Merge branch 'master' into i915-unification
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "glheader.h"
33 #include "context.h"
34 #include "colormac.h"
35 #include "imports.h"
36 #include "macros.h"
37 #include "texformat.h"
38
39 #include "s_aatriangle.h"
40 #include "s_context.h"
41 #include "s_feedback.h"
42 #include "s_span.h"
43 #include "s_triangle.h"
44
45
46 /*
47 * Just used for feedback mode.
48 */
49 GLboolean
50 _swrast_culltriangle( GLcontext *ctx,
51 const SWvertex *v0,
52 const SWvertex *v1,
53 const SWvertex *v2 )
54 {
55 GLfloat ex = v1->win[0] - v0->win[0];
56 GLfloat ey = v1->win[1] - v0->win[1];
57 GLfloat fx = v2->win[0] - v0->win[0];
58 GLfloat fy = v2->win[1] - v0->win[1];
59 GLfloat c = ex*fy-ey*fx;
60
61 if (c * SWRAST_CONTEXT(ctx)->_BackfaceSign > 0)
62 return 0;
63
64 return 1;
65 }
66
67
68
69 /*
70 * Render a smooth or flat-shaded color index triangle.
71 */
72 #define NAME ci_triangle
73 #define INTERP_Z 1
74 #define INTERP_FOG 1
75 #define INTERP_INDEX 1
76 #define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span);
77 #include "s_tritemp.h"
78
79
80
81 /*
82 * Render a flat-shaded RGBA triangle.
83 */
84 #define NAME flat_rgba_triangle
85 #define INTERP_Z 1
86 #define INTERP_FOG 1
87 #define SETUP_CODE \
88 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
89 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
90 span.interpMask |= SPAN_RGBA; \
91 span.red = ChanToFixed(v2->color[0]); \
92 span.green = ChanToFixed(v2->color[1]); \
93 span.blue = ChanToFixed(v2->color[2]); \
94 span.alpha = ChanToFixed(v2->color[3]); \
95 span.redStep = 0; \
96 span.greenStep = 0; \
97 span.blueStep = 0; \
98 span.alphaStep = 0;
99 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
100 #include "s_tritemp.h"
101
102
103
104 /*
105 * Render a smooth-shaded RGBA triangle.
106 */
107 #define NAME smooth_rgba_triangle
108 #define INTERP_Z 1
109 #define INTERP_FOG 1
110 #define INTERP_RGB 1
111 #define INTERP_ALPHA 1
112 #define SETUP_CODE \
113 { \
114 /* texturing must be off */ \
115 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
116 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
117 }
118 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
119 #include "s_tritemp.h"
120
121
122
123 /*
124 * Render an RGB, GL_DECAL, textured triangle.
125 * Interpolate S,T only w/out mipmapping or perspective correction.
126 *
127 * No fog. No depth testing.
128 */
129 #define NAME simple_textured_triangle
130 #define INTERP_INT_TEX 1
131 #define S_SCALE twidth
132 #define T_SCALE theight
133
134 #define SETUP_CODE \
135 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];\
136 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
137 const GLint b = obj->BaseLevel; \
138 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
139 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
140 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
141 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
142 const GLint smask = obj->Image[0][b]->Width - 1; \
143 const GLint tmask = obj->Image[0][b]->Height - 1; \
144 if (!texture) { \
145 /* this shouldn't happen */ \
146 return; \
147 }
148
149 #define RENDER_SPAN( span ) \
150 GLuint i; \
151 GLchan rgb[MAX_WIDTH][3]; \
152 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
153 span.intTex[1] -= FIXED_HALF; \
154 for (i = 0; i < span.end; i++) { \
155 GLint s = FixedToInt(span.intTex[0]) & smask; \
156 GLint t = FixedToInt(span.intTex[1]) & tmask; \
157 GLint pos = (t << twidth_log2) + s; \
158 pos = pos + pos + pos; /* multiply by 3 */ \
159 rgb[i][RCOMP] = texture[pos]; \
160 rgb[i][GCOMP] = texture[pos+1]; \
161 rgb[i][BCOMP] = texture[pos+2]; \
162 span.intTex[0] += span.intTexStep[0]; \
163 span.intTex[1] += span.intTexStep[1]; \
164 } \
165 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL);
166
167 #include "s_tritemp.h"
168
169
170
171 /*
172 * Render an RGB, GL_DECAL, textured triangle.
173 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
174 * perspective correction.
175 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
176 *
177 * No fog.
178 */
179 #define NAME simple_z_textured_triangle
180 #define INTERP_Z 1
181 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
182 #define INTERP_INT_TEX 1
183 #define S_SCALE twidth
184 #define T_SCALE theight
185
186 #define SETUP_CODE \
187 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0][0];\
188 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
189 const GLint b = obj->BaseLevel; \
190 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
191 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
192 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
193 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
194 const GLint smask = obj->Image[0][b]->Width - 1; \
195 const GLint tmask = obj->Image[0][b]->Height - 1; \
196 if (!texture) { \
197 /* this shouldn't happen */ \
198 return; \
199 }
200
201 #define RENDER_SPAN( span ) \
202 GLuint i; \
203 GLchan rgb[MAX_WIDTH][3]; \
204 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
205 span.intTex[1] -= FIXED_HALF; \
206 for (i = 0; i < span.end; i++) { \
207 const GLuint z = FixedToDepth(span.z); \
208 if (z < zRow[i]) { \
209 GLint s = FixedToInt(span.intTex[0]) & smask; \
210 GLint t = FixedToInt(span.intTex[1]) & tmask; \
211 GLint pos = (t << twidth_log2) + s; \
212 pos = pos + pos + pos; /* multiply by 3 */ \
213 rgb[i][RCOMP] = texture[pos]; \
214 rgb[i][GCOMP] = texture[pos+1]; \
215 rgb[i][BCOMP] = texture[pos+2]; \
216 zRow[i] = z; \
217 span.array->mask[i] = 1; \
218 } \
219 else { \
220 span.array->mask[i] = 0; \
221 } \
222 span.intTex[0] += span.intTexStep[0]; \
223 span.intTex[1] += span.intTexStep[1]; \
224 span.z += span.zStep; \
225 } \
226 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask);
227
228 #include "s_tritemp.h"
229
230
231
232 #if CHAN_TYPE != GL_FLOAT
233
234 struct affine_info
235 {
236 GLenum filter;
237 GLenum format;
238 GLenum envmode;
239 GLint smask, tmask;
240 GLint twidth_log2;
241 const GLchan *texture;
242 GLfixed er, eg, eb, ea;
243 GLint tbytesline, tsize;
244 };
245
246
247 static INLINE GLint
248 ilerp(GLint t, GLint a, GLint b)
249 {
250 return a + ((t * (b - a)) >> FIXED_SHIFT);
251 }
252
253 static INLINE GLint
254 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
255 {
256 const GLint temp0 = ilerp(ia, v00, v10);
257 const GLint temp1 = ilerp(ia, v01, v11);
258 return ilerp(ib, temp0, temp1);
259 }
260
261
262 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
263 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
264 * texture env modes.
265 */
266 static INLINE void
267 affine_span(GLcontext *ctx, SWspan *span,
268 struct affine_info *info)
269 {
270 GLchan sample[4]; /* the filtered texture sample */
271
272 /* Instead of defining a function for each mode, a test is done
273 * between the outer and inner loops. This is to reduce code size
274 * and complexity. Observe that an optimizing compiler kills
275 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
276 */
277
278 #define NEAREST_RGB \
279 sample[RCOMP] = tex00[RCOMP]; \
280 sample[GCOMP] = tex00[GCOMP]; \
281 sample[BCOMP] = tex00[BCOMP]; \
282 sample[ACOMP] = CHAN_MAX
283
284 #define LINEAR_RGB \
285 sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
286 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
287 sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
288 sample[ACOMP] = CHAN_MAX;
289
290 #define NEAREST_RGBA COPY_CHAN4(sample, tex00)
291
292 #define LINEAR_RGBA \
293 sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
294 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
295 sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
296 sample[ACOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3])
297
298 #define MODULATE \
299 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
300 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
301 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
302 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
303
304 #define DECAL \
305 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
306 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
307 >> (FIXED_SHIFT + 8); \
308 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
309 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
310 >> (FIXED_SHIFT + 8); \
311 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
312 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
313 >> (FIXED_SHIFT + 8); \
314 dest[ACOMP] = FixedToInt(span->alpha)
315
316 #define BLEND \
317 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
318 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
319 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
320 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
321 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
322 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
323 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
324
325 #define REPLACE COPY_CHAN4(dest, sample)
326
327 #define ADD \
328 { \
329 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
330 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
331 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
332 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
333 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
334 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
335 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
336 }
337
338 /* shortcuts */
339
340 #define NEAREST_RGB_REPLACE \
341 NEAREST_RGB; \
342 dest[0] = sample[0]; \
343 dest[1] = sample[1]; \
344 dest[2] = sample[2]; \
345 dest[3] = FixedToInt(span->alpha);
346
347 #define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
348
349 #define SPAN_NEAREST(DO_TEX, COMPS) \
350 for (i = 0; i < span->end; i++) { \
351 /* Isn't it necessary to use FixedFloor below?? */ \
352 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
353 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
354 GLint pos = (t << info->twidth_log2) + s; \
355 const GLchan *tex00 = info->texture + COMPS * pos; \
356 DO_TEX; \
357 span->red += span->redStep; \
358 span->green += span->greenStep; \
359 span->blue += span->blueStep; \
360 span->alpha += span->alphaStep; \
361 span->intTex[0] += span->intTexStep[0]; \
362 span->intTex[1] += span->intTexStep[1]; \
363 dest += 4; \
364 }
365
366 #define SPAN_LINEAR(DO_TEX, COMPS) \
367 for (i = 0; i < span->end; i++) { \
368 /* Isn't it necessary to use FixedFloor below?? */ \
369 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
370 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
371 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
372 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
373 const GLint pos = (t << info->twidth_log2) + s; \
374 const GLchan *tex00 = info->texture + COMPS * pos; \
375 const GLchan *tex10 = tex00 + info->tbytesline; \
376 const GLchan *tex01 = tex00 + COMPS; \
377 const GLchan *tex11 = tex10 + COMPS; \
378 if (t == info->tmask) { \
379 tex10 -= info->tsize; \
380 tex11 -= info->tsize; \
381 } \
382 if (s == info->smask) { \
383 tex01 -= info->tbytesline; \
384 tex11 -= info->tbytesline; \
385 } \
386 DO_TEX; \
387 span->red += span->redStep; \
388 span->green += span->greenStep; \
389 span->blue += span->blueStep; \
390 span->alpha += span->alphaStep; \
391 span->intTex[0] += span->intTexStep[0]; \
392 span->intTex[1] += span->intTexStep[1]; \
393 dest += 4; \
394 }
395
396
397 GLuint i;
398 GLchan *dest = span->array->rgba[0];
399
400 span->intTex[0] -= FIXED_HALF;
401 span->intTex[1] -= FIXED_HALF;
402 switch (info->filter) {
403 case GL_NEAREST:
404 switch (info->format) {
405 case GL_RGB:
406 switch (info->envmode) {
407 case GL_MODULATE:
408 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
409 break;
410 case GL_DECAL:
411 case GL_REPLACE:
412 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
413 break;
414 case GL_BLEND:
415 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
416 break;
417 case GL_ADD:
418 SPAN_NEAREST(NEAREST_RGB;ADD,3);
419 break;
420 default:
421 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
422 return;
423 }
424 break;
425 case GL_RGBA:
426 switch(info->envmode) {
427 case GL_MODULATE:
428 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
429 break;
430 case GL_DECAL:
431 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
432 break;
433 case GL_BLEND:
434 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
435 break;
436 case GL_ADD:
437 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
438 break;
439 case GL_REPLACE:
440 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
441 break;
442 default:
443 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
444 return;
445 }
446 break;
447 }
448 break;
449
450 case GL_LINEAR:
451 span->intTex[0] -= FIXED_HALF;
452 span->intTex[1] -= FIXED_HALF;
453 switch (info->format) {
454 case GL_RGB:
455 switch (info->envmode) {
456 case GL_MODULATE:
457 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
458 break;
459 case GL_DECAL:
460 case GL_REPLACE:
461 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
462 break;
463 case GL_BLEND:
464 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
465 break;
466 case GL_ADD:
467 SPAN_LINEAR(LINEAR_RGB;ADD,3);
468 break;
469 default:
470 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
471 return;
472 }
473 break;
474 case GL_RGBA:
475 switch (info->envmode) {
476 case GL_MODULATE:
477 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
478 break;
479 case GL_DECAL:
480 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
481 break;
482 case GL_BLEND:
483 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
484 break;
485 case GL_ADD:
486 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
487 break;
488 case GL_REPLACE:
489 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
490 break;
491 default:
492 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
493 return;
494 }
495 break;
496 }
497 break;
498 }
499 span->interpMask &= ~SPAN_RGBA;
500 ASSERT(span->arrayMask & SPAN_RGBA);
501 _swrast_write_rgba_span(ctx, span);
502
503 #undef SPAN_NEAREST
504 #undef SPAN_LINEAR
505 }
506
507
508
509 /*
510 * Render an RGB/RGBA textured triangle without perspective correction.
511 */
512 #define NAME affine_textured_triangle
513 #define INTERP_Z 1
514 #define INTERP_FOG 1
515 #define INTERP_RGB 1
516 #define INTERP_ALPHA 1
517 #define INTERP_INT_TEX 1
518 #define S_SCALE twidth
519 #define T_SCALE theight
520
521 #define SETUP_CODE \
522 struct affine_info info; \
523 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
524 struct gl_texture_object *obj = unit->Current2D; \
525 const GLint b = obj->BaseLevel; \
526 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
527 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
528 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
529 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
530 info.smask = obj->Image[0][b]->Width - 1; \
531 info.tmask = obj->Image[0][b]->Height - 1; \
532 info.format = obj->Image[0][b]->_BaseFormat; \
533 info.filter = obj->MinFilter; \
534 info.envmode = unit->EnvMode; \
535 span.arrayMask |= SPAN_RGBA; \
536 \
537 if (info.envmode == GL_BLEND) { \
538 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
539 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
540 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
541 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
542 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
543 } \
544 if (!info.texture) { \
545 /* this shouldn't happen */ \
546 return; \
547 } \
548 \
549 switch (info.format) { \
550 case GL_ALPHA: \
551 case GL_LUMINANCE: \
552 case GL_INTENSITY: \
553 info.tbytesline = obj->Image[0][b]->Width; \
554 break; \
555 case GL_LUMINANCE_ALPHA: \
556 info.tbytesline = obj->Image[0][b]->Width * 2; \
557 break; \
558 case GL_RGB: \
559 info.tbytesline = obj->Image[0][b]->Width * 3; \
560 break; \
561 case GL_RGBA: \
562 info.tbytesline = obj->Image[0][b]->Width * 4; \
563 break; \
564 default: \
565 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
566 return; \
567 } \
568 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
569
570 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
571
572 #include "s_tritemp.h"
573
574
575
576 struct persp_info
577 {
578 GLenum filter;
579 GLenum format;
580 GLenum envmode;
581 GLint smask, tmask;
582 GLint twidth_log2;
583 const GLchan *texture;
584 GLfixed er, eg, eb, ea; /* texture env color */
585 GLint tbytesline, tsize;
586 };
587
588
589 static INLINE void
590 fast_persp_span(GLcontext *ctx, SWspan *span,
591 struct persp_info *info)
592 {
593 GLchan sample[4]; /* the filtered texture sample */
594
595 /* Instead of defining a function for each mode, a test is done
596 * between the outer and inner loops. This is to reduce code size
597 * and complexity. Observe that an optimizing compiler kills
598 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
599 */
600 #define SPAN_NEAREST(DO_TEX,COMP) \
601 for (i = 0; i < span->end; i++) { \
602 GLdouble invQ = tex_coord[2] ? \
603 (1.0 / tex_coord[2]) : 1.0; \
604 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
605 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
606 GLint s = IFLOOR(s_tmp) & info->smask; \
607 GLint t = IFLOOR(t_tmp) & info->tmask; \
608 GLint pos = (t << info->twidth_log2) + s; \
609 const GLchan *tex00 = info->texture + COMP * pos; \
610 DO_TEX; \
611 span->red += span->redStep; \
612 span->green += span->greenStep; \
613 span->blue += span->blueStep; \
614 span->alpha += span->alphaStep; \
615 tex_coord[0] += tex_step[0]; \
616 tex_coord[1] += tex_step[1]; \
617 tex_coord[2] += tex_step[2]; \
618 dest += 4; \
619 }
620
621 #define SPAN_LINEAR(DO_TEX,COMP) \
622 for (i = 0; i < span->end; i++) { \
623 GLdouble invQ = tex_coord[2] ? \
624 (1.0 / tex_coord[2]) : 1.0; \
625 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
626 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
627 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
628 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
629 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
630 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
631 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
632 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
633 const GLint pos = (t << info->twidth_log2) + s; \
634 const GLchan *tex00 = info->texture + COMP * pos; \
635 const GLchan *tex10 = tex00 + info->tbytesline; \
636 const GLchan *tex01 = tex00 + COMP; \
637 const GLchan *tex11 = tex10 + COMP; \
638 if (t == info->tmask) { \
639 tex10 -= info->tsize; \
640 tex11 -= info->tsize; \
641 } \
642 if (s == info->smask) { \
643 tex01 -= info->tbytesline; \
644 tex11 -= info->tbytesline; \
645 } \
646 DO_TEX; \
647 span->red += span->redStep; \
648 span->green += span->greenStep; \
649 span->blue += span->blueStep; \
650 span->alpha += span->alphaStep; \
651 tex_coord[0] += tex_step[0]; \
652 tex_coord[1] += tex_step[1]; \
653 tex_coord[2] += tex_step[2]; \
654 dest += 4; \
655 }
656
657 GLuint i;
658 GLfloat tex_coord[3], tex_step[3];
659 GLchan *dest = span->array->rgba[0];
660
661 const GLuint savedTexEnable = ctx->Texture._EnabledUnits;
662 ctx->Texture._EnabledUnits = 0;
663
664 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
665 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
666 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
667 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
668 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
669 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
670 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
671
672 switch (info->filter) {
673 case GL_NEAREST:
674 switch (info->format) {
675 case GL_RGB:
676 switch (info->envmode) {
677 case GL_MODULATE:
678 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
679 break;
680 case GL_DECAL:
681 case GL_REPLACE:
682 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
683 break;
684 case GL_BLEND:
685 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
686 break;
687 case GL_ADD:
688 SPAN_NEAREST(NEAREST_RGB;ADD,3);
689 break;
690 default:
691 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
692 return;
693 }
694 break;
695 case GL_RGBA:
696 switch(info->envmode) {
697 case GL_MODULATE:
698 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
699 break;
700 case GL_DECAL:
701 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
702 break;
703 case GL_BLEND:
704 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
705 break;
706 case GL_ADD:
707 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
708 break;
709 case GL_REPLACE:
710 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
711 break;
712 default:
713 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
714 return;
715 }
716 break;
717 }
718 break;
719
720 case GL_LINEAR:
721 switch (info->format) {
722 case GL_RGB:
723 switch (info->envmode) {
724 case GL_MODULATE:
725 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
726 break;
727 case GL_DECAL:
728 case GL_REPLACE:
729 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
730 break;
731 case GL_BLEND:
732 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
733 break;
734 case GL_ADD:
735 SPAN_LINEAR(LINEAR_RGB;ADD,3);
736 break;
737 default:
738 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
739 return;
740 }
741 break;
742 case GL_RGBA:
743 switch (info->envmode) {
744 case GL_MODULATE:
745 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
746 break;
747 case GL_DECAL:
748 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
749 break;
750 case GL_BLEND:
751 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
752 break;
753 case GL_ADD:
754 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
755 break;
756 case GL_REPLACE:
757 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
758 break;
759 default:
760 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
761 return;
762 }
763 break;
764 }
765 break;
766 }
767
768 ASSERT(span->arrayMask & SPAN_RGBA);
769 _swrast_write_rgba_span(ctx, span);
770
771 #undef SPAN_NEAREST
772 #undef SPAN_LINEAR
773
774 /* restore state */
775 ctx->Texture._EnabledUnits = savedTexEnable;
776 }
777
778
779 /*
780 * Render an perspective corrected RGB/RGBA textured triangle.
781 * The Q (aka V in Mesa) coordinate must be zero such that the divide
782 * by interpolated Q/W comes out right.
783 *
784 */
785 #define NAME persp_textured_triangle
786 #define INTERP_Z 1
787 #define INTERP_W 1
788 #define INTERP_FOG 1
789 #define INTERP_RGB 1
790 #define INTERP_ALPHA 1
791 #define INTERP_ATTRIBS 1
792
793 #define SETUP_CODE \
794 struct persp_info info; \
795 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
796 const struct gl_texture_object *obj = unit->Current2D; \
797 const GLint b = obj->BaseLevel; \
798 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
799 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
800 info.smask = obj->Image[0][b]->Width - 1; \
801 info.tmask = obj->Image[0][b]->Height - 1; \
802 info.format = obj->Image[0][b]->_BaseFormat; \
803 info.filter = obj->MinFilter; \
804 info.envmode = unit->EnvMode; \
805 \
806 if (info.envmode == GL_BLEND) { \
807 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
808 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
809 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
810 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
811 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
812 } \
813 if (!info.texture) { \
814 /* this shouldn't happen */ \
815 return; \
816 } \
817 \
818 switch (info.format) { \
819 case GL_ALPHA: \
820 case GL_LUMINANCE: \
821 case GL_INTENSITY: \
822 info.tbytesline = obj->Image[0][b]->Width; \
823 break; \
824 case GL_LUMINANCE_ALPHA: \
825 info.tbytesline = obj->Image[0][b]->Width * 2; \
826 break; \
827 case GL_RGB: \
828 info.tbytesline = obj->Image[0][b]->Width * 3; \
829 break; \
830 case GL_RGBA: \
831 info.tbytesline = obj->Image[0][b]->Width * 4; \
832 break; \
833 default: \
834 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
835 return; \
836 } \
837 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
838
839 #define RENDER_SPAN( span ) \
840 span.interpMask &= ~SPAN_RGBA; \
841 span.arrayMask |= SPAN_RGBA; \
842 fast_persp_span(ctx, &span, &info);
843
844 #include "s_tritemp.h"
845
846
847 #endif /* CHAN_BITS != GL_FLOAT */
848
849
850
851
852 /*
853 * Render an RGBA triangle with arbitrary attributes.
854 */
855 #define NAME general_triangle
856 #define INTERP_Z 1
857 #define INTERP_W 1
858 #define INTERP_FOG 1
859 #define INTERP_RGB 1
860 #define INTERP_SPEC 1
861 #define INTERP_ALPHA 1
862 #define INTERP_ATTRIBS 1
863 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
864 #include "s_tritemp.h"
865
866
867
868
869 /*
870 * Special tri function for occlusion testing
871 */
872 #define NAME occlusion_zless_triangle
873 #define INTERP_Z 1
874 #define SETUP_CODE \
875 struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \
876 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
877 ASSERT(ctx->Depth.Test); \
878 ASSERT(!ctx->Depth.Mask); \
879 ASSERT(ctx->Depth.Func == GL_LESS); \
880 if (!q) { \
881 return; \
882 }
883 #define RENDER_SPAN( span ) \
884 if (rb->DepthBits <= 16) { \
885 GLuint i; \
886 const GLushort *zRow = (const GLushort *) \
887 rb->GetPointer(ctx, rb, span.x, span.y); \
888 for (i = 0; i < span.end; i++) { \
889 GLuint z = FixedToDepth(span.z); \
890 if (z < zRow[i]) { \
891 q->Result++; \
892 } \
893 span.z += span.zStep; \
894 } \
895 } \
896 else { \
897 GLuint i; \
898 const GLuint *zRow = (const GLuint *) \
899 rb->GetPointer(ctx, rb, span.x, span.y); \
900 for (i = 0; i < span.end; i++) { \
901 if ((GLuint)span.z < zRow[i]) { \
902 q->Result++; \
903 } \
904 span.z += span.zStep; \
905 } \
906 }
907 #include "s_tritemp.h"
908
909
910
911 static void
912 nodraw_triangle( GLcontext *ctx,
913 const SWvertex *v0,
914 const SWvertex *v1,
915 const SWvertex *v2 )
916 {
917 (void) (ctx && v0 && v1 && v2);
918 }
919
920
921 /*
922 * This is used when separate specular color is enabled, but not
923 * texturing. We add the specular color to the primary color,
924 * draw the triangle, then restore the original primary color.
925 * Inefficient, but seldom needed.
926 */
927 void _swrast_add_spec_terms_triangle( GLcontext *ctx,
928 const SWvertex *v0,
929 const SWvertex *v1,
930 const SWvertex *v2 )
931 {
932 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
933 SWvertex *ncv1 = (SWvertex *)v1;
934 SWvertex *ncv2 = (SWvertex *)v2;
935 #if CHAN_TYPE == GL_FLOAT
936 GLfloat rSum, gSum, bSum;
937 #else
938 GLint rSum, gSum, bSum;
939 #endif
940 GLchan c[3][4];
941 /* save original colors */
942 COPY_CHAN4( c[0], ncv0->color );
943 COPY_CHAN4( c[1], ncv1->color );
944 COPY_CHAN4( c[2], ncv2->color );
945 /* sum v0 */
946 rSum = ncv0->color[0] + ncv0->specular[0];
947 gSum = ncv0->color[1] + ncv0->specular[1];
948 bSum = ncv0->color[2] + ncv0->specular[2];
949 ncv0->color[0] = MIN2(rSum, CHAN_MAX);
950 ncv0->color[1] = MIN2(gSum, CHAN_MAX);
951 ncv0->color[2] = MIN2(bSum, CHAN_MAX);
952 /* sum v1 */
953 rSum = ncv1->color[0] + ncv1->specular[0];
954 gSum = ncv1->color[1] + ncv1->specular[1];
955 bSum = ncv1->color[2] + ncv1->specular[2];
956 ncv1->color[0] = MIN2(rSum, CHAN_MAX);
957 ncv1->color[1] = MIN2(gSum, CHAN_MAX);
958 ncv1->color[2] = MIN2(bSum, CHAN_MAX);
959 /* sum v2 */
960 rSum = ncv2->color[0] + ncv2->specular[0];
961 gSum = ncv2->color[1] + ncv2->specular[1];
962 bSum = ncv2->color[2] + ncv2->specular[2];
963 ncv2->color[0] = MIN2(rSum, CHAN_MAX);
964 ncv2->color[1] = MIN2(gSum, CHAN_MAX);
965 ncv2->color[2] = MIN2(bSum, CHAN_MAX);
966 /* draw */
967 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
968 /* restore original colors */
969 COPY_CHAN4( ncv0->color, c[0] );
970 COPY_CHAN4( ncv1->color, c[1] );
971 COPY_CHAN4( ncv2->color, c[2] );
972 }
973
974
975
976 #ifdef DEBUG
977
978 /* record the current triangle function name */
979 const char *_mesa_triFuncName = NULL;
980
981 #define USE(triFunc) \
982 do { \
983 _mesa_triFuncName = #triFunc; \
984 /*printf("%s\n", _mesa_triFuncName);*/ \
985 swrast->Triangle = triFunc; \
986 } while (0)
987
988 #else
989
990 #define USE(triFunc) swrast->Triangle = triFunc;
991
992 #endif
993
994
995
996
997 /*
998 * Determine which triangle rendering function to use given the current
999 * rendering context.
1000 *
1001 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1002 * remove tests to this code.
1003 */
1004 void
1005 _swrast_choose_triangle( GLcontext *ctx )
1006 {
1007 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1008 const GLboolean rgbmode = ctx->Visual.rgbMode;
1009
1010 if (ctx->Polygon.CullFlag &&
1011 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1012 USE(nodraw_triangle);
1013 return;
1014 }
1015
1016 if (ctx->RenderMode==GL_RENDER) {
1017
1018 if (ctx->Polygon.SmoothFlag) {
1019 _swrast_set_aa_triangle_function(ctx);
1020 ASSERT(swrast->Triangle);
1021 return;
1022 }
1023
1024 /* special case for occlusion testing */
1025 if (ctx->Query.CurrentOcclusionObject &&
1026 ctx->Depth.Test &&
1027 ctx->Depth.Mask == GL_FALSE &&
1028 ctx->Depth.Func == GL_LESS &&
1029 !ctx->Stencil.Enabled) {
1030 if ((rgbmode &&
1031 ctx->Color.ColorMask[0] == 0 &&
1032 ctx->Color.ColorMask[1] == 0 &&
1033 ctx->Color.ColorMask[2] == 0 &&
1034 ctx->Color.ColorMask[3] == 0)
1035 ||
1036 (!rgbmode && ctx->Color.IndexMask == 0)) {
1037 USE(occlusion_zless_triangle);
1038 return;
1039 }
1040 }
1041
1042 if (!rgbmode) {
1043 USE(ci_triangle);
1044 return;
1045 }
1046
1047 if (ctx->Texture._EnabledCoordUnits ||
1048 ctx->FragmentProgram._Current ||
1049 ctx->ATIFragmentShader._Enabled) {
1050 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1051 const struct gl_texture_object *texObj2D;
1052 const struct gl_texture_image *texImg;
1053 GLenum minFilter, magFilter, envMode;
1054 GLint format;
1055 texObj2D = ctx->Texture.Unit[0].Current2D;
1056 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1057 format = texImg ? texImg->TexFormat->MesaFormat : -1;
1058 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1059 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1060 envMode = ctx->Texture.Unit[0].EnvMode;
1061
1062 /* First see if we can use an optimized 2-D texture function */
1063 if (ctx->Texture._EnabledCoordUnits == 0x1
1064 && !ctx->FragmentProgram._Current
1065 && !ctx->ATIFragmentShader._Enabled
1066 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1067 && texObj2D->WrapS == GL_REPEAT
1068 && texObj2D->WrapT == GL_REPEAT
1069 && texImg->_IsPowerOfTwo
1070 && texImg->Border == 0
1071 && texImg->Width == texImg->RowStride
1072 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1073 && minFilter == magFilter
1074 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1075 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) {
1076 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1077 if (minFilter == GL_NEAREST
1078 && format == MESA_FORMAT_RGB
1079 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1080 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1081 && ctx->Depth.Func == GL_LESS
1082 && ctx->Depth.Mask == GL_TRUE)
1083 || swrast->_RasterMask == TEXTURE_BIT)
1084 && ctx->Polygon.StippleFlag == GL_FALSE
1085 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1086 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1087 USE(simple_z_textured_triangle);
1088 }
1089 else {
1090 USE(simple_textured_triangle);
1091 }
1092 }
1093 else {
1094 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1095 USE(general_triangle);
1096 #else
1097 USE(affine_textured_triangle);
1098 #endif
1099 }
1100 }
1101 else {
1102 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1103 USE(general_triangle);
1104 #else
1105 USE(persp_textured_triangle);
1106 #endif
1107 }
1108 }
1109 else {
1110 /* general case textured triangles */
1111 USE(general_triangle);
1112 }
1113 }
1114 else {
1115 ASSERT(!ctx->Texture._EnabledCoordUnits);
1116 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1117 /* smooth shaded, no texturing, stippled or some raster ops */
1118 USE(smooth_rgba_triangle);
1119 }
1120 else {
1121 /* flat shaded, no texturing, stippled or some raster ops */
1122 USE(flat_rgba_triangle);
1123 }
1124 }
1125 }
1126 else if (ctx->RenderMode==GL_FEEDBACK) {
1127 USE(_swrast_feedback_triangle);
1128 }
1129 else {
1130 /* GL_SELECT mode */
1131 USE(_swrast_select_triangle);
1132 }
1133 }