necessary to use FixedFloor below?? */ \
407 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
408 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
409 GLint pos = (t << info->twidth_log2) + s; \
410 const GLchan *tex00 = info->texture + COMP * pos; \
411 DO_TEX; \
412 span->red += span->redStep; \
413 span->green += span->greenStep; \
414 span->blue += span->blueStep; \
415 span->alpha += span->alphaStep; \
416 span->intTex[0] += span->intTexStep[0]; \
417 span->intTex[1] += span->intTexStep[1]; \
418 dest += 4; \
419 }
420
421 #define SPAN_LINEAR(DO_TEX,COMP) \
422 for (i = 0; i < span->end; i++) { \
423 /* Isn't it necessary to use FixedFloor below?? */ \
424 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
425 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
426 GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
427 GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
428 GLfixed si = FIXED_FRAC_MASK - sf; \
429 GLfixed ti = FIXED_FRAC_MASK - tf; \
430 GLint pos = (t << info->twidth_log2) + s; \
431 const GLchan *tex00 = info->texture + COMP * pos; \
432 const GLchan *tex10 = tex00 + info->tbytesline; \
433 const GLchan *tex01 = tex00 + COMP; \
434 const GLchan *tex11 = tex10 + COMP; \
435 (void) ti; \
436 (void) si; \
437 if (t == info->tmask) { \
438 tex10 -= info->tsize; \
439 tex11 -= info->tsize; \
440 } \
441 if (s == info->smask) { \
442 tex01 -= info->tbytesline; \
443 tex11 -= info->tbytesline; \
444 } \
445 DO_TEX; \
446 span->red += span->redStep; \
447 span->green += span->greenStep; \
448 span->blue += span->blueStep; \
449 span->alpha += span->alphaStep; \
450 span->intTex[0] += span->intTexStep[0]; \
451 span->intTex[1] += span->intTexStep[1]; \
452 dest += 4; \
453 }
454
455
456 GLuint i;
457 GLchan *dest = span->array->rgba[0];
458
459 span->intTex[0] -= FIXED_HALF;
460 span->intTex[1] -= FIXED_HALF;
461 switch (info->filter) {
462 case GL_NEAREST:
463 switch (info->format) {
464 case GL_RGB:
465 switch (info->envmode) {
466 case GL_MODULATE:
467 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
468 break;
469 case GL_DECAL:
470 case GL_REPLACE:
471 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
472 break;
473 case GL_BLEND:
474 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
475 break;
476 case GL_ADD:
477 SPAN_NEAREST(NEAREST_RGB;ADD,3);
478 break;
479 default:
480 abort();
481 }
482 break;
483 case GL_RGBA:
484 switch(info->envmode) {
485 case GL_MODULATE:
486 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
487 break;
488 case GL_DECAL:
489 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
490 break;
491 case GL_BLEND:
492 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
493 break;
494 case GL_ADD:
495 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
496 break;
497 case GL_REPLACE:
498 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
499 break;
500 default:
501 abort();
502 }
503 break;
504 }
505 break;
506
507 case GL_LINEAR:
508 span->intTex[0] -= FIXED_HALF;
509 span->intTex[1] -= FIXED_HALF;
510 switch (info->format) {
511 case GL_RGB:
512 switch (info->envmode) {
513 case GL_MODULATE:
514 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
515 break;
516 case GL_DECAL:
517 case GL_REPLACE:
518 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
519 break;
520 case GL_BLEND:
521 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
522 break;
523 case GL_ADD:
524 SPAN_LINEAR(LINEAR_RGB;ADD,3);
525 break;
526 default:
527 abort();
528 }
529 break;
530 case GL_RGBA:
531 switch (info->envmode) {
532 case GL_MODULATE:
533 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
534 break;
535 case GL_DECAL:
536 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
537 break;
538 case GL_BLEND:
539 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
540 break;
541 case GL_ADD:
542 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
543 break;
544 case GL_REPLACE:
545 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
546 break;
547 default:
548 abort();
549 } break;
550 }
551 break;
552 }
553 span->interpMask &= ~SPAN_RGBA;
554 ASSERT(span->arrayMask & SPAN_RGBA);
555 _mesa_write_rgba_span(ctx, span);
556
557 #undef SPAN_NEAREST
558 #undef SPAN_LINEAR
559 }
560
561
562
563 /*
564 * Render an RGB/RGBA textured triangle without perspective correction.
565 */
566 static void affine_textured_triangle( GLcontext *ctx,
567 const SWvertex *v0,
568 const SWvertex *v1,
569 const SWvertex *v2 )
570 {
571 #define INTERP_Z 1
572 #define INTERP_FOG 1
573 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
574 #define INTERP_RGB 1
575 #define INTERP_ALPHA 1
576 #define INTERP_INT_TEX 1
577 #define S_SCALE twidth
578 #define T_SCALE theight
579
580 #define SETUP_CODE \
581 struct affine_info info; \
582 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
583 struct gl_texture_object *obj = unit->Current2D; \
584 const GLint b = obj->BaseLevel; \
585 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
586 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
587 info.texture = (const GLchan *) obj->Image[b]->Data; \
588 info.twidth_log2 = obj->Image[b]->WidthLog2; \
589 info.smask = obj->Image[b]->Width - 1; \
590 info.tmask = obj->Image[b]->Height - 1; \
591 info.format = obj->Image[b]->Format; \
592 info.filter = obj->MinFilter; \
593 info.envmode = unit->EnvMode; \
594 span.arrayMask |= SPAN_RGBA; \
595 \
596 if (info.envmode == GL_BLEND) { \
597 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
598 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
599 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
600 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
601 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
602 } \
603 if (!info.texture) { \
604 /* this shouldn't happen */ \
605 return; \
606 } \
607 \
608 switch (info.format) { \
609 case GL_ALPHA: \
610 case GL_LUMINANCE: \
611 case GL_INTENSITY: \
612 info.tbytesline = obj->Image[b]->Width; \
613 break; \
614 case GL_LUMINANCE_ALPHA: \
615 info.tbytesline = obj->Image[b]->Width * 2; \
616 break; \
617 case GL_RGB: \
618 info.tbytesline = obj->Image[b]->Width * 3; \
619 break; \
620 case GL_RGBA: \
621 info.tbytesline = obj->Image[b]->Width * 4; \
622 break; \
623 default: \
624 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
625 return; \
626 } \
627 info.tsize = obj->Image[b]->Height * info.tbytesline;
628
629 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
630
631 #include "s_tritemp.h"
632
633 }
634
635
636
637 struct persp_info
638 {
639 GLenum filter;
640 GLenum format;
641 GLenum envmode;
642 GLint smask, tmask;
643 GLint twidth_log2;
644 const GLchan *texture;
645 GLfixed er, eg, eb, ea; /* texture env color */
646 GLint tbytesline, tsize;
647 };
648
649
650 static INLINE void
651 fast_persp_span(GLcontext *ctx, struct sw_span *span,
652 struct persp_info *info)
653 {
654 GLchan sample[4]; /* the filtered texture sample */
655
656 /* Instead of defining a function for each mode, a test is done
657 * between the outer and inner loops. This is to reduce code size
658 * and complexity. Observe that an optimizing compiler kills
659 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
660 */
661 #define SPAN_NEAREST(DO_TEX,COMP) \
662 for (i = 0; i < span->end; i++) { \
663 GLdouble invQ = tex_coord[2] ? \
664 (1.0 / tex_coord[2]) : 1.0; \
665 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
666 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
667 GLint s = IFLOOR(s_tmp) & info->smask; \
668 GLint t = IFLOOR(t_tmp) & info->tmask; \
669 GLint pos = (t << info->twidth_log2) + s; \
670 const GLchan *tex00 = info->texture + COMP * pos; \
671 DO_TEX; \
672 span->red += span->redStep; \
673 span->green += span->greenStep; \
674 span->blue += span->blueStep; \
675 span->alpha += span->alphaStep; \
676 tex_coord[0] += tex_step[0]; \
677 tex_coord[1] += tex_step[1]; \
678 tex_coord[2] += tex_step[2]; \
679 dest += 4; \
680 }
681
682 #define SPAN_LINEAR(DO_TEX,COMP) \
683 for (i = 0; i < span->end; i++) { \
684 GLdouble invQ = tex_coord[2] ? \
685 (1.0 / tex_coord[2]) : 1.0; \
686 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
687 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
688 GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
689 GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
690 GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
691 GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
692 GLfixed sf = s_fix & FIXED_FRAC_MASK; \
693 GLfixed tf = t_fix & FIXED_FRAC_MASK; \
694 GLfixed si = FIXED_FRAC_MASK - sf; \
695 GLfixed ti = FIXED_FRAC_MASK - tf; \
696 GLint pos = (t << info->twidth_log2) + s; \
697 const GLchan *tex00 = info->texture + COMP * pos; \
698 const GLchan *tex10 = tex00 + info->tbytesline; \
699 const GLchan *tex01 = tex00 + COMP; \
700 const GLchan *tex11 = tex10 + COMP; \
701 (void) ti; \
702 (void) si; \
703 if (t == info->tmask) { \
704 tex10 -= info->tsize; \
705 tex11 -= info->tsize; \
706 } \
707 if (s == info->smask) { \
708 tex01 -= info->tbytesline; \
709 tex11 -= info->tbytesline; \
710 } \
711 DO_TEX; \
712 span->red += span->redStep; \
713 span->green += span->greenStep; \
714 span->blue += span->blueStep; \
715 span->alpha += span->alphaStep; \
716 tex_coord[0] += tex_step[0]; \
717 tex_coord[1] += tex_step[1]; \
718 tex_coord[2] += tex_step[2]; \
719 dest += 4; \
720 }
721
722 GLuint i;
723 GLfloat tex_coord[3], tex_step[3];
724 GLchan *dest = span->array->rgba[0];
725
726 tex_coord[0] = span->tex[0][0] * (info->smask + 1);
727 tex_step[0] = span->texStepX[0][0] * (info->smask + 1);
728 tex_coord[1] = span->tex[0][1] * (info->tmask + 1);
729 tex_step[1] = span->texStepX[0][1] * (info->tmask + 1);
730 /* span->tex[0][2] only if 3D-texturing, here only 2D */
731 tex_coord[2] = span->tex[0][3];
732 tex_step[2] = span->texStepX[0][3];
733
734 switch (info->filter) {
735 case GL_NEAREST:
736 switch (info->format) {
737 case GL_RGB:
738 switch (info->envmode) {
739 case GL_MODULATE:
740 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
741 break;
742 case GL_DECAL:
743 case GL_REPLACE:
744 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
745 break;
746 case GL_BLEND:
747 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
748 break;
749 case GL_ADD:
750 SPAN_NEAREST(NEAREST_RGB;ADD,3);
751 break;
752 default:
753 abort();
754 }
755 break;
756 case GL_RGBA:
757 switch(info->envmode) {
758 case GL_MODULATE:
759 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
760 break;
761 case GL_DECAL:
762 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
763 break;
764 case GL_BLEND:
765 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
766 break;
767 case GL_ADD:
768 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
769 break;
770 case GL_REPLACE:
771 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
772 break;
773 default:
774 abort();
775 }
776 break;
777 }
778 break;
779
780 case GL_LINEAR:
781 switch (info->format) {
782 case GL_RGB:
783 switch (info->envmode) {
784 case GL_MODULATE:
785 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
786 break;
787 case GL_DECAL:
788 case GL_REPLACE:
789 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
790 break;
791 case GL_BLEND:
792 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
793 break;
794 case GL_ADD:
795 SPAN_LINEAR(LINEAR_RGB;ADD,3);
796 break;
797 default:
798 abort();
799 }
800 break;
801 case GL_RGBA:
802 switch (info->envmode) {
803 case GL_MODULATE:
804 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
805 break;
806 case GL_DECAL:
807 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
808 break;
809 case GL_BLEND:
810 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
811 break;
812 case GL_ADD:
813 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
814 break;
815 case GL_REPLACE:
816 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
817 break;
818 default:
819 abort();
820 }
821 break;
822 }
823 break;
824 }
825
826 ASSERT(span->arrayMask & SPAN_RGBA);
827 _mesa_write_rgba_span(ctx, span);
828
829 #undef SPAN_NEAREST
830 #undef SPAN_LINEAR
831 }
832
833
834 /*
835 * Render an perspective corrected RGB/RGBA textured triangle.
836 * The Q (aka V in Mesa) coordinate must be zero such that the divide
837 * by interpolated Q/W comes out right.
838 *
839 */
840 static void persp_textured_triangle( GLcontext *ctx,
841 const SWvertex *v0,
842 const SWvertex *v1,
843 const SWvertex *v2 )
844 {
845 #define INTERP_Z 1
846 #define INTERP_FOG 1
847 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
848 #define INTERP_RGB 1
849 #define INTERP_ALPHA 1
850 #define INTERP_TEX 1
851
852 #define SETUP_CODE \
853 struct persp_info info; \
854 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
855 const struct gl_texture_object *obj = unit->Current2D; \
856 const GLint b = obj->BaseLevel; \
857 info.texture = (const GLchan *) obj->Image[b]->Data; \
858 info.twidth_log2 = obj->Image[b]->WidthLog2; \
859 info.smask = obj->Image[b]->Width - 1; \
860 info.tmask = obj->Image[b]->Height - 1; \
861 info.format = obj->Image[b]->Format; \
862 info.filter = obj->MinFilter; \
863 info.envmode = unit->EnvMode; \
864 \
865 if (info.envmode == GL_BLEND) { \
866 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
867 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
868 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
869 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
870 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
871 } \
872 if (!info.texture) { \
873 /* this shouldn't happen */ \
874 return; \
875 } \
876 \
877 switch (info.format) { \
878 case GL_ALPHA: \
879 case GL_LUMINANCE: \
880 case GL_INTENSITY: \
881 info.tbytesline = obj->Image[b]->Width; \
882 break; \
883 case GL_LUMINANCE_ALPHA: \
884 info.tbytesline = obj->Image[b]->Width * 2; \
885 break; \
886 case GL_RGB: \
887 info.tbytesline = obj->Image[b]->Width * 3; \
888 break; \
889 case GL_RGBA: \
890 info.tbytesline = obj->Image[b]->Width * 4; \
891 break; \
892 default: \
893 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
894 return; \
895 } \
896 info.tsize = obj->Image[b]->Height * info.tbytesline;
897
898 #define RENDER_SPAN( span ) \
899 span.interpMask &= ~SPAN_RGBA; \
900 span.arrayMask |= SPAN_RGBA; \
901 fast_persp_span(ctx, &span, &info);
902
903 #include "s_tritemp.h"
904
905 }
906
907
908 #endif /* CHAN_BITS != GL_FLOAT */
909
910
911
912
913 /*
914 * Render a smooth-shaded, textured, RGBA triangle.
915 * Interpolate S,T,R with perspective correction, w/out mipmapping.
916 */
917 static void general_textured_triangle( GLcontext *ctx,
918 const SWvertex *v0,
919 const SWvertex *v1,
920 const SWvertex *v2 )
921 {
922 #define INTERP_Z 1
923 #define INTERP_FOG 1
924 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
925 #define INTERP_RGB 1
926 #define INTERP_SPEC 1
927 #define INTERP_ALPHA 1
928 #define INTERP_TEX 1
929
930 #define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span);
931
932 #include "s_tritemp.h"
933 }
934
935
936
937 /*
938 * This is the big one!
939 * Interpolate Z, RGB, Alpha, specular, fog, and N sets of texture coordinates.
940 * Yup, it's slow.
941 */
942 static void
943 multitextured_triangle( GLcontext *ctx,
944 const SWvertex *v0,
945 const SWvertex *v1,
946 const SWvertex *v2 )
947 {
948
949 #define INTERP_Z 1
950 #define INTERP_FOG 1
951 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
952 #define INTERP_RGB 1
953 #define INTERP_ALPHA 1
954 #define INTERP_SPEC 1
955 #define INTERP_MULTITEX 1
956
957 #define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span);
958
959 #include "s_tritemp.h"
960
961 }
962
963
964 static void occlusion_zless_triangle( GLcontext *ctx,
965 const SWvertex *v0,
966 const SWvertex *v1,
967 const SWvertex *v2 )
968 {
969 if (ctx->OcclusionResult) {
970 return;
971 }
972
973 #define DO_OCCLUSION_TEST
974 #define INTERP_Z 1
975 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
976
977 #define RENDER_SPAN( span ) \
978 GLuint i; \
979 for (i = 0; i < span.end; i++) { \
980 GLdepth z = FixedToDepth(span.z); \
981 if (z < zRow[i]) { \
982 ctx->OcclusionResult = GL_TRUE; \
983 return; \
984 } \
985 span.z += span.zStep; \
986 }
987
988 #include "s_tritemp.h"
989 }
990
991 static void nodraw_triangle( GLcontext *ctx,
992 const SWvertex *v0,
993 const SWvertex *v1,
994 const SWvertex *v2 )
995 {
996 (void) (ctx && v0 && v1 && v2);
997 }
998
999
1000 /*
1001 * This is used when separate specular color is enabled, but not
1002 * texturing. We add the specular color to the primary color,
1003 * draw the triangle, then restore the original primary color.
1004 * Inefficient, but seldom needed.
1005 */
1006 void _swrast_add_spec_terms_triangle( GLcontext *ctx,
1007 const SWvertex *v0,
1008 const SWvertex *v1,
1009 const SWvertex *v2 )
1010 {
1011 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
1012 SWvertex *ncv1 = (SWvertex *)v1;
1013 SWvertex *ncv2 = (SWvertex *)v2;
1014 #if CHAN_TYPE == GL_FLOAT
1015 GLfloat rSum, gSum, bSum;
1016 #else
1017 GLint rSum, gSum, bSum;
1018 #endif
1019 GLchan c[3][4];
1020 /* save original colors */
1021 COPY_CHAN4( c[0], ncv0->color );
1022 COPY_CHAN4( c[1], ncv1->color );
1023 COPY_CHAN4( c[2], ncv2->color );
1024 /* sum v0 */
1025 rSum = ncv0->color[0] + ncv0->specular[0];
1026 gSum = ncv0->color[1] + ncv0->specular[1];
1027 bSum = ncv0->color[2] + ncv0->specular[2];
1028 ncv0->color[0] = MIN2(rSum, CHAN_MAX);
1029 ncv0->color[1] = MIN2(gSum, CHAN_MAX);
1030 ncv0->color[2] = MIN2(bSum, CHAN_MAX);
1031 /* sum v1 */
1032 rSum = ncv1->color[0] + ncv1->specular[0];
1033 gSum = ncv1->color[1] + ncv1->specular[1];
1034 bSum = ncv1->color[2] + ncv1->specular[2];
1035 ncv1->color[0] = MIN2(rSum, CHAN_MAX);
1036 ncv1->color[1] = MIN2(gSum, CHAN_MAX);
1037 ncv1->color[2] = MIN2(bSum, CHAN_MAX);
1038 /* sum v2 */
1039 rSum = ncv2->color[0] + ncv2->specular[0];
1040 gSum = ncv2->color[1] + ncv2->specular[1];
1041 bSum = ncv2->color[2] + ncv2->specular[2];
1042 ncv2->color[0] = MIN2(rSum, CHAN_MAX);
1043 ncv2->color[1] = MIN2(gSum, CHAN_MAX);
1044 ncv2->color[2] = MIN2(bSum, CHAN_MAX);
1045 /* draw */
1046 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
1047 /* restore original colors */
1048 COPY_CHAN4( ncv0->color, c[0] );
1049 COPY_CHAN4( ncv1->color, c[1] );
1050 COPY_CHAN4( ncv2->color, c[2] );
1051 }
1052
1053
1054
1055 #ifdef DEBUG
1056
1057 /* record the current triangle function name */
1058 const char *_mesa_triFuncName = NULL;
1059
1060 #define USE(triFunc) \
1061 do { \
1062 _mesa_triFuncName = #triFunc; \
1063 /*printf("%s\n", _mesa_triFuncName);*/ \
1064 swrast->Triangle = triFunc; \
1065 } while (0)
1066
1067 #else
1068
1069 #define USE(triFunc) swrast->Triangle = triFunc;
1070
1071 #endif
1072
1073
1074
1075
1076 /*
1077 * Determine which triangle rendering function to use given the current
1078 * rendering context.
1079 *
1080 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1081 * remove tests to this code.
1082 */
1083 void
1084 _swrast_choose_triangle( GLcontext *ctx )
1085 {
1086 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1087 const GLboolean rgbmode = ctx->Visual.rgbMode;
1088
1089 if (ctx->Polygon.CullFlag &&
1090 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1091 USE(nodraw_triangle);
1092 return;
1093 }
1094
1095 if (ctx->RenderMode==GL_RENDER) {
1096
1097 if (ctx->Polygon.SmoothFlag) {
1098 _mesa_set_aa_triangle_function(ctx);
1099 ASSERT(swrast->Triangle);
1100 return;
1101 }
1102
1103 if (ctx->Depth.OcclusionTest &&
1104 ctx->Depth.Test &&
1105 ctx->Depth.Mask == GL_FALSE &&
1106 ctx->Depth.Func == GL_LESS &&
1107 !ctx->Stencil.Enabled) {
1108 if ((rgbmode &&
1109 ctx->Color.ColorMask[0] == 0 &&
1110 ctx->Color.ColorMask[1] == 0 &&
1111 ctx->Color.ColorMask[2] == 0 &&
1112 ctx->Color.ColorMask[3] == 0)
1113 ||
1114 (!rgbmode && ctx->Color.IndexMask == 0)) {
1115 USE(occlusion_zless_triangle);
1116 return;
1117 }
1118 }
1119
1120 if (ctx->Texture._EnabledUnits) {
1121 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1122 const struct gl_texture_object *texObj2D;
1123 const struct gl_texture_image *texImg;
1124 GLenum minFilter, magFilter, envMode;
1125 GLint format;
1126 texObj2D = ctx->Texture.Unit[0].Current2D;
1127 texImg = texObj2D ? texObj2D->Image[texObj2D->BaseLevel] : NULL;
1128 format = texImg ? texImg->TexFormat->MesaFormat : -1;
1129 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1130 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1131 envMode = ctx->Texture.Unit[0].EnvMode;
1132
1133 /* First see if we can used an optimized 2-D texture function */
1134 if (ctx->Texture._EnabledUnits == 1
1135 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1136 && texObj2D->WrapS==GL_REPEAT
1137 && texObj2D->WrapT==GL_REPEAT
1138 && texImg->Border==0
1139 && texImg->Width == texImg->RowStride
1140 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1141 && minFilter == magFilter
1142 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1143 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) {
1144 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1145 if (minFilter == GL_NEAREST
1146 && format == MESA_FORMAT_RGB
1147 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1148 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1149 && ctx->Depth.Func == GL_LESS
1150 && ctx->Depth.Mask == GL_TRUE)
1151 || swrast->_RasterMask == TEXTURE_BIT)
1152 && ctx->Polygon.StippleFlag == GL_FALSE) {
1153 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1154 USE(simple_z_textured_triangle);
1155 }
1156 else {
1157 USE(simple_textured_triangle);
1158 }
1159 }
1160 else {
1161 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1162 USE(general_textured_triangle);
1163 #else
1164 USE(affine_textured_triangle);
1165 #endif
1166 }
1167 }
1168 else {
1169 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1170 USE(general_textured_triangle);
1171 #else
1172 USE(persp_textured_triangle);
1173 #endif
1174 }
1175 }
1176 else {
1177 /* general case textured triangles */
1178 if (ctx->Texture._EnabledUnits > 1) {
1179 USE(multitextured_triangle);
1180 }
1181 else {
1182 USE(general_textured_triangle);
1183 }
1184 }
1185 }
1186 else {
1187 ASSERT(!ctx->Texture._EnabledUnits);
1188 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1189 /* smooth shaded, no texturing, stippled or some raster ops */
1190 if (rgbmode) {
1191 USE(smooth_rgba_triangle);
1192 }
1193 else {
1194 USE(smooth_ci_triangle);
1195 }
1196 }
1197 else {
1198 /* flat shaded, no texturing, stippled or some raster ops */
1199 if (rgbmode) {
1200 USE(flat_rgba_triangle);
1201 }
1202 else {
1203 USE(flat_ci_triangle);
1204 }
1205 }
1206 }
1207 }
1208 else if (ctx->RenderMode==GL_FEEDBACK) {
1209 USE(_mesa_feedback_triangle);
1210 }
1211 else {
1212 /* GL_SELECT mode */
1213 USE(_mesa_select_triangle);
1214 }
1215 }