Consolidate _swrast_write_texture_span() into _swrast_write_rgba_span().
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "glheader.h"
33 #include "context.h"
34 #include "colormac.h"
35 #include "imports.h"
36 #include "macros.h"
37 #include "texformat.h"
38 #include "teximage.h"
39 #include "texstate.h"
40
41 #include "s_aatriangle.h"
42 #include "s_context.h"
43 #include "s_depth.h"
44 #include "s_feedback.h"
45 #include "s_span.h"
46 #include "s_triangle.h"
47
48
49 /*
50 * Just used for feedback mode.
51 */
52 GLboolean
53 _swrast_culltriangle( GLcontext *ctx,
54 const SWvertex *v0,
55 const SWvertex *v1,
56 const SWvertex *v2 )
57 {
58 GLfloat ex = v1->win[0] - v0->win[0];
59 GLfloat ey = v1->win[1] - v0->win[1];
60 GLfloat fx = v2->win[0] - v0->win[0];
61 GLfloat fy = v2->win[1] - v0->win[1];
62 GLfloat c = ex*fy-ey*fx;
63
64 if (c * SWRAST_CONTEXT(ctx)->_BackfaceSign > 0)
65 return 0;
66
67 return 1;
68 }
69
70
71
72 /*
73 * Render a flat-shaded color index triangle.
74 */
75 #define NAME flat_ci_triangle
76 #define INTERP_Z 1
77 #define INTERP_FOG 1
78 #define SETUP_CODE \
79 span.interpMask |= SPAN_INDEX; \
80 span.index = FloatToFixed(v2->index);\
81 span.indexStep = 0;
82 #define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span);
83 #include "s_tritemp.h"
84
85
86
87 /*
88 * Render a smooth-shaded color index triangle.
89 */
90 #define NAME smooth_ci_triangle
91 #define INTERP_Z 1
92 #define INTERP_FOG 1
93 #define INTERP_INDEX 1
94 #define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span);
95 #include "s_tritemp.h"
96
97
98
99 /*
100 * Render a flat-shaded RGBA triangle.
101 */
102 #define NAME flat_rgba_triangle
103 #define INTERP_Z 1
104 #define INTERP_FOG 1
105 #define SETUP_CODE \
106 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
107 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
108 span.interpMask |= SPAN_RGBA; \
109 span.red = ChanToFixed(v2->color[0]); \
110 span.green = ChanToFixed(v2->color[1]); \
111 span.blue = ChanToFixed(v2->color[2]); \
112 span.alpha = ChanToFixed(v2->color[3]); \
113 span.redStep = 0; \
114 span.greenStep = 0; \
115 span.blueStep = 0; \
116 span.alphaStep = 0;
117 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
118 #include "s_tritemp.h"
119
120
121
122 /*
123 * Render a smooth-shaded RGBA triangle.
124 */
125 #define NAME smooth_rgba_triangle
126 #define INTERP_Z 1
127 #define INTERP_FOG 1
128 #define INTERP_RGB 1
129 #define INTERP_ALPHA 1
130 #define SETUP_CODE \
131 { \
132 /* texturing must be off */ \
133 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
134 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
135 }
136 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
137 #include "s_tritemp.h"
138
139
140
141 /*
142 * Render an RGB, GL_DECAL, textured triangle.
143 * Interpolate S,T only w/out mipmapping or perspective correction.
144 *
145 * No fog.
146 */
147 #define NAME simple_textured_triangle
148 #define INTERP_INT_TEX 1
149 #define S_SCALE twidth
150 #define T_SCALE theight
151
152 #define SETUP_CODE \
153 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
154 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
155 const GLint b = obj->BaseLevel; \
156 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
157 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
158 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
159 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
160 const GLint smask = obj->Image[0][b]->Width - 1; \
161 const GLint tmask = obj->Image[0][b]->Height - 1; \
162 if (!texture) { \
163 /* this shouldn't happen */ \
164 return; \
165 }
166
167 #define RENDER_SPAN( span ) \
168 GLuint i; \
169 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
170 span.intTex[1] -= FIXED_HALF; \
171 for (i = 0; i < span.end; i++) { \
172 GLint s = FixedToInt(span.intTex[0]) & smask; \
173 GLint t = FixedToInt(span.intTex[1]) & tmask; \
174 GLint pos = (t << twidth_log2) + s; \
175 pos = pos + pos + pos; /* multiply by 3 */ \
176 span.array->rgb[i][RCOMP] = texture[pos]; \
177 span.array->rgb[i][GCOMP] = texture[pos+1]; \
178 span.array->rgb[i][BCOMP] = texture[pos+2]; \
179 span.intTex[0] += span.intTexStep[0]; \
180 span.intTex[1] += span.intTexStep[1]; \
181 } \
182 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
183 (CONST GLchan (*)[3]) span.array->rgb,\
184 NULL );
185 #include "s_tritemp.h"
186
187
188
189 /*
190 * Render an RGB, GL_DECAL, textured triangle.
191 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
192 * perspective correction.
193 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
194 *
195 * No fog.
196 */
197 #define NAME simple_z_textured_triangle
198 #define INTERP_Z 1
199 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
200 #define INTERP_INT_TEX 1
201 #define S_SCALE twidth
202 #define T_SCALE theight
203
204 #define SETUP_CODE \
205 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
206 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
207 const GLint b = obj->BaseLevel; \
208 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
209 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
210 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
211 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
212 const GLint smask = obj->Image[0][b]->Width - 1; \
213 const GLint tmask = obj->Image[0][b]->Height - 1; \
214 if (!texture) { \
215 /* this shouldn't happen */ \
216 return; \
217 }
218
219 #define RENDER_SPAN( span ) \
220 GLuint i; \
221 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
222 span.intTex[1] -= FIXED_HALF; \
223 for (i = 0; i < span.end; i++) { \
224 const GLdepth z = FixedToDepth(span.z); \
225 if (z < zRow[i]) { \
226 GLint s = FixedToInt(span.intTex[0]) & smask; \
227 GLint t = FixedToInt(span.intTex[1]) & tmask; \
228 GLint pos = (t << twidth_log2) + s; \
229 pos = pos + pos + pos; /* multiply by 3 */ \
230 span.array->rgb[i][RCOMP] = texture[pos]; \
231 span.array->rgb[i][GCOMP] = texture[pos+1]; \
232 span.array->rgb[i][BCOMP] = texture[pos+2]; \
233 zRow[i] = z; \
234 span.array->mask[i] = 1; \
235 } \
236 else { \
237 span.array->mask[i] = 0; \
238 } \
239 span.intTex[0] += span.intTexStep[0]; \
240 span.intTex[1] += span.intTexStep[1]; \
241 span.z += span.zStep; \
242 } \
243 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
244 (CONST GLchan (*)[3]) span.array->rgb,\
245 span.array->mask );
246 #include "s_tritemp.h"
247
248
249
250 #if CHAN_TYPE != GL_FLOAT
251
252 struct affine_info
253 {
254 GLenum filter;
255 GLenum format;
256 GLenum envmode;
257 GLint smask, tmask;
258 GLint twidth_log2;
259 const GLchan *texture;
260 GLfixed er, eg, eb, ea;
261 GLint tbytesline, tsize;
262 };
263
264
265 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
266 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
267 * texture env modes.
268 */
269 static INLINE void
270 affine_span(GLcontext *ctx, struct sw_span *span,
271 struct affine_info *info)
272 {
273 GLchan sample[4]; /* the filtered texture sample */
274
275 /* Instead of defining a function for each mode, a test is done
276 * between the outer and inner loops. This is to reduce code size
277 * and complexity. Observe that an optimizing compiler kills
278 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
279 */
280
281 #define NEAREST_RGB \
282 sample[RCOMP] = tex00[RCOMP]; \
283 sample[GCOMP] = tex00[GCOMP]; \
284 sample[BCOMP] = tex00[BCOMP]; \
285 sample[ACOMP] = CHAN_MAX
286
287 #define LINEAR_RGB \
288 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
289 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \
290 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
291 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \
292 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
293 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \
294 sample[ACOMP] = CHAN_MAX
295
296 #define NEAREST_RGBA COPY_CHAN4(sample, tex00)
297
298 #define LINEAR_RGBA \
299 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
300 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\
301 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
302 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\
303 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
304 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\
305 sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) + \
306 tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT
307
308 #define MODULATE \
309 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
310 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
311 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
312 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
313
314 #define DECAL \
315 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
316 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
317 >> (FIXED_SHIFT + 8); \
318 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
319 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
320 >> (FIXED_SHIFT + 8); \
321 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
322 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
323 >> (FIXED_SHIFT + 8); \
324 dest[ACOMP] = FixedToInt(span->alpha)
325
326 #define BLEND \
327 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
328 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
329 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
330 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
331 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
332 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
333 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
334
335 #define REPLACE COPY_CHAN4(dest, sample)
336
337 #define ADD \
338 { \
339 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
340 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
341 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
342 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
343 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
344 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
345 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
346 }
347
348 /* shortcuts */
349
350 #define NEAREST_RGB_REPLACE \
351 NEAREST_RGB; \
352 dest[0] = sample[0]; \
353 dest[1] = sample[1]; \
354 dest[2] = sample[2]; \
355 dest[3] = FixedToInt(span->alpha);
356
357 #define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
358
359 #define SPAN_NEAREST(DO_TEX,COMP) \
360 for (i = 0; i < span->end; i++) { \
361 /* Isn't it necessary to use FixedFloor below?? */ \
362 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
363 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
364 GLint pos = (t << info->twidth_log2) + s; \
365 const GLchan *tex00 = info->texture + COMP * pos; \
366 DO_TEX; \
367 span->red += span->redStep; \
368 span->green += span->greenStep; \
369 span->blue += span->blueStep; \
370 span->alpha += span->alphaStep; \
371 span->intTex[0] += span->intTexStep[0]; \
372 span->intTex[1] += span->intTexStep[1]; \
373 dest += 4; \
374 }
375
376 #define SPAN_LINEAR(DO_TEX,COMP) \
377 for (i = 0; i < span->end; i++) { \
378 /* Isn't it necessary to use FixedFloor below?? */ \
379 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
380 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
381 GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
382 GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
383 GLfixed si = FIXED_FRAC_MASK - sf; \
384 GLfixed ti = FIXED_FRAC_MASK - tf; \
385 GLint pos = (t << info->twidth_log2) + s; \
386 const GLchan *tex00 = info->texture + COMP * pos; \
387 const GLchan *tex10 = tex00 + info->tbytesline; \
388 const GLchan *tex01 = tex00 + COMP; \
389 const GLchan *tex11 = tex10 + COMP; \
390 (void) ti; \
391 (void) si; \
392 if (t == info->tmask) { \
393 tex10 -= info->tsize; \
394 tex11 -= info->tsize; \
395 } \
396 if (s == info->smask) { \
397 tex01 -= info->tbytesline; \
398 tex11 -= info->tbytesline; \
399 } \
400 DO_TEX; \
401 span->red += span->redStep; \
402 span->green += span->greenStep; \
403 span->blue += span->blueStep; \
404 span->alpha += span->alphaStep; \
405 span->intTex[0] += span->intTexStep[0]; \
406 span->intTex[1] += span->intTexStep[1]; \
407 dest += 4; \
408 }
409
410
411 GLuint i;
412 GLchan *dest = span->array->rgba[0];
413
414 span->intTex[0] -= FIXED_HALF;
415 span->intTex[1] -= FIXED_HALF;
416 switch (info->filter) {
417 case GL_NEAREST:
418 switch (info->format) {
419 case GL_RGB:
420 switch (info->envmode) {
421 case GL_MODULATE:
422 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
423 break;
424 case GL_DECAL:
425 case GL_REPLACE:
426 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
427 break;
428 case GL_BLEND:
429 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
430 break;
431 case GL_ADD:
432 SPAN_NEAREST(NEAREST_RGB;ADD,3);
433 break;
434 default:
435 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
436 return;
437 }
438 break;
439 case GL_RGBA:
440 switch(info->envmode) {
441 case GL_MODULATE:
442 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
443 break;
444 case GL_DECAL:
445 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
446 break;
447 case GL_BLEND:
448 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
449 break;
450 case GL_ADD:
451 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
452 break;
453 case GL_REPLACE:
454 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
455 break;
456 default:
457 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
458 return;
459 }
460 break;
461 }
462 break;
463
464 case GL_LINEAR:
465 span->intTex[0] -= FIXED_HALF;
466 span->intTex[1] -= FIXED_HALF;
467 switch (info->format) {
468 case GL_RGB:
469 switch (info->envmode) {
470 case GL_MODULATE:
471 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
472 break;
473 case GL_DECAL:
474 case GL_REPLACE:
475 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
476 break;
477 case GL_BLEND:
478 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
479 break;
480 case GL_ADD:
481 SPAN_LINEAR(LINEAR_RGB;ADD,3);
482 break;
483 default:
484 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
485 return;
486 }
487 break;
488 case GL_RGBA:
489 switch (info->envmode) {
490 case GL_MODULATE:
491 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
492 break;
493 case GL_DECAL:
494 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
495 break;
496 case GL_BLEND:
497 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
498 break;
499 case GL_ADD:
500 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
501 break;
502 case GL_REPLACE:
503 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
504 break;
505 default:
506 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
507 return;
508 }
509 break;
510 }
511 break;
512 }
513 span->interpMask &= ~SPAN_RGBA;
514 ASSERT(span->arrayMask & SPAN_RGBA);
515 _swrast_write_rgba_span(ctx, span);
516
517 #undef SPAN_NEAREST
518 #undef SPAN_LINEAR
519 }
520
521
522
523 /*
524 * Render an RGB/RGBA textured triangle without perspective correction.
525 */
526 #define NAME affine_textured_triangle
527 #define INTERP_Z 1
528 #define INTERP_FOG 1
529 #define INTERP_RGB 1
530 #define INTERP_ALPHA 1
531 #define INTERP_INT_TEX 1
532 #define S_SCALE twidth
533 #define T_SCALE theight
534
535 #define SETUP_CODE \
536 struct affine_info info; \
537 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
538 struct gl_texture_object *obj = unit->Current2D; \
539 const GLint b = obj->BaseLevel; \
540 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
541 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
542 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
543 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
544 info.smask = obj->Image[0][b]->Width - 1; \
545 info.tmask = obj->Image[0][b]->Height - 1; \
546 info.format = obj->Image[0][b]->Format; \
547 info.filter = obj->MinFilter; \
548 info.envmode = unit->EnvMode; \
549 span.arrayMask |= SPAN_RGBA; \
550 \
551 if (info.envmode == GL_BLEND) { \
552 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
553 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
554 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
555 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
556 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
557 } \
558 if (!info.texture) { \
559 /* this shouldn't happen */ \
560 return; \
561 } \
562 \
563 switch (info.format) { \
564 case GL_ALPHA: \
565 case GL_LUMINANCE: \
566 case GL_INTENSITY: \
567 info.tbytesline = obj->Image[0][b]->Width; \
568 break; \
569 case GL_LUMINANCE_ALPHA: \
570 info.tbytesline = obj->Image[0][b]->Width * 2; \
571 break; \
572 case GL_RGB: \
573 info.tbytesline = obj->Image[0][b]->Width * 3; \
574 break; \
575 case GL_RGBA: \
576 info.tbytesline = obj->Image[0][b]->Width * 4; \
577 break; \
578 default: \
579 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
580 return; \
581 } \
582 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
583
584 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
585
586 #include "s_tritemp.h"
587
588
589
590 struct persp_info
591 {
592 GLenum filter;
593 GLenum format;
594 GLenum envmode;
595 GLint smask, tmask;
596 GLint twidth_log2;
597 const GLchan *texture;
598 GLfixed er, eg, eb, ea; /* texture env color */
599 GLint tbytesline, tsize;
600 };
601
602
603 static INLINE void
604 fast_persp_span(GLcontext *ctx, struct sw_span *span,
605 struct persp_info *info)
606 {
607 GLchan sample[4]; /* the filtered texture sample */
608
609 /* Instead of defining a function for each mode, a test is done
610 * between the outer and inner loops. This is to reduce code size
611 * and complexity. Observe that an optimizing compiler kills
612 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
613 */
614 #define SPAN_NEAREST(DO_TEX,COMP) \
615 for (i = 0; i < span->end; i++) { \
616 GLdouble invQ = tex_coord[2] ? \
617 (1.0 / tex_coord[2]) : 1.0; \
618 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
619 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
620 GLint s = IFLOOR(s_tmp) & info->smask; \
621 GLint t = IFLOOR(t_tmp) & info->tmask; \
622 GLint pos = (t << info->twidth_log2) + s; \
623 const GLchan *tex00 = info->texture + COMP * pos; \
624 DO_TEX; \
625 span->red += span->redStep; \
626 span->green += span->greenStep; \
627 span->blue += span->blueStep; \
628 span->alpha += span->alphaStep; \
629 tex_coord[0] += tex_step[0]; \
630 tex_coord[1] += tex_step[1]; \
631 tex_coord[2] += tex_step[2]; \
632 dest += 4; \
633 }
634
635 #define SPAN_LINEAR(DO_TEX,COMP) \
636 for (i = 0; i < span->end; i++) { \
637 GLdouble invQ = tex_coord[2] ? \
638 (1.0 / tex_coord[2]) : 1.0; \
639 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
640 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
641 GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
642 GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
643 GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
644 GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
645 GLfixed sf = s_fix & FIXED_FRAC_MASK; \
646 GLfixed tf = t_fix & FIXED_FRAC_MASK; \
647 GLfixed si = FIXED_FRAC_MASK - sf; \
648 GLfixed ti = FIXED_FRAC_MASK - tf; \
649 GLint pos = (t << info->twidth_log2) + s; \
650 const GLchan *tex00 = info->texture + COMP * pos; \
651 const GLchan *tex10 = tex00 + info->tbytesline; \
652 const GLchan *tex01 = tex00 + COMP; \
653 const GLchan *tex11 = tex10 + COMP; \
654 (void) ti; \
655 (void) si; \
656 if (t == info->tmask) { \
657 tex10 -= info->tsize; \
658 tex11 -= info->tsize; \
659 } \
660 if (s == info->smask) { \
661 tex01 -= info->tbytesline; \
662 tex11 -= info->tbytesline; \
663 } \
664 DO_TEX; \
665 span->red += span->redStep; \
666 span->green += span->greenStep; \
667 span->blue += span->blueStep; \
668 span->alpha += span->alphaStep; \
669 tex_coord[0] += tex_step[0]; \
670 tex_coord[1] += tex_step[1]; \
671 tex_coord[2] += tex_step[2]; \
672 dest += 4; \
673 }
674
675 GLuint i;
676 GLfloat tex_coord[3], tex_step[3];
677 GLchan *dest = span->array->rgba[0];
678
679 const GLuint savedTexEnable = ctx->Texture._EnabledUnits;
680 ctx->Texture._EnabledUnits = 0;
681
682 tex_coord[0] = span->tex[0][0] * (info->smask + 1);
683 tex_step[0] = span->texStepX[0][0] * (info->smask + 1);
684 tex_coord[1] = span->tex[0][1] * (info->tmask + 1);
685 tex_step[1] = span->texStepX[0][1] * (info->tmask + 1);
686 /* span->tex[0][2] only if 3D-texturing, here only 2D */
687 tex_coord[2] = span->tex[0][3];
688 tex_step[2] = span->texStepX[0][3];
689
690 switch (info->filter) {
691 case GL_NEAREST:
692 switch (info->format) {
693 case GL_RGB:
694 switch (info->envmode) {
695 case GL_MODULATE:
696 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
697 break;
698 case GL_DECAL:
699 case GL_REPLACE:
700 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
701 break;
702 case GL_BLEND:
703 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
704 break;
705 case GL_ADD:
706 SPAN_NEAREST(NEAREST_RGB;ADD,3);
707 break;
708 default:
709 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
710 return;
711 }
712 break;
713 case GL_RGBA:
714 switch(info->envmode) {
715 case GL_MODULATE:
716 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
717 break;
718 case GL_DECAL:
719 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
720 break;
721 case GL_BLEND:
722 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
723 break;
724 case GL_ADD:
725 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
726 break;
727 case GL_REPLACE:
728 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
729 break;
730 default:
731 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
732 return;
733 }
734 break;
735 }
736 break;
737
738 case GL_LINEAR:
739 switch (info->format) {
740 case GL_RGB:
741 switch (info->envmode) {
742 case GL_MODULATE:
743 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
744 break;
745 case GL_DECAL:
746 case GL_REPLACE:
747 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
748 break;
749 case GL_BLEND:
750 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
751 break;
752 case GL_ADD:
753 SPAN_LINEAR(LINEAR_RGB;ADD,3);
754 break;
755 default:
756 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
757 return;
758 }
759 break;
760 case GL_RGBA:
761 switch (info->envmode) {
762 case GL_MODULATE:
763 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
764 break;
765 case GL_DECAL:
766 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
767 break;
768 case GL_BLEND:
769 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
770 break;
771 case GL_ADD:
772 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
773 break;
774 case GL_REPLACE:
775 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
776 break;
777 default:
778 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
779 return;
780 }
781 break;
782 }
783 break;
784 }
785
786 ASSERT(span->arrayMask & SPAN_RGBA);
787 _swrast_write_rgba_span(ctx, span);
788
789 #undef SPAN_NEAREST
790 #undef SPAN_LINEAR
791
792 /* restore state */
793 ctx->Texture._EnabledUnits = savedTexEnable;
794 }
795
796
797 /*
798 * Render an perspective corrected RGB/RGBA textured triangle.
799 * The Q (aka V in Mesa) coordinate must be zero such that the divide
800 * by interpolated Q/W comes out right.
801 *
802 */
803 #define NAME persp_textured_triangle
804 #define INTERP_Z 1
805 #define INTERP_W 1
806 #define INTERP_FOG 1
807 #define INTERP_RGB 1
808 #define INTERP_ALPHA 1
809 #define INTERP_TEX 1
810
811 #define SETUP_CODE \
812 struct persp_info info; \
813 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
814 const struct gl_texture_object *obj = unit->Current2D; \
815 const GLint b = obj->BaseLevel; \
816 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
817 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
818 info.smask = obj->Image[0][b]->Width - 1; \
819 info.tmask = obj->Image[0][b]->Height - 1; \
820 info.format = obj->Image[0][b]->Format; \
821 info.filter = obj->MinFilter; \
822 info.envmode = unit->EnvMode; \
823 \
824 if (info.envmode == GL_BLEND) { \
825 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
826 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
827 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
828 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
829 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
830 } \
831 if (!info.texture) { \
832 /* this shouldn't happen */ \
833 return; \
834 } \
835 \
836 switch (info.format) { \
837 case GL_ALPHA: \
838 case GL_LUMINANCE: \
839 case GL_INTENSITY: \
840 info.tbytesline = obj->Image[0][b]->Width; \
841 break; \
842 case GL_LUMINANCE_ALPHA: \
843 info.tbytesline = obj->Image[0][b]->Width * 2; \
844 break; \
845 case GL_RGB: \
846 info.tbytesline = obj->Image[0][b]->Width * 3; \
847 break; \
848 case GL_RGBA: \
849 info.tbytesline = obj->Image[0][b]->Width * 4; \
850 break; \
851 default: \
852 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
853 return; \
854 } \
855 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
856
857 #define RENDER_SPAN( span ) \
858 span.interpMask &= ~SPAN_RGBA; \
859 span.arrayMask |= SPAN_RGBA; \
860 fast_persp_span(ctx, &span, &info);
861
862 #include "s_tritemp.h"
863
864
865 #endif /* CHAN_BITS != GL_FLOAT */
866
867
868
869
870 /*
871 * Render a smooth-shaded, textured, RGBA triangle.
872 * Interpolate S,T,R with perspective correction, w/out mipmapping.
873 */
874 #define NAME general_textured_triangle
875 #define INTERP_Z 1
876 #define INTERP_W 1
877 #define INTERP_FOG 1
878 #define INTERP_RGB 1
879 #define INTERP_SPEC 1
880 #define INTERP_ALPHA 1
881 #define INTERP_TEX 1
882 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
883 #include "s_tritemp.h"
884
885
886
887 /*
888 * This is the big one!
889 * Interpolate Z, RGB, Alpha, specular, fog, and N sets of texture coordinates.
890 * Yup, it's slow.
891 */
892 #define NAME multitextured_triangle
893 #define INTERP_Z 1
894 #define INTERP_W 1
895 #define INTERP_FOG 1
896 #define INTERP_RGB 1
897 #define INTERP_ALPHA 1
898 #define INTERP_SPEC 1
899 #define INTERP_MULTITEX 1
900 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
901 #include "s_tritemp.h"
902
903
904
905 /*
906 * Special tri function for occlusion testing
907 */
908 #define NAME occlusion_zless_triangle
909 #define INTERP_Z 1
910 #define SETUP_CODE \
911 ASSERT(ctx->Depth.Test); \
912 ASSERT(!ctx->Depth.Mask); \
913 ASSERT(ctx->Depth.Func == GL_LESS); \
914 if (ctx->OcclusionResult && !ctx->Occlusion.Active) { \
915 return; \
916 }
917 #define RENDER_SPAN( span ) \
918 if (ctx->Visual.depthBits <= 16) { \
919 GLuint i; \
920 const GLushort *zRow = (const GLushort *) \
921 _swrast_zbuffer_address(ctx, span.x, span.y); \
922 for (i = 0; i < span.end; i++) { \
923 GLdepth z = FixedToDepth(span.z); \
924 if (z < zRow[i]) { \
925 ctx->OcclusionResult = GL_TRUE; \
926 ctx->Occlusion.PassedCounter++; \
927 } \
928 span.z += span.zStep; \
929 } \
930 } \
931 else { \
932 GLuint i; \
933 const GLuint *zRow = (const GLuint *) \
934 _swrast_zbuffer_address(ctx, span.x, span.y); \
935 for (i = 0; i < span.end; i++) { \
936 if ((GLuint)span.z < zRow[i]) { \
937 ctx->OcclusionResult = GL_TRUE; \
938 ctx->Occlusion.PassedCounter++; \
939 } \
940 span.z += span.zStep; \
941 } \
942 }
943 #include "s_tritemp.h"
944
945
946
947 static void
948 nodraw_triangle( GLcontext *ctx,
949 const SWvertex *v0,
950 const SWvertex *v1,
951 const SWvertex *v2 )
952 {
953 (void) (ctx && v0 && v1 && v2);
954 }
955
956
957 /*
958 * This is used when separate specular color is enabled, but not
959 * texturing. We add the specular color to the primary color,
960 * draw the triangle, then restore the original primary color.
961 * Inefficient, but seldom needed.
962 */
963 void _swrast_add_spec_terms_triangle( GLcontext *ctx,
964 const SWvertex *v0,
965 const SWvertex *v1,
966 const SWvertex *v2 )
967 {
968 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
969 SWvertex *ncv1 = (SWvertex *)v1;
970 SWvertex *ncv2 = (SWvertex *)v2;
971 #if CHAN_TYPE == GL_FLOAT
972 GLfloat rSum, gSum, bSum;
973 #else
974 GLint rSum, gSum, bSum;
975 #endif
976 GLchan c[3][4];
977 /* save original colors */
978 COPY_CHAN4( c[0], ncv0->color );
979 COPY_CHAN4( c[1], ncv1->color );
980 COPY_CHAN4( c[2], ncv2->color );
981 /* sum v0 */
982 rSum = ncv0->color[0] + ncv0->specular[0];
983 gSum = ncv0->color[1] + ncv0->specular[1];
984 bSum = ncv0->color[2] + ncv0->specular[2];
985 ncv0->color[0] = MIN2(rSum, CHAN_MAX);
986 ncv0->color[1] = MIN2(gSum, CHAN_MAX);
987 ncv0->color[2] = MIN2(bSum, CHAN_MAX);
988 /* sum v1 */
989 rSum = ncv1->color[0] + ncv1->specular[0];
990 gSum = ncv1->color[1] + ncv1->specular[1];
991 bSum = ncv1->color[2] + ncv1->specular[2];
992 ncv1->color[0] = MIN2(rSum, CHAN_MAX);
993 ncv1->color[1] = MIN2(gSum, CHAN_MAX);
994 ncv1->color[2] = MIN2(bSum, CHAN_MAX);
995 /* sum v2 */
996 rSum = ncv2->color[0] + ncv2->specular[0];
997 gSum = ncv2->color[1] + ncv2->specular[1];
998 bSum = ncv2->color[2] + ncv2->specular[2];
999 ncv2->color[0] = MIN2(rSum, CHAN_MAX);
1000 ncv2->color[1] = MIN2(gSum, CHAN_MAX);
1001 ncv2->color[2] = MIN2(bSum, CHAN_MAX);
1002 /* draw */
1003 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
1004 /* restore original colors */
1005 COPY_CHAN4( ncv0->color, c[0] );
1006 COPY_CHAN4( ncv1->color, c[1] );
1007 COPY_CHAN4( ncv2->color, c[2] );
1008 }
1009
1010
1011
1012 #ifdef DEBUG
1013
1014 /* record the current triangle function name */
1015 const char *_mesa_triFuncName = NULL;
1016
1017 #define USE(triFunc) \
1018 do { \
1019 _mesa_triFuncName = #triFunc; \
1020 /*printf("%s\n", _mesa_triFuncName);*/ \
1021 swrast->Triangle = triFunc; \
1022 } while (0)
1023
1024 #else
1025
1026 #define USE(triFunc) swrast->Triangle = triFunc;
1027
1028 #endif
1029
1030
1031
1032
1033 /*
1034 * Determine which triangle rendering function to use given the current
1035 * rendering context.
1036 *
1037 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1038 * remove tests to this code.
1039 */
1040 void
1041 _swrast_choose_triangle( GLcontext *ctx )
1042 {
1043 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1044 const GLboolean rgbmode = ctx->Visual.rgbMode;
1045
1046 if (ctx->Polygon.CullFlag &&
1047 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1048 USE(nodraw_triangle);
1049 return;
1050 }
1051
1052 if (ctx->RenderMode==GL_RENDER) {
1053
1054 if (ctx->Polygon.SmoothFlag) {
1055 _swrast_set_aa_triangle_function(ctx);
1056 ASSERT(swrast->Triangle);
1057 return;
1058 }
1059
1060 /* special case for occlusion testing */
1061 if ((ctx->Depth.OcclusionTest || ctx->Occlusion.Active) &&
1062 ctx->Depth.Test &&
1063 ctx->Depth.Mask == GL_FALSE &&
1064 ctx->Depth.Func == GL_LESS &&
1065 !ctx->Stencil.Enabled) {
1066 if ((rgbmode &&
1067 ctx->Color.ColorMask[0] == 0 &&
1068 ctx->Color.ColorMask[1] == 0 &&
1069 ctx->Color.ColorMask[2] == 0 &&
1070 ctx->Color.ColorMask[3] == 0)
1071 ||
1072 (!rgbmode && ctx->Color.IndexMask == 0)) {
1073 USE(occlusion_zless_triangle);
1074 return;
1075 }
1076 }
1077
1078 if (ctx->Texture._EnabledCoordUnits || ctx->FragmentProgram._Enabled) {
1079 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1080 const struct gl_texture_object *texObj2D;
1081 const struct gl_texture_image *texImg;
1082 GLenum minFilter, magFilter, envMode;
1083 GLint format;
1084 texObj2D = ctx->Texture.Unit[0].Current2D;
1085 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1086 format = texImg ? texImg->TexFormat->MesaFormat : -1;
1087 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1088 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1089 envMode = ctx->Texture.Unit[0].EnvMode;
1090
1091 /* First see if we can use an optimized 2-D texture function */
1092 if (ctx->Texture._EnabledCoordUnits == 0x1
1093 && !ctx->FragmentProgram._Enabled
1094 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1095 && texObj2D->WrapS == GL_REPEAT
1096 && texObj2D->WrapT == GL_REPEAT
1097 && texObj2D->_IsPowerOfTwo
1098 && texImg->Border == 0
1099 && texImg->Width == texImg->RowStride
1100 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1101 && minFilter == magFilter
1102 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1103 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) {
1104 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1105 if (minFilter == GL_NEAREST
1106 && format == MESA_FORMAT_RGB
1107 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1108 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1109 && ctx->Depth.Func == GL_LESS
1110 && ctx->Depth.Mask == GL_TRUE)
1111 || swrast->_RasterMask == TEXTURE_BIT)
1112 && ctx->Polygon.StippleFlag == GL_FALSE
1113 && ctx->Visual.depthBits <= 16) {
1114 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1115 USE(simple_z_textured_triangle);
1116 }
1117 else {
1118 USE(simple_textured_triangle);
1119 }
1120 }
1121 else {
1122 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1123 USE(general_textured_triangle);
1124 #else
1125 USE(affine_textured_triangle);
1126 #endif
1127 }
1128 }
1129 else {
1130 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1131 USE(general_textured_triangle);
1132 #else
1133 USE(persp_textured_triangle);
1134 #endif
1135 }
1136 }
1137 else {
1138 /* general case textured triangles */
1139 if (ctx->Texture._EnabledCoordUnits > 1) {
1140 USE(multitextured_triangle);
1141 }
1142 else {
1143 USE(general_textured_triangle);
1144 }
1145 }
1146 }
1147 else {
1148 ASSERT(!ctx->Texture._EnabledCoordUnits);
1149 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1150 /* smooth shaded, no texturing, stippled or some raster ops */
1151 if (rgbmode) {
1152 USE(smooth_rgba_triangle);
1153 }
1154 else {
1155 USE(smooth_ci_triangle);
1156 }
1157 }
1158 else {
1159 /* flat shaded, no texturing, stippled or some raster ops */
1160 if (rgbmode) {
1161 USE(flat_rgba_triangle);
1162 }
1163 else {
1164 USE(flat_ci_triangle);
1165 }
1166 }
1167 }
1168 }
1169 else if (ctx->RenderMode==GL_FEEDBACK) {
1170 USE(_swrast_feedback_triangle);
1171 }
1172 else {
1173 /* GL_SELECT mode */
1174 USE(_swrast_select_triangle);
1175 }
1176 }