mesa: remove a bunch of gl_renderbuffer fields
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/colormac.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/texformat.h"
38 #include "shader/prog_instruction.h"
39
40 #include "s_aatriangle.h"
41 #include "s_context.h"
42 #include "s_feedback.h"
43 #include "s_span.h"
44 #include "s_triangle.h"
45
46
47 /**
48 * Test if a triangle should be culled. Used for feedback and selection mode.
49 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
50 */
51 GLboolean
52 _swrast_culltriangle( GLcontext *ctx,
53 const SWvertex *v0,
54 const SWvertex *v1,
55 const SWvertex *v2 )
56 {
57 SWcontext *swrast = SWRAST_CONTEXT(ctx);
58 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
59 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
60 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
61 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
62 GLfloat c = ex*fy-ey*fx;
63
64 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
65 return GL_FALSE;
66
67 return GL_TRUE;
68 }
69
70
71
72 /*
73 * Render a smooth or flat-shaded color index triangle.
74 */
75 #define NAME ci_triangle
76 #define INTERP_Z 1
77 #define INTERP_ATTRIBS 1 /* just for fog */
78 #define INTERP_INDEX 1
79 #define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span);
80 #include "s_tritemp.h"
81
82
83
84 /*
85 * Render a flat-shaded RGBA triangle.
86 */
87 #define NAME flat_rgba_triangle
88 #define INTERP_Z 1
89 #define SETUP_CODE \
90 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
91 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
92 span.interpMask |= SPAN_RGBA; \
93 span.red = ChanToFixed(v2->color[0]); \
94 span.green = ChanToFixed(v2->color[1]); \
95 span.blue = ChanToFixed(v2->color[2]); \
96 span.alpha = ChanToFixed(v2->color[3]); \
97 span.redStep = 0; \
98 span.greenStep = 0; \
99 span.blueStep = 0; \
100 span.alphaStep = 0;
101 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
102 #include "s_tritemp.h"
103
104
105
106 /*
107 * Render a smooth-shaded RGBA triangle.
108 */
109 #define NAME smooth_rgba_triangle
110 #define INTERP_Z 1
111 #define INTERP_RGB 1
112 #define INTERP_ALPHA 1
113 #define SETUP_CODE \
114 { \
115 /* texturing must be off */ \
116 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
117 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
118 }
119 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
120 #include "s_tritemp.h"
121
122
123
124 /*
125 * Render an RGB, GL_DECAL, textured triangle.
126 * Interpolate S,T only w/out mipmapping or perspective correction.
127 *
128 * No fog. No depth testing.
129 */
130 #define NAME simple_textured_triangle
131 #define INTERP_INT_TEX 1
132 #define S_SCALE twidth
133 #define T_SCALE theight
134
135 #define SETUP_CODE \
136 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
137 struct gl_texture_object *obj = \
138 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
139 const GLint b = obj->BaseLevel; \
140 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
141 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
142 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
143 const GLubyte *texture = (const GLubyte *) obj->Image[0][b]->Data; \
144 const GLint smask = obj->Image[0][b]->Width - 1; \
145 const GLint tmask = obj->Image[0][b]->Height - 1; \
146 if (!rb || !texture) { \
147 return; \
148 }
149
150 #define RENDER_SPAN( span ) \
151 GLuint i; \
152 GLubyte rgb[MAX_WIDTH][3]; \
153 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
154 span.intTex[1] -= FIXED_HALF; \
155 for (i = 0; i < span.end; i++) { \
156 GLint s = FixedToInt(span.intTex[0]) & smask; \
157 GLint t = FixedToInt(span.intTex[1]) & tmask; \
158 GLint pos = (t << twidth_log2) + s; \
159 pos = pos + pos + pos; /* multiply by 3 */ \
160 rgb[i][RCOMP] = texture[pos]; \
161 rgb[i][GCOMP] = texture[pos+1]; \
162 rgb[i][BCOMP] = texture[pos+2]; \
163 span.intTex[0] += span.intTexStep[0]; \
164 span.intTex[1] += span.intTexStep[1]; \
165 } \
166 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL);
167
168 #include "s_tritemp.h"
169
170
171
172 /*
173 * Render an RGB, GL_DECAL, textured triangle.
174 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
175 * perspective correction.
176 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
177 *
178 * No fog.
179 */
180 #define NAME simple_z_textured_triangle
181 #define INTERP_Z 1
182 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
183 #define INTERP_INT_TEX 1
184 #define S_SCALE twidth
185 #define T_SCALE theight
186
187 #define SETUP_CODE \
188 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
189 struct gl_texture_object *obj = \
190 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
191 const GLint b = obj->BaseLevel; \
192 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
193 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
194 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
195 const GLubyte *texture = (const GLubyte *) obj->Image[0][b]->Data; \
196 const GLint smask = obj->Image[0][b]->Width - 1; \
197 const GLint tmask = obj->Image[0][b]->Height - 1; \
198 if (!rb || !texture) { \
199 return; \
200 }
201
202 #define RENDER_SPAN( span ) \
203 GLuint i; \
204 GLubyte rgb[MAX_WIDTH][3]; \
205 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
206 span.intTex[1] -= FIXED_HALF; \
207 for (i = 0; i < span.end; i++) { \
208 const GLuint z = FixedToDepth(span.z); \
209 if (z < zRow[i]) { \
210 GLint s = FixedToInt(span.intTex[0]) & smask; \
211 GLint t = FixedToInt(span.intTex[1]) & tmask; \
212 GLint pos = (t << twidth_log2) + s; \
213 pos = pos + pos + pos; /* multiply by 3 */ \
214 rgb[i][RCOMP] = texture[pos]; \
215 rgb[i][GCOMP] = texture[pos+1]; \
216 rgb[i][BCOMP] = texture[pos+2]; \
217 zRow[i] = z; \
218 span.array->mask[i] = 1; \
219 } \
220 else { \
221 span.array->mask[i] = 0; \
222 } \
223 span.intTex[0] += span.intTexStep[0]; \
224 span.intTex[1] += span.intTexStep[1]; \
225 span.z += span.zStep; \
226 } \
227 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask);
228
229 #include "s_tritemp.h"
230
231
232 #if CHAN_TYPE != GL_FLOAT
233
234 struct affine_info
235 {
236 GLenum filter;
237 GLenum format;
238 GLenum envmode;
239 GLint smask, tmask;
240 GLint twidth_log2;
241 const GLchan *texture;
242 GLfixed er, eg, eb, ea;
243 GLint tbytesline, tsize;
244 };
245
246
247 static INLINE GLint
248 ilerp(GLint t, GLint a, GLint b)
249 {
250 return a + ((t * (b - a)) >> FIXED_SHIFT);
251 }
252
253 static INLINE GLint
254 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
255 {
256 const GLint temp0 = ilerp(ia, v00, v10);
257 const GLint temp1 = ilerp(ia, v01, v11);
258 return ilerp(ib, temp0, temp1);
259 }
260
261
262 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
263 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
264 * texture env modes.
265 */
266 static INLINE void
267 affine_span(GLcontext *ctx, SWspan *span,
268 struct affine_info *info)
269 {
270 GLchan sample[4]; /* the filtered texture sample */
271 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
272
273 /* Instead of defining a function for each mode, a test is done
274 * between the outer and inner loops. This is to reduce code size
275 * and complexity. Observe that an optimizing compiler kills
276 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
277 */
278
279 #define NEAREST_RGB \
280 sample[RCOMP] = tex00[2]; \
281 sample[GCOMP] = tex00[1]; \
282 sample[BCOMP] = tex00[0]; \
283 sample[ACOMP] = CHAN_MAX;
284
285 #define LINEAR_RGB \
286 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
287 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
288 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
289 sample[ACOMP] = CHAN_MAX;
290
291 #define NEAREST_RGBA \
292 sample[RCOMP] = tex00[3]; \
293 sample[GCOMP] = tex00[2]; \
294 sample[BCOMP] = tex00[1]; \
295 sample[ACOMP] = tex00[0];
296
297 #define LINEAR_RGBA \
298 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
299 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
300 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
301 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
302
303 #define MODULATE \
304 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
305 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
306 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
307 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
308
309 #define DECAL \
310 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
311 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
312 >> (FIXED_SHIFT + 8); \
313 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
314 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
315 >> (FIXED_SHIFT + 8); \
316 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
317 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
318 >> (FIXED_SHIFT + 8); \
319 dest[ACOMP] = FixedToInt(span->alpha)
320
321 #define BLEND \
322 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
323 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
324 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
325 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
326 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
327 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
328 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
329
330 #define REPLACE COPY_CHAN4(dest, sample)
331
332 #define ADD \
333 { \
334 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
335 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
336 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
337 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
338 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
339 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
340 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
341 }
342
343 /* shortcuts */
344
345 #define NEAREST_RGB_REPLACE \
346 NEAREST_RGB; \
347 dest[0] = sample[0]; \
348 dest[1] = sample[1]; \
349 dest[2] = sample[2]; \
350 dest[3] = FixedToInt(span->alpha);
351
352 #define NEAREST_RGBA_REPLACE \
353 dest[RCOMP] = tex00[3]; \
354 dest[GCOMP] = tex00[2]; \
355 dest[BCOMP] = tex00[1]; \
356 dest[ACOMP] = tex00[0]
357
358 #define SPAN_NEAREST(DO_TEX, COMPS) \
359 for (i = 0; i < span->end; i++) { \
360 /* Isn't it necessary to use FixedFloor below?? */ \
361 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
362 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
363 GLint pos = (t << info->twidth_log2) + s; \
364 const GLchan *tex00 = info->texture + COMPS * pos; \
365 DO_TEX; \
366 span->red += span->redStep; \
367 span->green += span->greenStep; \
368 span->blue += span->blueStep; \
369 span->alpha += span->alphaStep; \
370 span->intTex[0] += span->intTexStep[0]; \
371 span->intTex[1] += span->intTexStep[1]; \
372 dest += 4; \
373 }
374
375 #define SPAN_LINEAR(DO_TEX, COMPS) \
376 for (i = 0; i < span->end; i++) { \
377 /* Isn't it necessary to use FixedFloor below?? */ \
378 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
379 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
380 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
381 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
382 const GLint pos = (t << info->twidth_log2) + s; \
383 const GLchan *tex00 = info->texture + COMPS * pos; \
384 const GLchan *tex10 = tex00 + info->tbytesline; \
385 const GLchan *tex01 = tex00 + COMPS; \
386 const GLchan *tex11 = tex10 + COMPS; \
387 if (t == info->tmask) { \
388 tex10 -= info->tsize; \
389 tex11 -= info->tsize; \
390 } \
391 if (s == info->smask) { \
392 tex01 -= info->tbytesline; \
393 tex11 -= info->tbytesline; \
394 } \
395 DO_TEX; \
396 span->red += span->redStep; \
397 span->green += span->greenStep; \
398 span->blue += span->blueStep; \
399 span->alpha += span->alphaStep; \
400 span->intTex[0] += span->intTexStep[0]; \
401 span->intTex[1] += span->intTexStep[1]; \
402 dest += 4; \
403 }
404
405
406 GLuint i;
407 GLchan *dest = span->array->rgba[0];
408
409 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
410 ctx->Texture._EnabledCoordUnits = 0x0;
411
412 span->intTex[0] -= FIXED_HALF;
413 span->intTex[1] -= FIXED_HALF;
414 switch (info->filter) {
415 case GL_NEAREST:
416 switch (info->format) {
417 case MESA_FORMAT_RGB888:
418 switch (info->envmode) {
419 case GL_MODULATE:
420 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
421 break;
422 case GL_DECAL:
423 case GL_REPLACE:
424 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
425 break;
426 case GL_BLEND:
427 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
428 break;
429 case GL_ADD:
430 SPAN_NEAREST(NEAREST_RGB;ADD,3);
431 break;
432 default:
433 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
434 return;
435 }
436 break;
437 case MESA_FORMAT_RGBA8888:
438 switch(info->envmode) {
439 case GL_MODULATE:
440 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
441 break;
442 case GL_DECAL:
443 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
444 break;
445 case GL_BLEND:
446 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
447 break;
448 case GL_ADD:
449 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
450 break;
451 case GL_REPLACE:
452 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
453 break;
454 default:
455 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
456 return;
457 }
458 break;
459 }
460 break;
461
462 case GL_LINEAR:
463 span->intTex[0] -= FIXED_HALF;
464 span->intTex[1] -= FIXED_HALF;
465 switch (info->format) {
466 case MESA_FORMAT_RGB888:
467 switch (info->envmode) {
468 case GL_MODULATE:
469 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
470 break;
471 case GL_DECAL:
472 case GL_REPLACE:
473 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
474 break;
475 case GL_BLEND:
476 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
477 break;
478 case GL_ADD:
479 SPAN_LINEAR(LINEAR_RGB;ADD,3);
480 break;
481 default:
482 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
483 return;
484 }
485 break;
486 case MESA_FORMAT_RGBA8888:
487 switch (info->envmode) {
488 case GL_MODULATE:
489 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
490 break;
491 case GL_DECAL:
492 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
493 break;
494 case GL_BLEND:
495 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
496 break;
497 case GL_ADD:
498 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
499 break;
500 case GL_REPLACE:
501 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
502 break;
503 default:
504 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
505 return;
506 }
507 break;
508 }
509 break;
510 }
511 span->interpMask &= ~SPAN_RGBA;
512 ASSERT(span->arrayMask & SPAN_RGBA);
513
514 _swrast_write_rgba_span(ctx, span);
515
516 /* re-enable texture units */
517 ctx->Texture._EnabledCoordUnits = texEnableSave;
518
519 #undef SPAN_NEAREST
520 #undef SPAN_LINEAR
521 }
522
523
524
525 /*
526 * Render an RGB/RGBA textured triangle without perspective correction.
527 */
528 #define NAME affine_textured_triangle
529 #define INTERP_Z 1
530 #define INTERP_RGB 1
531 #define INTERP_ALPHA 1
532 #define INTERP_INT_TEX 1
533 #define S_SCALE twidth
534 #define T_SCALE theight
535
536 #define SETUP_CODE \
537 struct affine_info info; \
538 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
539 struct gl_texture_object *obj = \
540 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
541 const GLint b = obj->BaseLevel; \
542 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
543 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
544 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
545 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
546 info.smask = obj->Image[0][b]->Width - 1; \
547 info.tmask = obj->Image[0][b]->Height - 1; \
548 info.format = obj->Image[0][b]->TexFormat; \
549 info.filter = obj->MinFilter; \
550 info.envmode = unit->EnvMode; \
551 span.arrayMask |= SPAN_RGBA; \
552 \
553 if (info.envmode == GL_BLEND) { \
554 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
555 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
556 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
557 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
558 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
559 } \
560 if (!info.texture) { \
561 /* this shouldn't happen */ \
562 return; \
563 } \
564 \
565 switch (info.format) { \
566 case MESA_FORMAT_A8: \
567 case MESA_FORMAT_L8: \
568 case MESA_FORMAT_I8: \
569 info.tbytesline = obj->Image[0][b]->Width; \
570 break; \
571 case MESA_FORMAT_AL88: \
572 info.tbytesline = obj->Image[0][b]->Width * 2; \
573 break; \
574 case MESA_FORMAT_RGB888: \
575 info.tbytesline = obj->Image[0][b]->Width * 3; \
576 break; \
577 case MESA_FORMAT_RGBA8888: \
578 info.tbytesline = obj->Image[0][b]->Width * 4; \
579 break; \
580 default: \
581 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
582 return; \
583 } \
584 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
585
586 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
587
588 #include "s_tritemp.h"
589
590
591
592 struct persp_info
593 {
594 GLenum filter;
595 GLenum format;
596 GLenum envmode;
597 GLint smask, tmask;
598 GLint twidth_log2;
599 const GLchan *texture;
600 GLfixed er, eg, eb, ea; /* texture env color */
601 GLint tbytesline, tsize;
602 };
603
604
605 static INLINE void
606 fast_persp_span(GLcontext *ctx, SWspan *span,
607 struct persp_info *info)
608 {
609 GLchan sample[4]; /* the filtered texture sample */
610
611 /* Instead of defining a function for each mode, a test is done
612 * between the outer and inner loops. This is to reduce code size
613 * and complexity. Observe that an optimizing compiler kills
614 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
615 */
616 #define SPAN_NEAREST(DO_TEX,COMP) \
617 for (i = 0; i < span->end; i++) { \
618 GLdouble invQ = tex_coord[2] ? \
619 (1.0 / tex_coord[2]) : 1.0; \
620 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
621 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
622 GLint s = IFLOOR(s_tmp) & info->smask; \
623 GLint t = IFLOOR(t_tmp) & info->tmask; \
624 GLint pos = (t << info->twidth_log2) + s; \
625 const GLchan *tex00 = info->texture + COMP * pos; \
626 DO_TEX; \
627 span->red += span->redStep; \
628 span->green += span->greenStep; \
629 span->blue += span->blueStep; \
630 span->alpha += span->alphaStep; \
631 tex_coord[0] += tex_step[0]; \
632 tex_coord[1] += tex_step[1]; \
633 tex_coord[2] += tex_step[2]; \
634 dest += 4; \
635 }
636
637 #define SPAN_LINEAR(DO_TEX,COMP) \
638 for (i = 0; i < span->end; i++) { \
639 GLdouble invQ = tex_coord[2] ? \
640 (1.0 / tex_coord[2]) : 1.0; \
641 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
642 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
643 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
644 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
645 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
646 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
647 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
648 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
649 const GLint pos = (t << info->twidth_log2) + s; \
650 const GLchan *tex00 = info->texture + COMP * pos; \
651 const GLchan *tex10 = tex00 + info->tbytesline; \
652 const GLchan *tex01 = tex00 + COMP; \
653 const GLchan *tex11 = tex10 + COMP; \
654 if (t == info->tmask) { \
655 tex10 -= info->tsize; \
656 tex11 -= info->tsize; \
657 } \
658 if (s == info->smask) { \
659 tex01 -= info->tbytesline; \
660 tex11 -= info->tbytesline; \
661 } \
662 DO_TEX; \
663 span->red += span->redStep; \
664 span->green += span->greenStep; \
665 span->blue += span->blueStep; \
666 span->alpha += span->alphaStep; \
667 tex_coord[0] += tex_step[0]; \
668 tex_coord[1] += tex_step[1]; \
669 tex_coord[2] += tex_step[2]; \
670 dest += 4; \
671 }
672
673 GLuint i;
674 GLfloat tex_coord[3], tex_step[3];
675 GLchan *dest = span->array->rgba[0];
676
677 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
678 ctx->Texture._EnabledCoordUnits = 0;
679
680 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
681 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
682 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
683 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
684 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
685 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
686 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
687
688 switch (info->filter) {
689 case GL_NEAREST:
690 switch (info->format) {
691 case MESA_FORMAT_RGB888:
692 switch (info->envmode) {
693 case GL_MODULATE:
694 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
695 break;
696 case GL_DECAL:
697 case GL_REPLACE:
698 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
699 break;
700 case GL_BLEND:
701 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
702 break;
703 case GL_ADD:
704 SPAN_NEAREST(NEAREST_RGB;ADD,3);
705 break;
706 default:
707 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
708 return;
709 }
710 break;
711 case MESA_FORMAT_RGBA8888:
712 switch(info->envmode) {
713 case GL_MODULATE:
714 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
715 break;
716 case GL_DECAL:
717 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
718 break;
719 case GL_BLEND:
720 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
721 break;
722 case GL_ADD:
723 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
724 break;
725 case GL_REPLACE:
726 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
727 break;
728 default:
729 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
730 return;
731 }
732 break;
733 }
734 break;
735
736 case GL_LINEAR:
737 switch (info->format) {
738 case MESA_FORMAT_RGB888:
739 switch (info->envmode) {
740 case GL_MODULATE:
741 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
742 break;
743 case GL_DECAL:
744 case GL_REPLACE:
745 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
746 break;
747 case GL_BLEND:
748 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
749 break;
750 case GL_ADD:
751 SPAN_LINEAR(LINEAR_RGB;ADD,3);
752 break;
753 default:
754 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
755 return;
756 }
757 break;
758 case MESA_FORMAT_RGBA8888:
759 switch (info->envmode) {
760 case GL_MODULATE:
761 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
762 break;
763 case GL_DECAL:
764 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
765 break;
766 case GL_BLEND:
767 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
768 break;
769 case GL_ADD:
770 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
771 break;
772 case GL_REPLACE:
773 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
774 break;
775 default:
776 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
777 return;
778 }
779 break;
780 }
781 break;
782 }
783
784 ASSERT(span->arrayMask & SPAN_RGBA);
785 _swrast_write_rgba_span(ctx, span);
786
787 #undef SPAN_NEAREST
788 #undef SPAN_LINEAR
789
790 /* restore state */
791 ctx->Texture._EnabledCoordUnits = texEnableSave;
792 }
793
794
795 /*
796 * Render an perspective corrected RGB/RGBA textured triangle.
797 * The Q (aka V in Mesa) coordinate must be zero such that the divide
798 * by interpolated Q/W comes out right.
799 *
800 */
801 #define NAME persp_textured_triangle
802 #define INTERP_Z 1
803 #define INTERP_RGB 1
804 #define INTERP_ALPHA 1
805 #define INTERP_ATTRIBS 1
806
807 #define SETUP_CODE \
808 struct persp_info info; \
809 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
810 struct gl_texture_object *obj = \
811 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
812 const GLint b = obj->BaseLevel; \
813 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
814 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
815 info.smask = obj->Image[0][b]->Width - 1; \
816 info.tmask = obj->Image[0][b]->Height - 1; \
817 info.format = obj->Image[0][b]->TexFormat; \
818 info.filter = obj->MinFilter; \
819 info.envmode = unit->EnvMode; \
820 \
821 if (info.envmode == GL_BLEND) { \
822 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
823 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
824 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
825 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
826 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
827 } \
828 if (!info.texture) { \
829 /* this shouldn't happen */ \
830 return; \
831 } \
832 \
833 switch (info.format) { \
834 case MESA_FORMAT_A8: \
835 case MESA_FORMAT_L8: \
836 case MESA_FORMAT_I8: \
837 info.tbytesline = obj->Image[0][b]->Width; \
838 break; \
839 case MESA_FORMAT_AL88: \
840 info.tbytesline = obj->Image[0][b]->Width * 2; \
841 break; \
842 case MESA_FORMAT_RGB888: \
843 info.tbytesline = obj->Image[0][b]->Width * 3; \
844 break; \
845 case MESA_FORMAT_RGBA8888: \
846 info.tbytesline = obj->Image[0][b]->Width * 4; \
847 break; \
848 default: \
849 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
850 return; \
851 } \
852 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
853
854 #define RENDER_SPAN( span ) \
855 span.interpMask &= ~SPAN_RGBA; \
856 span.arrayMask |= SPAN_RGBA; \
857 fast_persp_span(ctx, &span, &info);
858
859 #include "s_tritemp.h"
860
861 #endif /*CHAN_TYPE != GL_FLOAT*/
862
863
864
865 /*
866 * Render an RGBA triangle with arbitrary attributes.
867 */
868 #define NAME general_triangle
869 #define INTERP_Z 1
870 #define INTERP_RGB 1
871 #define INTERP_ALPHA 1
872 #define INTERP_ATTRIBS 1
873 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
874 #include "s_tritemp.h"
875
876
877
878
879 /*
880 * Special tri function for occlusion testing
881 */
882 #define NAME occlusion_zless_triangle
883 #define INTERP_Z 1
884 #define SETUP_CODE \
885 struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \
886 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
887 ASSERT(ctx->Depth.Test); \
888 ASSERT(!ctx->Depth.Mask); \
889 ASSERT(ctx->Depth.Func == GL_LESS); \
890 if (!q) { \
891 return; \
892 }
893 #define RENDER_SPAN( span ) \
894 if (rb->Format == MESA_FORMAT_Z16) { \
895 GLuint i; \
896 const GLushort *zRow = (const GLushort *) \
897 rb->GetPointer(ctx, rb, span.x, span.y); \
898 for (i = 0; i < span.end; i++) { \
899 GLuint z = FixedToDepth(span.z); \
900 if (z < zRow[i]) { \
901 q->Result++; \
902 } \
903 span.z += span.zStep; \
904 } \
905 } \
906 else { \
907 GLuint i; \
908 const GLuint *zRow = (const GLuint *) \
909 rb->GetPointer(ctx, rb, span.x, span.y); \
910 for (i = 0; i < span.end; i++) { \
911 if ((GLuint)span.z < zRow[i]) { \
912 q->Result++; \
913 } \
914 span.z += span.zStep; \
915 } \
916 }
917 #include "s_tritemp.h"
918
919
920
921 static void
922 nodraw_triangle( GLcontext *ctx,
923 const SWvertex *v0,
924 const SWvertex *v1,
925 const SWvertex *v2 )
926 {
927 (void) (ctx && v0 && v1 && v2);
928 }
929
930
931 /*
932 * This is used when separate specular color is enabled, but not
933 * texturing. We add the specular color to the primary color,
934 * draw the triangle, then restore the original primary color.
935 * Inefficient, but seldom needed.
936 */
937 void
938 _swrast_add_spec_terms_triangle(GLcontext *ctx, const SWvertex *v0,
939 const SWvertex *v1, const SWvertex *v2)
940 {
941 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
942 SWvertex *ncv1 = (SWvertex *)v1;
943 SWvertex *ncv2 = (SWvertex *)v2;
944 GLfloat rSum, gSum, bSum;
945 GLchan cSave[3][4];
946
947 /* save original colors */
948 COPY_CHAN4( cSave[0], ncv0->color );
949 COPY_CHAN4( cSave[1], ncv1->color );
950 COPY_CHAN4( cSave[2], ncv2->color );
951 /* sum v0 */
952 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0];
953 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1];
954 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2];
955 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
956 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
957 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
958 /* sum v1 */
959 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0];
960 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1];
961 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2];
962 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
963 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
964 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
965 /* sum v2 */
966 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0];
967 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1];
968 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2];
969 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
970 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
971 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
972 /* draw */
973 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
974 /* restore original colors */
975 COPY_CHAN4( ncv0->color, cSave[0] );
976 COPY_CHAN4( ncv1->color, cSave[1] );
977 COPY_CHAN4( ncv2->color, cSave[2] );
978 }
979
980
981
982 #ifdef DEBUG
983
984 /* record the current triangle function name */
985 const char *_mesa_triFuncName = NULL;
986
987 #define USE(triFunc) \
988 do { \
989 _mesa_triFuncName = #triFunc; \
990 /*printf("%s\n", _mesa_triFuncName);*/ \
991 swrast->Triangle = triFunc; \
992 } while (0)
993
994 #else
995
996 #define USE(triFunc) swrast->Triangle = triFunc;
997
998 #endif
999
1000
1001
1002
1003 /*
1004 * Determine which triangle rendering function to use given the current
1005 * rendering context.
1006 *
1007 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1008 * remove tests to this code.
1009 */
1010 void
1011 _swrast_choose_triangle( GLcontext *ctx )
1012 {
1013 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1014 const GLboolean rgbmode = ctx->Visual.rgbMode;
1015
1016 if (ctx->Polygon.CullFlag &&
1017 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1018 USE(nodraw_triangle);
1019 return;
1020 }
1021
1022 if (ctx->RenderMode==GL_RENDER) {
1023
1024 if (ctx->Polygon.SmoothFlag) {
1025 _swrast_set_aa_triangle_function(ctx);
1026 ASSERT(swrast->Triangle);
1027 return;
1028 }
1029
1030 /* special case for occlusion testing */
1031 if (ctx->Query.CurrentOcclusionObject &&
1032 ctx->Depth.Test &&
1033 ctx->Depth.Mask == GL_FALSE &&
1034 ctx->Depth.Func == GL_LESS &&
1035 !ctx->Stencil._Enabled) {
1036 if ((rgbmode &&
1037 ctx->Color.ColorMask[0] == 0 &&
1038 ctx->Color.ColorMask[1] == 0 &&
1039 ctx->Color.ColorMask[2] == 0 &&
1040 ctx->Color.ColorMask[3] == 0)
1041 ||
1042 (!rgbmode && ctx->Color.IndexMask == 0)) {
1043 USE(occlusion_zless_triangle);
1044 return;
1045 }
1046 }
1047
1048 if (!rgbmode) {
1049 USE(ci_triangle);
1050 return;
1051 }
1052
1053 /*
1054 * XXX should examine swrast->_ActiveAttribMask to determine what
1055 * needs to be interpolated.
1056 */
1057 if (ctx->Texture._EnabledCoordUnits ||
1058 ctx->FragmentProgram._Current ||
1059 ctx->ATIFragmentShader._Enabled ||
1060 NEED_SECONDARY_COLOR(ctx) ||
1061 swrast->_FogEnabled) {
1062 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1063 const struct gl_texture_object *texObj2D;
1064 const struct gl_texture_image *texImg;
1065 GLenum minFilter, magFilter, envMode;
1066 gl_format format;
1067 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
1068
1069 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1070 format = texImg ? texImg->TexFormat : -1;
1071 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1072 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1073 envMode = ctx->Texture.Unit[0].EnvMode;
1074
1075 /* First see if we can use an optimized 2-D texture function */
1076 if (ctx->Texture._EnabledCoordUnits == 0x1
1077 && !ctx->FragmentProgram._Current
1078 && !ctx->ATIFragmentShader._Enabled
1079 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1080 && texObj2D->WrapS == GL_REPEAT
1081 && texObj2D->WrapT == GL_REPEAT
1082 && texObj2D->_Swizzle == SWIZZLE_NOOP
1083 && texImg->_IsPowerOfTwo
1084 && texImg->Border == 0
1085 && texImg->Width == texImg->RowStride
1086 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888)
1087 && minFilter == magFilter
1088 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1089 && !swrast->_FogEnabled
1090 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
1091 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
1092 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1093 if (minFilter == GL_NEAREST
1094 && format == MESA_FORMAT_RGB888
1095 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1096 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1097 && ctx->Depth.Func == GL_LESS
1098 && ctx->Depth.Mask == GL_TRUE)
1099 || swrast->_RasterMask == TEXTURE_BIT)
1100 && ctx->Polygon.StippleFlag == GL_FALSE
1101 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1102 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1103 USE(simple_z_textured_triangle);
1104 }
1105 else {
1106 USE(simple_textured_triangle);
1107 }
1108 }
1109 else {
1110 #if CHAN_BITS != 8
1111 USE(general_triangle);
1112 #else
1113 USE(affine_textured_triangle);
1114 #endif
1115 }
1116 }
1117 else {
1118 #if CHAN_BITS != 8
1119 USE(general_triangle);
1120 #else
1121 USE(persp_textured_triangle);
1122 #endif
1123 }
1124 }
1125 else {
1126 /* general case textured triangles */
1127 USE(general_triangle);
1128 }
1129 }
1130 else {
1131 ASSERT(!swrast->_FogEnabled);
1132 ASSERT(!NEED_SECONDARY_COLOR(ctx));
1133 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1134 /* smooth shaded, no texturing, stippled or some raster ops */
1135 #if CHAN_BITS != 8
1136 USE(general_triangle);
1137 #else
1138 USE(smooth_rgba_triangle);
1139 #endif
1140 }
1141 else {
1142 /* flat shaded, no texturing, stippled or some raster ops */
1143 #if CHAN_BITS != 8
1144 USE(general_triangle);
1145 #else
1146 USE(flat_rgba_triangle);
1147 #endif
1148 }
1149 }
1150 }
1151 else if (ctx->RenderMode==GL_FEEDBACK) {
1152 USE(_swrast_feedback_triangle);
1153 }
1154 else {
1155 /* GL_SELECT mode */
1156 USE(_swrast_select_triangle);
1157 }
1158 }