removed a bad assertion
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /* $Id: s_triangle.c,v 1.56 2002/03/25 17:24:43 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * When the device driver doesn't implement triangle rasterization it
30 * can hook in _swrast_Triangle, which eventually calls one of these
31 * functions to draw triangles.
32 */
33
34 #include "glheader.h"
35 #include "context.h"
36 #include "colormac.h"
37 #include "macros.h"
38 #include "mem.h"
39 #include "mmath.h"
40 #include "texformat.h"
41 #include "teximage.h"
42 #include "texstate.h"
43
44 #include "s_aatriangle.h"
45 #include "s_context.h"
46 #include "s_depth.h"
47 #include "s_feedback.h"
48 #include "s_span.h"
49 #include "s_triangle.h"
50
51
52
53 GLboolean _mesa_cull_triangle( GLcontext *ctx,
54 const SWvertex *v0,
55 const SWvertex *v1,
56 const SWvertex *v2 )
57 {
58 GLfloat ex = v1->win[0] - v0->win[0];
59 GLfloat ey = v1->win[1] - v0->win[1];
60 GLfloat fx = v2->win[0] - v0->win[0];
61 GLfloat fy = v2->win[1] - v0->win[1];
62 GLfloat c = ex*fy-ey*fx;
63
64 if (c * SWRAST_CONTEXT(ctx)->_backface_sign > 0)
65 return 0;
66
67 return 1;
68 }
69
70
71
72 /*
73 * Render a flat-shaded color index triangle.
74 */
75 static void flat_ci_triangle( GLcontext *ctx,
76 const SWvertex *v0,
77 const SWvertex *v1,
78 const SWvertex *v2 )
79 {
80 #define INTERP_Z 1
81 #define INTERP_FOG 1
82
83 #define SETUP_CODE \
84 span.interpMask |= SPAN_INDEX; \
85 span.index = IntToFixed(v2->index); \
86 span.indexStep = 0;
87
88 #define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span, GL_POLYGON )
89
90 #include "s_tritemp.h"
91 }
92
93
94
95 /*
96 * Render a smooth-shaded color index triangle.
97 */
98 static void smooth_ci_triangle( GLcontext *ctx,
99 const SWvertex *v0,
100 const SWvertex *v1,
101 const SWvertex *v2 )
102 {
103 #define INTERP_Z 1
104 #define INTERP_FOG 1
105 #define INTERP_INDEX 1
106
107 #define RENDER_SPAN( span ) _mesa_write_index_span(ctx, &span, GL_POLYGON)
108
109 #include "s_tritemp.h"
110 }
111
112
113
114 /*
115 * Render a flat-shaded RGBA triangle.
116 */
117 static void flat_rgba_triangle( GLcontext *ctx,
118 const SWvertex *v0,
119 const SWvertex *v1,
120 const SWvertex *v2 )
121 {
122 #define INTERP_Z 1
123 #define INTERP_FOG 1
124 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
125
126 #define SETUP_CODE \
127 ASSERT(!ctx->Texture._ReallyEnabled); \
128 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
129 span.interpMask |= SPAN_RGBA; \
130 span.red = ChanToFixed(v2->color[0]); \
131 span.green = ChanToFixed(v2->color[1]); \
132 span.blue = ChanToFixed(v2->color[2]); \
133 span.alpha = ChanToFixed(v2->color[3]); \
134 span.redStep = 0; \
135 span.greenStep = 0; \
136 span.blueStep = 0; \
137 span.alphaStep = 0;
138
139 #define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span, GL_POLYGON )
140
141 #include "s_tritemp.h"
142 }
143
144
145
146 /*
147 * Render a smooth-shaded RGBA triangle.
148 */
149 static void smooth_rgba_triangle( GLcontext *ctx,
150 const SWvertex *v0,
151 const SWvertex *v1,
152 const SWvertex *v2 )
153 {
154
155 #define INTERP_Z 1
156 #define INTERP_FOG 1
157 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
158 #define INTERP_RGB 1
159 #define INTERP_ALPHA 1
160
161 #define SETUP_CODE \
162 { \
163 /* texturing must be off */ \
164 ASSERT(!ctx->Texture._ReallyEnabled); \
165 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
166 }
167
168 #define RENDER_SPAN( span ) _mesa_write_rgba_span(ctx, &span, GL_POLYGON)
169
170 #include "s_tritemp.h"
171
172 }
173
174
175 /*
176 * Render an RGB, GL_DECAL, textured triangle.
177 * Interpolate S,T only w/out mipmapping or perspective correction.
178 *
179 * No fog.
180 */
181 static void simple_textured_triangle( GLcontext *ctx,
182 const SWvertex *v0,
183 const SWvertex *v1,
184 const SWvertex *v2 )
185 {
186 #define INTERP_INT_TEX 1
187 #define S_SCALE twidth
188 #define T_SCALE theight
189
190 #define SETUP_CODE \
191 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
192 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
193 const GLint b = obj->BaseLevel; \
194 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
195 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
196 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \
197 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \
198 const GLint smask = obj->Image[b]->Width - 1; \
199 const GLint tmask = obj->Image[b]->Height - 1; \
200 if (!texture) { \
201 /* this shouldn't happen */ \
202 return; \
203 }
204
205 #define RENDER_SPAN( span ) \
206 GLuint i; \
207 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
208 span.intTex[1] -= FIXED_HALF; \
209 for (i = 0; i < span.end; i++) { \
210 GLint s = FixedToInt(span.intTex[0]) & smask; \
211 GLint t = FixedToInt(span.intTex[1]) & tmask; \
212 GLint pos = (t << twidth_log2) + s; \
213 pos = pos + pos + pos; /* multiply by 3 */ \
214 span.color.rgb[i][RCOMP] = texture[pos]; \
215 span.color.rgb[i][GCOMP] = texture[pos+1]; \
216 span.color.rgb[i][BCOMP] = texture[pos+2]; \
217 span.intTex[0] += span.intTexStep[0]; \
218 span.intTex[1] += span.intTexStep[1]; \
219 } \
220 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
221 (CONST GLchan (*)[3]) span.color.rgb, \
222 NULL );
223
224 #include "s_tritemp.h"
225 }
226
227
228 /*
229 * Render an RGB, GL_DECAL, textured triangle.
230 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
231 * perspective correction.
232 *
233 * No fog.
234 */
235 static void simple_z_textured_triangle( GLcontext *ctx,
236 const SWvertex *v0,
237 const SWvertex *v1,
238 const SWvertex *v2 )
239 {
240 #define INTERP_Z 1
241 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
242 #define INTERP_INT_TEX 1
243 #define S_SCALE twidth
244 #define T_SCALE theight
245
246 #define SETUP_CODE \
247 SWcontext *swrast = SWRAST_CONTEXT(ctx); \
248 struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D; \
249 const GLint b = obj->BaseLevel; \
250 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
251 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
252 const GLint twidth_log2 = obj->Image[b]->WidthLog2; \
253 const GLchan *texture = (const GLchan *) obj->Image[b]->Data; \
254 const GLint smask = obj->Image[b]->Width - 1; \
255 const GLint tmask = obj->Image[b]->Height - 1; \
256 if (!texture) { \
257 /* this shouldn't happen */ \
258 return; \
259 }
260
261 #define RENDER_SPAN( span ) \
262 GLuint i; \
263 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
264 span.intTex[1] -= FIXED_HALF; \
265 for (i = 0; i < span.end; i++) { \
266 const GLdepth z = FixedToDepth(span.z); \
267 if (z < zRow[i]) { \
268 GLint s = FixedToInt(span.intTex[0]) & smask; \
269 GLint t = FixedToInt(span.intTex[1]) & tmask; \
270 GLint pos = (t << twidth_log2) + s; \
271 pos = pos + pos + pos; /* multiply by 3 */ \
272 span.color.rgb[i][RCOMP] = texture[pos]; \
273 span.color.rgb[i][GCOMP] = texture[pos+1]; \
274 span.color.rgb[i][BCOMP] = texture[pos+2]; \
275 zRow[i] = z; \
276 span.mask[i] = 1; \
277 } \
278 else { \
279 span.mask[i] = 0; \
280 } \
281 span.intTex[0] += span.intTexStep[0]; \
282 span.intTex[1] += span.intTexStep[1]; \
283 span.z += span.zStep; \
284 } \
285 (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y, \
286 (CONST GLchan (*)[3]) span.color.rgb, \
287 span.mask );
288
289 #include "s_tritemp.h"
290 }
291
292
293 #if CHAN_TYPE != GL_FLOAT
294
295 struct affine_info
296 {
297 GLenum filter;
298 GLenum format;
299 GLenum envmode;
300 GLint smask, tmask;
301 GLint twidth_log2;
302 const GLchan *texture;
303 GLfixed er, eg, eb, ea;
304 GLint tbytesline, tsize;
305 };
306
307
308 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
309 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
310 * texture env modes.
311 */
312 static INLINE void
313 affine_span(GLcontext *ctx, struct sw_span *span,
314 struct affine_info *info)
315 {
316 GLchan sample[4]; /* the filtered texture sample */
317
318 /* Instead of defining a function for each mode, a test is done
319 * between the outer and inner loops. This is to reduce code size
320 * and complexity. Observe that an optimizing compiler kills
321 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
322 */
323
324 #define NEAREST_RGB \
325 sample[RCOMP] = tex00[RCOMP]; \
326 sample[GCOMP] = tex00[GCOMP]; \
327 sample[BCOMP] = tex00[BCOMP]; \
328 sample[ACOMP] = CHAN_MAX
329
330 #define LINEAR_RGB \
331 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
332 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT; \
333 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
334 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT; \
335 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
336 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT; \
337 sample[ACOMP] = CHAN_MAX
338
339 #define NEAREST_RGBA COPY_CHAN4(sample, tex00)
340
341 #define LINEAR_RGBA \
342 sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) + \
343 tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\
344 sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) + \
345 tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\
346 sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) + \
347 tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\
348 sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) + \
349 tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT
350
351 #define MODULATE \
352 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
353 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
354 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
355 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
356
357 #define DECAL \
358 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
359 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
360 >> (FIXED_SHIFT + 8); \
361 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
362 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
363 >> (FIXED_SHIFT + 8); \
364 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
365 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
366 >> (FIXED_SHIFT + 8); \
367 dest[ACOMP] = FixedToInt(span->alpha)
368
369 #define BLEND \
370 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
371 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
372 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
373 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
374 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
375 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
376 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
377
378 #define REPLACE COPY_CHAN4(dest, sample)
379
380 #define ADD \
381 { \
382 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
383 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
384 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
385 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
386 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
387 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
388 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
389 }
390
391 /* shortcuts */
392
393 #define NEAREST_RGB_REPLACE \
394 NEAREST_RGB; \
395 dest[0] = sample[0]; \
396 dest[1] = sample[1]; \
397 dest[2] = sample[2]; \
398 dest[3] = FixedToInt(span->alpha);
399
400 #define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
401
402 #define SPAN_NEAREST(DO_TEX,COMP) \
403 for (i = 0; i < span->end; i++) { \
404 /* Isn't it necessary to use FixedFloor below?? */ \
405 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
406 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
407 GLint pos = (t << info->twidth_log2) + s; \
408 const GLchan *tex00 = info->texture + COMP * pos; \
409 DO_TEX; \
410 span->red += span->redStep; \
411 span->green += span->greenStep; \
412 span->blue += span->blueStep; \
413 span->alpha += span->alphaStep; \
414 span->intTex[0] += span->intTexStep[0]; \
415 span->intTex[1] += span->intTexStep[1]; \
416 dest += 4; \
417 }
418
419 #define SPAN_LINEAR(DO_TEX,COMP) \
420 for (i = 0; i < span->end; i++) { \
421 /* Isn't it necessary to use FixedFloor below?? */ \
422 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
423 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
424 GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
425 GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
426 GLfixed si = FIXED_FRAC_MASK - sf; \
427 GLfixed ti = FIXED_FRAC_MASK - tf; \
428 GLint pos = (t << info->twidth_log2) + s; \
429 const GLchan *tex00 = info->texture + COMP * pos; \
430 const GLchan *tex10 = tex00 + info->tbytesline; \
431 const GLchan *tex01 = tex00 + COMP; \
432 const GLchan *tex11 = tex10 + COMP; \
433 (void) ti; \
434 (void) si; \
435 if (t == info->tmask) { \
436 tex10 -= info->tsize; \
437 tex11 -= info->tsize; \
438 } \
439 if (s == info->smask) { \
440 tex01 -= info->tbytesline; \
441 tex11 -= info->tbytesline; \
442 } \
443 DO_TEX; \
444 span->red += span->redStep; \
445 span->green += span->greenStep; \
446 span->blue += span->blueStep; \
447 span->alpha += span->alphaStep; \
448 span->intTex[0] += span->intTexStep[0]; \
449 span->intTex[1] += span->intTexStep[1]; \
450 dest += 4; \
451 }
452
453
454 GLuint i;
455 GLchan *dest = span->color.rgba[0];
456
457 span->intTex[0] -= FIXED_HALF;
458 span->intTex[1] -= FIXED_HALF;
459 switch (info->filter) {
460 case GL_NEAREST:
461 switch (info->format) {
462 case GL_RGB:
463 switch (info->envmode) {
464 case GL_MODULATE:
465 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
466 break;
467 case GL_DECAL:
468 case GL_REPLACE:
469 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
470 break;
471 case GL_BLEND:
472 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
473 break;
474 case GL_ADD:
475 SPAN_NEAREST(NEAREST_RGB;ADD,3);
476 break;
477 default:
478 abort();
479 }
480 break;
481 case GL_RGBA:
482 switch(info->envmode) {
483 case GL_MODULATE:
484 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
485 break;
486 case GL_DECAL:
487 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
488 break;
489 case GL_BLEND:
490 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
491 break;
492 case GL_ADD:
493 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
494 break;
495 case GL_REPLACE:
496 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
497 break;
498 default:
499 abort();
500 }
501 break;
502 }
503 break;
504
505 case GL_LINEAR:
506 span->intTex[0] -= FIXED_HALF;
507 span->intTex[1] -= FIXED_HALF;
508 switch (info->format) {
509 case GL_RGB:
510 switch (info->envmode) {
511 case GL_MODULATE:
512 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
513 break;
514 case GL_DECAL:
515 case GL_REPLACE:
516 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
517 break;
518 case GL_BLEND:
519 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
520 break;
521 case GL_ADD:
522 SPAN_LINEAR(LINEAR_RGB;ADD,3);
523 break;
524 default:
525 abort();
526 }
527 break;
528 case GL_RGBA:
529 switch (info->envmode) {
530 case GL_MODULATE:
531 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
532 break;
533 case GL_DECAL:
534 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
535 break;
536 case GL_BLEND:
537 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
538 break;
539 case GL_ADD:
540 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
541 break;
542 case GL_REPLACE:
543 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
544 break;
545 default:
546 abort();
547 } break;
548 }
549 break;
550 }
551 span->interpMask &= ~SPAN_RGBA;
552 ASSERT(span->arrayMask & SPAN_RGBA);
553 _mesa_write_rgba_span(ctx, span, GL_POLYGON);
554
555 #undef SPAN_NEAREST
556 #undef SPAN_LINEAR
557 }
558
559
560
561 /*
562 * Render an RGB/RGBA textured triangle without perspective correction.
563 */
564 static void affine_textured_triangle( GLcontext *ctx,
565 const SWvertex *v0,
566 const SWvertex *v1,
567 const SWvertex *v2 )
568 {
569 #define INTERP_Z 1
570 #define INTERP_FOG 1
571 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
572 #define INTERP_RGB 1
573 #define INTERP_ALPHA 1
574 #define INTERP_INT_TEX 1
575 #define S_SCALE twidth
576 #define T_SCALE theight
577
578 #define SETUP_CODE \
579 struct affine_info info; \
580 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
581 struct gl_texture_object *obj = unit->Current2D; \
582 const GLint b = obj->BaseLevel; \
583 const GLfloat twidth = (GLfloat) obj->Image[b]->Width; \
584 const GLfloat theight = (GLfloat) obj->Image[b]->Height; \
585 info.texture = (const GLchan *) obj->Image[b]->Data; \
586 info.twidth_log2 = obj->Image[b]->WidthLog2; \
587 info.smask = obj->Image[b]->Width - 1; \
588 info.tmask = obj->Image[b]->Height - 1; \
589 info.format = obj->Image[b]->Format; \
590 info.filter = obj->MinFilter; \
591 info.envmode = unit->EnvMode; \
592 span.arrayMask |= SPAN_RGBA; \
593 \
594 if (info.envmode == GL_BLEND) { \
595 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
596 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
597 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
598 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
599 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
600 } \
601 if (!info.texture) { \
602 /* this shouldn't happen */ \
603 return; \
604 } \
605 \
606 switch (info.format) { \
607 case GL_ALPHA: \
608 case GL_LUMINANCE: \
609 case GL_INTENSITY: \
610 info.tbytesline = obj->Image[b]->Width; \
611 break; \
612 case GL_LUMINANCE_ALPHA: \
613 info.tbytesline = obj->Image[b]->Width * 2; \
614 break; \
615 case GL_RGB: \
616 info.tbytesline = obj->Image[b]->Width * 3; \
617 break; \
618 case GL_RGBA: \
619 info.tbytesline = obj->Image[b]->Width * 4; \
620 break; \
621 default: \
622 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
623 return; \
624 } \
625 info.tsize = obj->Image[b]->Height * info.tbytesline;
626
627 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
628
629 #include "s_tritemp.h"
630
631 }
632
633
634
635 struct persp_info
636 {
637 GLenum filter;
638 GLenum format;
639 GLenum envmode;
640 GLint smask, tmask;
641 GLint twidth_log2;
642 const GLchan *texture;
643 GLfixed er, eg, eb, ea; /* texture env color */
644 GLint tbytesline, tsize;
645 };
646
647
648 static INLINE void
649 fast_persp_span(GLcontext *ctx, struct sw_span *span,
650 struct persp_info *info)
651 {
652 GLchan sample[4]; /* the filtered texture sample */
653
654 /* Instead of defining a function for each mode, a test is done
655 * between the outer and inner loops. This is to reduce code size
656 * and complexity. Observe that an optimizing compiler kills
657 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
658 */
659 #define SPAN_NEAREST(DO_TEX,COMP) \
660 for (i = 0; i < span->end; i++) { \
661 GLdouble invQ = tex_coord[2] ? \
662 (1.0 / tex_coord[2]) : 1.0; \
663 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
664 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
665 GLint s = IFLOOR(s_tmp) & info->smask; \
666 GLint t = IFLOOR(t_tmp) & info->tmask; \
667 GLint pos = (t << info->twidth_log2) + s; \
668 const GLchan *tex00 = info->texture + COMP * pos; \
669 DO_TEX; \
670 span->red += span->redStep; \
671 span->green += span->greenStep; \
672 span->blue += span->blueStep; \
673 span->alpha += span->alphaStep; \
674 tex_coord[0] += tex_step[0]; \
675 tex_coord[1] += tex_step[1]; \
676 tex_coord[2] += tex_step[2]; \
677 dest += 4; \
678 }
679
680 #define SPAN_LINEAR(DO_TEX,COMP) \
681 for (i = 0; i < span->end; i++) { \
682 GLdouble invQ = tex_coord[2] ? \
683 (1.0 / tex_coord[2]) : 1.0; \
684 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
685 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
686 GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
687 GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
688 GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
689 GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
690 GLfixed sf = s_fix & FIXED_FRAC_MASK; \
691 GLfixed tf = t_fix & FIXED_FRAC_MASK; \
692 GLfixed si = FIXED_FRAC_MASK - sf; \
693 GLfixed ti = FIXED_FRAC_MASK - tf; \
694 GLint pos = (t << info->twidth_log2) + s; \
695 const GLchan *tex00 = info->texture + COMP * pos; \
696 const GLchan *tex10 = tex00 + info->tbytesline; \
697 const GLchan *tex01 = tex00 + COMP; \
698 const GLchan *tex11 = tex10 + COMP; \
699 (void) ti; \
700 (void) si; \
701 if (t == info->tmask) { \
702 tex10 -= info->tsize; \
703 tex11 -= info->tsize; \
704 } \
705 if (s == info->smask) { \
706 tex01 -= info->tbytesline; \
707 tex11 -= info->tbytesline; \
708 } \
709 DO_TEX; \
710 span->red += span->redStep; \
711 span->green += span->greenStep; \
712 span->blue += span->blueStep; \
713 span->alpha += span->alphaStep; \
714 tex_coord[0] += tex_step[0]; \
715 tex_coord[1] += tex_step[1]; \
716 tex_coord[2] += tex_step[2]; \
717 dest += 4; \
718 }
719
720 GLuint i;
721 GLfloat tex_coord[3], tex_step[3];
722 GLchan *dest = span->color.rgba[0];
723
724 tex_coord[0] = span->tex[0][0] * (info->smask + 1);
725 tex_step[0] = span->texStepX[0][0] * (info->smask + 1);
726 tex_coord[1] = span->tex[0][1] * (info->tmask + 1);
727 tex_step[1] = span->texStepX[0][1] * (info->tmask + 1);
728 /* span->tex[0][2] only if 3D-texturing, here only 2D */
729 tex_coord[2] = span->tex[0][3];
730 tex_step[2] = span->texStepX[0][3];
731
732 switch (info->filter) {
733 case GL_NEAREST:
734 switch (info->format) {
735 case GL_RGB:
736 switch (info->envmode) {
737 case GL_MODULATE:
738 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
739 break;
740 case GL_DECAL:
741 case GL_REPLACE:
742 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
743 break;
744 case GL_BLEND:
745 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
746 break;
747 case GL_ADD:
748 SPAN_NEAREST(NEAREST_RGB;ADD,3);
749 break;
750 default:
751 abort();
752 }
753 break;
754 case GL_RGBA:
755 switch(info->envmode) {
756 case GL_MODULATE:
757 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
758 break;
759 case GL_DECAL:
760 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
761 break;
762 case GL_BLEND:
763 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
764 break;
765 case GL_ADD:
766 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
767 break;
768 case GL_REPLACE:
769 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
770 break;
771 default:
772 abort();
773 }
774 break;
775 }
776 break;
777
778 case GL_LINEAR:
779 switch (info->format) {
780 case GL_RGB:
781 switch (info->envmode) {
782 case GL_MODULATE:
783 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
784 break;
785 case GL_DECAL:
786 case GL_REPLACE:
787 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
788 break;
789 case GL_BLEND:
790 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
791 break;
792 case GL_ADD:
793 SPAN_LINEAR(LINEAR_RGB;ADD,3);
794 break;
795 default:
796 abort();
797 }
798 break;
799 case GL_RGBA:
800 switch (info->envmode) {
801 case GL_MODULATE:
802 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
803 break;
804 case GL_DECAL:
805 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
806 break;
807 case GL_BLEND:
808 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
809 break;
810 case GL_ADD:
811 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
812 break;
813 case GL_REPLACE:
814 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
815 break;
816 default:
817 abort();
818 }
819 break;
820 }
821 break;
822 }
823
824 ASSERT(span->arrayMask & SPAN_RGBA);
825 _mesa_write_rgba_span(ctx, span, GL_POLYGON);
826
827
828 #undef SPAN_NEAREST
829 #undef SPAN_LINEAR
830 }
831
832
833 /*
834 * Render an perspective corrected RGB/RGBA textured triangle.
835 * The Q (aka V in Mesa) coordinate must be zero such that the divide
836 * by interpolated Q/W comes out right.
837 *
838 */
839 static void persp_textured_triangle( GLcontext *ctx,
840 const SWvertex *v0,
841 const SWvertex *v1,
842 const SWvertex *v2 )
843 {
844 #define INTERP_Z 1
845 #define INTERP_FOG 1
846 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
847 #define INTERP_RGB 1
848 #define INTERP_ALPHA 1
849 #define INTERP_TEX 1
850
851 #define SETUP_CODE \
852 struct persp_info info; \
853 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
854 const struct gl_texture_object *obj = unit->Current2D; \
855 const GLint b = obj->BaseLevel; \
856 info.texture = (const GLchan *) obj->Image[b]->Data; \
857 info.twidth_log2 = obj->Image[b]->WidthLog2; \
858 info.smask = obj->Image[b]->Width - 1; \
859 info.tmask = obj->Image[b]->Height - 1; \
860 info.format = obj->Image[b]->Format; \
861 info.filter = obj->MinFilter; \
862 info.envmode = unit->EnvMode; \
863 \
864 if (info.envmode == GL_BLEND) { \
865 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
866 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
867 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
868 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
869 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
870 } \
871 if (!info.texture) { \
872 /* this shouldn't happen */ \
873 return; \
874 } \
875 \
876 switch (info.format) { \
877 case GL_ALPHA: \
878 case GL_LUMINANCE: \
879 case GL_INTENSITY: \
880 info.tbytesline = obj->Image[b]->Width; \
881 break; \
882 case GL_LUMINANCE_ALPHA: \
883 info.tbytesline = obj->Image[b]->Width * 2; \
884 break; \
885 case GL_RGB: \
886 info.tbytesline = obj->Image[b]->Width * 3; \
887 break; \
888 case GL_RGBA: \
889 info.tbytesline = obj->Image[b]->Width * 4; \
890 break; \
891 default: \
892 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
893 return; \
894 } \
895 info.tsize = obj->Image[b]->Height * info.tbytesline;
896
897 #define RENDER_SPAN( span ) \
898 span.interpMask &= ~SPAN_RGBA; \
899 span.arrayMask |= SPAN_RGBA; \
900 fast_persp_span(ctx, &span, &info);
901
902 #include "s_tritemp.h"
903
904 }
905
906
907 #endif /* CHAN_BITS != GL_FLOAT */
908
909
910
911
912 /*
913 * Render a smooth-shaded, textured, RGBA triangle.
914 * Interpolate S,T,R with perspective correction, w/out mipmapping.
915 */
916 static void general_textured_triangle( GLcontext *ctx,
917 const SWvertex *v0,
918 const SWvertex *v1,
919 const SWvertex *v2 )
920 {
921 #define INTERP_Z 1
922 #define INTERP_FOG 1
923 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
924 #define INTERP_RGB 1
925 #define INTERP_SPEC 1
926 #define INTERP_ALPHA 1
927 #define INTERP_TEX 1
928
929 #define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span, GL_POLYGON);
930
931 #include "s_tritemp.h"
932 }
933
934
935
936 /*
937 * This is the big one!
938 * Interpolate Z, RGB, Alpha, specular, fog, and N sets of texture coordinates.
939 * Yup, it's slow.
940 */
941 static void
942 multitextured_triangle( GLcontext *ctx,
943 const SWvertex *v0,
944 const SWvertex *v1,
945 const SWvertex *v2 )
946 {
947
948 #define INTERP_Z 1
949 #define INTERP_FOG 1
950 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
951 #define INTERP_RGB 1
952 #define INTERP_ALPHA 1
953 #define INTERP_SPEC 1
954 #define INTERP_MULTITEX 1
955
956 #define RENDER_SPAN( span ) _mesa_write_texture_span(ctx, &span, GL_POLYGON);
957
958 #include "s_tritemp.h"
959
960 }
961
962
963 static void occlusion_zless_triangle( GLcontext *ctx,
964 const SWvertex *v0,
965 const SWvertex *v1,
966 const SWvertex *v2 )
967 {
968 if (ctx->OcclusionResult) {
969 return;
970 }
971
972 #define DO_OCCLUSION_TEST
973 #define INTERP_Z 1
974 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
975
976 #define RENDER_SPAN( span ) \
977 GLuint i; \
978 for (i = 0; i < span.end; i++) { \
979 GLdepth z = FixedToDepth(span.z); \
980 if (z < zRow[i]) { \
981 ctx->OcclusionResult = GL_TRUE; \
982 return; \
983 } \
984 span.z += span.zStep; \
985 }
986
987 #include "s_tritemp.h"
988 }
989
990 static void nodraw_triangle( GLcontext *ctx,
991 const SWvertex *v0,
992 const SWvertex *v1,
993 const SWvertex *v2 )
994 {
995 (void) (ctx && v0 && v1 && v2);
996 }
997
998
999 /*
1000 * This is used when separate specular color is enabled, but not
1001 * texturing. We add the specular color to the primary color,
1002 * draw the triangle, then restore the original primary color.
1003 * Inefficient, but seldom needed.
1004 */
1005 void _swrast_add_spec_terms_triangle( GLcontext *ctx,
1006 const SWvertex *v0,
1007 const SWvertex *v1,
1008 const SWvertex *v2 )
1009 {
1010 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
1011 SWvertex *ncv1 = (SWvertex *)v1;
1012 SWvertex *ncv2 = (SWvertex *)v2;
1013 #if CHAN_TYPE == GL_FLOAT
1014 GLfloat rSum, gSum, bSum;
1015 #else
1016 GLint rSum, gSum, bSum;
1017 #endif
1018 GLchan c[3][4];
1019 /* save original colors */
1020 COPY_CHAN4( c[0], ncv0->color );
1021 COPY_CHAN4( c[1], ncv1->color );
1022 COPY_CHAN4( c[2], ncv2->color );
1023 /* sum v0 */
1024 rSum = ncv0->color[0] + ncv0->specular[0];
1025 gSum = ncv0->color[1] + ncv0->specular[1];
1026 bSum = ncv0->color[2] + ncv0->specular[2];
1027 ncv0->color[0] = MIN2(rSum, CHAN_MAX);
1028 ncv0->color[1] = MIN2(gSum, CHAN_MAX);
1029 ncv0->color[2] = MIN2(bSum, CHAN_MAX);
1030 /* sum v1 */
1031 rSum = ncv1->color[0] + ncv1->specular[0];
1032 gSum = ncv1->color[1] + ncv1->specular[1];
1033 bSum = ncv1->color[2] + ncv1->specular[2];
1034 ncv1->color[0] = MIN2(rSum, CHAN_MAX);
1035 ncv1->color[1] = MIN2(gSum, CHAN_MAX);
1036 ncv1->color[2] = MIN2(bSum, CHAN_MAX);
1037 /* sum v2 */
1038 rSum = ncv2->color[0] + ncv2->specular[0];
1039 gSum = ncv2->color[1] + ncv2->specular[1];
1040 bSum = ncv2->color[2] + ncv2->specular[2];
1041 ncv2->color[0] = MIN2(rSum, CHAN_MAX);
1042 ncv2->color[1] = MIN2(gSum, CHAN_MAX);
1043 ncv2->color[2] = MIN2(bSum, CHAN_MAX);
1044 /* draw */
1045 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
1046 /* restore original colors */
1047 COPY_CHAN4( ncv0->color, c[0] );
1048 COPY_CHAN4( ncv1->color, c[1] );
1049 COPY_CHAN4( ncv2->color, c[2] );
1050 }
1051
1052
1053
1054 #ifdef DEBUG
1055
1056 /* record the current triangle function name */
1057 const char *_mesa_triFuncName = NULL;
1058
1059 #define USE(triFunc) \
1060 do { \
1061 _mesa_triFuncName = #triFunc; \
1062 /*printf("%s\n", _mesa_triFuncName);*/ \
1063 swrast->Triangle = triFunc; \
1064 } while (0)
1065
1066 #else
1067
1068 #define USE(triFunc) swrast->Triangle = triFunc;
1069
1070 #endif
1071
1072
1073
1074
1075 /*
1076 * Determine which triangle rendering function to use given the current
1077 * rendering context.
1078 *
1079 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1080 * remove tests to this code.
1081 */
1082 void
1083 _swrast_choose_triangle( GLcontext *ctx )
1084 {
1085 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1086 const GLboolean rgbmode = ctx->Visual.rgbMode;
1087
1088 if (ctx->Polygon.CullFlag &&
1089 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1090 USE(nodraw_triangle);
1091 return;
1092 }
1093
1094 if (ctx->RenderMode==GL_RENDER) {
1095
1096 if (ctx->Polygon.SmoothFlag) {
1097 _mesa_set_aa_triangle_function(ctx);
1098 ASSERT(swrast->Triangle);
1099 return;
1100 }
1101
1102 if (ctx->Depth.OcclusionTest &&
1103 ctx->Depth.Test &&
1104 ctx->Depth.Mask == GL_FALSE &&
1105 ctx->Depth.Func == GL_LESS &&
1106 !ctx->Stencil.Enabled) {
1107 if ((rgbmode &&
1108 ctx->Color.ColorMask[0] == 0 &&
1109 ctx->Color.ColorMask[1] == 0 &&
1110 ctx->Color.ColorMask[2] == 0 &&
1111 ctx->Color.ColorMask[3] == 0)
1112 ||
1113 (!rgbmode && ctx->Color.IndexMask == 0)) {
1114 USE(occlusion_zless_triangle);
1115 return;
1116 }
1117 }
1118
1119 if (ctx->Texture._ReallyEnabled) {
1120 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1121 const struct gl_texture_object *texObj2D;
1122 const struct gl_texture_image *texImg;
1123 GLenum minFilter, magFilter, envMode;
1124 GLint format;
1125 texObj2D = ctx->Texture.Unit[0].Current2D;
1126 texImg = texObj2D ? texObj2D->Image[texObj2D->BaseLevel] : NULL;
1127 format = texImg ? texImg->TexFormat->MesaFormat : -1;
1128 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1129 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1130 envMode = ctx->Texture.Unit[0].EnvMode;
1131
1132 /* First see if we can used an optimized 2-D texture function */
1133 if (ctx->Texture._ReallyEnabled==TEXTURE0_2D
1134 && texObj2D->WrapS==GL_REPEAT
1135 && texObj2D->WrapT==GL_REPEAT
1136 && texImg->Border==0
1137 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1138 && minFilter == magFilter
1139 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1140 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) {
1141 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1142 if (minFilter == GL_NEAREST
1143 && format == MESA_FORMAT_RGB
1144 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1145 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1146 && ctx->Depth.Func == GL_LESS
1147 && ctx->Depth.Mask == GL_TRUE)
1148 || swrast->_RasterMask == TEXTURE_BIT)
1149 && ctx->Polygon.StippleFlag == GL_FALSE) {
1150 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1151 USE(simple_z_textured_triangle);
1152 }
1153 else {
1154 USE(simple_textured_triangle);
1155 }
1156 }
1157 else {
1158 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1159 USE(general_textured_triangle);
1160 #else
1161 USE(affine_textured_triangle);
1162 #endif
1163 }
1164 }
1165 else {
1166 #if (CHAN_BITS == 16 || CHAN_BITS == 32)
1167 USE(general_textured_triangle);
1168 #else
1169 USE(persp_textured_triangle);
1170 #endif
1171 }
1172 }
1173 else {
1174 /* general case textured triangles */
1175 if (ctx->Texture._ReallyEnabled > TEXTURE0_ANY) {
1176 USE(multitextured_triangle);
1177 }
1178 else {
1179 USE(general_textured_triangle);
1180 }
1181 }
1182 }
1183 else {
1184 ASSERT(!ctx->Texture._ReallyEnabled);
1185 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1186 /* smooth shaded, no texturing, stippled or some raster ops */
1187 if (rgbmode) {
1188 USE(smooth_rgba_triangle);
1189 }
1190 else {
1191 USE(smooth_ci_triangle);
1192 }
1193 }
1194 else {
1195 /* flat shaded, no texturing, stippled or some raster ops */
1196 if (rgbmode) {
1197 USE(flat_rgba_triangle);
1198 }
1199 else {
1200 USE(flat_ci_triangle);
1201 }
1202 }
1203 }
1204 }
1205 else if (ctx->RenderMode==GL_FEEDBACK) {
1206 USE(_mesa_feedback_triangle);
1207 }
1208 else {
1209 /* GL_SELECT mode */
1210 USE(_mesa_select_triangle);
1211 }
1212 }