Merge branch 'master' into r300-compiler
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/colormac.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/texformat.h"
38 #include "shader/prog_instruction.h"
39
40 #include "s_aatriangle.h"
41 #include "s_context.h"
42 #include "s_feedback.h"
43 #include "s_span.h"
44 #include "s_triangle.h"
45
46
47 /**
48 * Test if a triangle should be culled. Used for feedback and selection mode.
49 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
50 */
51 GLboolean
52 _swrast_culltriangle( GLcontext *ctx,
53 const SWvertex *v0,
54 const SWvertex *v1,
55 const SWvertex *v2 )
56 {
57 SWcontext *swrast = SWRAST_CONTEXT(ctx);
58 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
59 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
60 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
61 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
62 GLfloat c = ex*fy-ey*fx;
63
64 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
65 return GL_FALSE;
66
67 return GL_TRUE;
68 }
69
70
71
72 /*
73 * Render a smooth or flat-shaded color index triangle.
74 */
75 #define NAME ci_triangle
76 #define INTERP_Z 1
77 #define INTERP_ATTRIBS 1 /* just for fog */
78 #define INTERP_INDEX 1
79 #define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span);
80 #include "s_tritemp.h"
81
82
83
84 /*
85 * Render a flat-shaded RGBA triangle.
86 */
87 #define NAME flat_rgba_triangle
88 #define INTERP_Z 1
89 #define SETUP_CODE \
90 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
91 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
92 span.interpMask |= SPAN_RGBA; \
93 span.red = ChanToFixed(v2->color[0]); \
94 span.green = ChanToFixed(v2->color[1]); \
95 span.blue = ChanToFixed(v2->color[2]); \
96 span.alpha = ChanToFixed(v2->color[3]); \
97 span.redStep = 0; \
98 span.greenStep = 0; \
99 span.blueStep = 0; \
100 span.alphaStep = 0;
101 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
102 #include "s_tritemp.h"
103
104
105
106 /*
107 * Render a smooth-shaded RGBA triangle.
108 */
109 #define NAME smooth_rgba_triangle
110 #define INTERP_Z 1
111 #define INTERP_RGB 1
112 #define INTERP_ALPHA 1
113 #define SETUP_CODE \
114 { \
115 /* texturing must be off */ \
116 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
117 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
118 }
119 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
120 #include "s_tritemp.h"
121
122
123
124 /*
125 * Render an RGB, GL_DECAL, textured triangle.
126 * Interpolate S,T only w/out mipmapping or perspective correction.
127 *
128 * No fog. No depth testing.
129 */
130 #define NAME simple_textured_triangle
131 #define INTERP_INT_TEX 1
132 #define S_SCALE twidth
133 #define T_SCALE theight
134
135 #define SETUP_CODE \
136 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
137 struct gl_texture_object *obj = \
138 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
139 const GLint b = obj->BaseLevel; \
140 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
141 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
142 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
143 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
144 const GLint smask = obj->Image[0][b]->Width - 1; \
145 const GLint tmask = obj->Image[0][b]->Height - 1; \
146 if (!rb || !texture) { \
147 return; \
148 }
149
150 #define RENDER_SPAN( span ) \
151 GLuint i; \
152 GLchan rgb[MAX_WIDTH][3]; \
153 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
154 span.intTex[1] -= FIXED_HALF; \
155 for (i = 0; i < span.end; i++) { \
156 GLint s = FixedToInt(span.intTex[0]) & smask; \
157 GLint t = FixedToInt(span.intTex[1]) & tmask; \
158 GLint pos = (t << twidth_log2) + s; \
159 pos = pos + pos + pos; /* multiply by 3 */ \
160 rgb[i][RCOMP] = texture[pos]; \
161 rgb[i][GCOMP] = texture[pos+1]; \
162 rgb[i][BCOMP] = texture[pos+2]; \
163 span.intTex[0] += span.intTexStep[0]; \
164 span.intTex[1] += span.intTexStep[1]; \
165 } \
166 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL);
167
168 #include "s_tritemp.h"
169
170
171
172 /*
173 * Render an RGB, GL_DECAL, textured triangle.
174 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
175 * perspective correction.
176 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
177 *
178 * No fog.
179 */
180 #define NAME simple_z_textured_triangle
181 #define INTERP_Z 1
182 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
183 #define INTERP_INT_TEX 1
184 #define S_SCALE twidth
185 #define T_SCALE theight
186
187 #define SETUP_CODE \
188 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
189 struct gl_texture_object *obj = \
190 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
191 const GLint b = obj->BaseLevel; \
192 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
193 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
194 const GLint twidth_log2 = obj->Image[0][b]->WidthLog2; \
195 const GLchan *texture = (const GLchan *) obj->Image[0][b]->Data; \
196 const GLint smask = obj->Image[0][b]->Width - 1; \
197 const GLint tmask = obj->Image[0][b]->Height - 1; \
198 if (!rb || !texture) { \
199 return; \
200 }
201
202 #define RENDER_SPAN( span ) \
203 GLuint i; \
204 GLchan rgb[MAX_WIDTH][3]; \
205 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
206 span.intTex[1] -= FIXED_HALF; \
207 for (i = 0; i < span.end; i++) { \
208 const GLuint z = FixedToDepth(span.z); \
209 if (z < zRow[i]) { \
210 GLint s = FixedToInt(span.intTex[0]) & smask; \
211 GLint t = FixedToInt(span.intTex[1]) & tmask; \
212 GLint pos = (t << twidth_log2) + s; \
213 pos = pos + pos + pos; /* multiply by 3 */ \
214 rgb[i][RCOMP] = texture[pos]; \
215 rgb[i][GCOMP] = texture[pos+1]; \
216 rgb[i][BCOMP] = texture[pos+2]; \
217 zRow[i] = z; \
218 span.array->mask[i] = 1; \
219 } \
220 else { \
221 span.array->mask[i] = 0; \
222 } \
223 span.intTex[0] += span.intTexStep[0]; \
224 span.intTex[1] += span.intTexStep[1]; \
225 span.z += span.zStep; \
226 } \
227 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask);
228
229 #include "s_tritemp.h"
230
231
232 #if CHAN_TYPE != GL_FLOAT
233
234 struct affine_info
235 {
236 GLenum filter;
237 GLenum format;
238 GLenum envmode;
239 GLint smask, tmask;
240 GLint twidth_log2;
241 const GLchan *texture;
242 GLfixed er, eg, eb, ea;
243 GLint tbytesline, tsize;
244 };
245
246
247 static INLINE GLint
248 ilerp(GLint t, GLint a, GLint b)
249 {
250 return a + ((t * (b - a)) >> FIXED_SHIFT);
251 }
252
253 static INLINE GLint
254 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
255 {
256 const GLint temp0 = ilerp(ia, v00, v10);
257 const GLint temp1 = ilerp(ia, v01, v11);
258 return ilerp(ib, temp0, temp1);
259 }
260
261
262 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
263 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
264 * texture env modes.
265 */
266 static INLINE void
267 affine_span(GLcontext *ctx, SWspan *span,
268 struct affine_info *info)
269 {
270 GLchan sample[4]; /* the filtered texture sample */
271 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
272
273 /* Instead of defining a function for each mode, a test is done
274 * between the outer and inner loops. This is to reduce code size
275 * and complexity. Observe that an optimizing compiler kills
276 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
277 */
278
279 #define NEAREST_RGB \
280 sample[RCOMP] = tex00[RCOMP]; \
281 sample[GCOMP] = tex00[GCOMP]; \
282 sample[BCOMP] = tex00[BCOMP]; \
283 sample[ACOMP] = CHAN_MAX
284
285 #define LINEAR_RGB \
286 sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
287 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
288 sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
289 sample[ACOMP] = CHAN_MAX;
290
291 #define NEAREST_RGBA COPY_CHAN4(sample, tex00)
292
293 #define LINEAR_RGBA \
294 sample[RCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
295 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
296 sample[BCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
297 sample[ACOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3])
298
299 #define MODULATE \
300 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
301 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
302 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
303 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
304
305 #define DECAL \
306 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
307 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
308 >> (FIXED_SHIFT + 8); \
309 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
310 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
311 >> (FIXED_SHIFT + 8); \
312 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
313 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
314 >> (FIXED_SHIFT + 8); \
315 dest[ACOMP] = FixedToInt(span->alpha)
316
317 #define BLEND \
318 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
319 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
320 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
321 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
322 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
323 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
324 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
325
326 #define REPLACE COPY_CHAN4(dest, sample)
327
328 #define ADD \
329 { \
330 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
331 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
332 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
333 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
334 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
335 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
336 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
337 }
338
339 /* shortcuts */
340
341 #define NEAREST_RGB_REPLACE \
342 NEAREST_RGB; \
343 dest[0] = sample[0]; \
344 dest[1] = sample[1]; \
345 dest[2] = sample[2]; \
346 dest[3] = FixedToInt(span->alpha);
347
348 #define NEAREST_RGBA_REPLACE COPY_CHAN4(dest, tex00)
349
350 #define SPAN_NEAREST(DO_TEX, COMPS) \
351 for (i = 0; i < span->end; i++) { \
352 /* Isn't it necessary to use FixedFloor below?? */ \
353 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
354 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
355 GLint pos = (t << info->twidth_log2) + s; \
356 const GLchan *tex00 = info->texture + COMPS * pos; \
357 DO_TEX; \
358 span->red += span->redStep; \
359 span->green += span->greenStep; \
360 span->blue += span->blueStep; \
361 span->alpha += span->alphaStep; \
362 span->intTex[0] += span->intTexStep[0]; \
363 span->intTex[1] += span->intTexStep[1]; \
364 dest += 4; \
365 }
366
367 #define SPAN_LINEAR(DO_TEX, COMPS) \
368 for (i = 0; i < span->end; i++) { \
369 /* Isn't it necessary to use FixedFloor below?? */ \
370 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
371 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
372 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
373 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
374 const GLint pos = (t << info->twidth_log2) + s; \
375 const GLchan *tex00 = info->texture + COMPS * pos; \
376 const GLchan *tex10 = tex00 + info->tbytesline; \
377 const GLchan *tex01 = tex00 + COMPS; \
378 const GLchan *tex11 = tex10 + COMPS; \
379 if (t == info->tmask) { \
380 tex10 -= info->tsize; \
381 tex11 -= info->tsize; \
382 } \
383 if (s == info->smask) { \
384 tex01 -= info->tbytesline; \
385 tex11 -= info->tbytesline; \
386 } \
387 DO_TEX; \
388 span->red += span->redStep; \
389 span->green += span->greenStep; \
390 span->blue += span->blueStep; \
391 span->alpha += span->alphaStep; \
392 span->intTex[0] += span->intTexStep[0]; \
393 span->intTex[1] += span->intTexStep[1]; \
394 dest += 4; \
395 }
396
397
398 GLuint i;
399 GLchan *dest = span->array->rgba[0];
400
401 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
402 ctx->Texture._EnabledCoordUnits = 0x0;
403
404 span->intTex[0] -= FIXED_HALF;
405 span->intTex[1] -= FIXED_HALF;
406 switch (info->filter) {
407 case GL_NEAREST:
408 switch (info->format) {
409 case GL_RGB:
410 switch (info->envmode) {
411 case GL_MODULATE:
412 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
413 break;
414 case GL_DECAL:
415 case GL_REPLACE:
416 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
417 break;
418 case GL_BLEND:
419 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
420 break;
421 case GL_ADD:
422 SPAN_NEAREST(NEAREST_RGB;ADD,3);
423 break;
424 default:
425 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
426 return;
427 }
428 break;
429 case GL_RGBA:
430 switch(info->envmode) {
431 case GL_MODULATE:
432 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
433 break;
434 case GL_DECAL:
435 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
436 break;
437 case GL_BLEND:
438 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
439 break;
440 case GL_ADD:
441 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
442 break;
443 case GL_REPLACE:
444 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
445 break;
446 default:
447 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
448 return;
449 }
450 break;
451 }
452 break;
453
454 case GL_LINEAR:
455 span->intTex[0] -= FIXED_HALF;
456 span->intTex[1] -= FIXED_HALF;
457 switch (info->format) {
458 case GL_RGB:
459 switch (info->envmode) {
460 case GL_MODULATE:
461 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
462 break;
463 case GL_DECAL:
464 case GL_REPLACE:
465 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
466 break;
467 case GL_BLEND:
468 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
469 break;
470 case GL_ADD:
471 SPAN_LINEAR(LINEAR_RGB;ADD,3);
472 break;
473 default:
474 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
475 return;
476 }
477 break;
478 case GL_RGBA:
479 switch (info->envmode) {
480 case GL_MODULATE:
481 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
482 break;
483 case GL_DECAL:
484 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
485 break;
486 case GL_BLEND:
487 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
488 break;
489 case GL_ADD:
490 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
491 break;
492 case GL_REPLACE:
493 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
494 break;
495 default:
496 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
497 return;
498 }
499 break;
500 }
501 break;
502 }
503 span->interpMask &= ~SPAN_RGBA;
504 ASSERT(span->arrayMask & SPAN_RGBA);
505
506 _swrast_write_rgba_span(ctx, span);
507
508 /* re-enable texture units */
509 ctx->Texture._EnabledCoordUnits = texEnableSave;
510
511 #undef SPAN_NEAREST
512 #undef SPAN_LINEAR
513 }
514
515
516
517 /*
518 * Render an RGB/RGBA textured triangle without perspective correction.
519 */
520 #define NAME affine_textured_triangle
521 #define INTERP_Z 1
522 #define INTERP_RGB 1
523 #define INTERP_ALPHA 1
524 #define INTERP_INT_TEX 1
525 #define S_SCALE twidth
526 #define T_SCALE theight
527
528 #define SETUP_CODE \
529 struct affine_info info; \
530 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
531 struct gl_texture_object *obj = \
532 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
533 const GLint b = obj->BaseLevel; \
534 const GLfloat twidth = (GLfloat) obj->Image[0][b]->Width; \
535 const GLfloat theight = (GLfloat) obj->Image[0][b]->Height; \
536 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
537 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
538 info.smask = obj->Image[0][b]->Width - 1; \
539 info.tmask = obj->Image[0][b]->Height - 1; \
540 info.format = obj->Image[0][b]->_BaseFormat; \
541 info.filter = obj->MinFilter; \
542 info.envmode = unit->EnvMode; \
543 span.arrayMask |= SPAN_RGBA; \
544 \
545 if (info.envmode == GL_BLEND) { \
546 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
547 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
548 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
549 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
550 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
551 } \
552 if (!info.texture) { \
553 /* this shouldn't happen */ \
554 return; \
555 } \
556 \
557 switch (info.format) { \
558 case GL_ALPHA: \
559 case GL_LUMINANCE: \
560 case GL_INTENSITY: \
561 info.tbytesline = obj->Image[0][b]->Width; \
562 break; \
563 case GL_LUMINANCE_ALPHA: \
564 info.tbytesline = obj->Image[0][b]->Width * 2; \
565 break; \
566 case GL_RGB: \
567 info.tbytesline = obj->Image[0][b]->Width * 3; \
568 break; \
569 case GL_RGBA: \
570 info.tbytesline = obj->Image[0][b]->Width * 4; \
571 break; \
572 default: \
573 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
574 return; \
575 } \
576 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
577
578 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
579
580 #include "s_tritemp.h"
581
582
583
584 struct persp_info
585 {
586 GLenum filter;
587 GLenum format;
588 GLenum envmode;
589 GLint smask, tmask;
590 GLint twidth_log2;
591 const GLchan *texture;
592 GLfixed er, eg, eb, ea; /* texture env color */
593 GLint tbytesline, tsize;
594 };
595
596
597 static INLINE void
598 fast_persp_span(GLcontext *ctx, SWspan *span,
599 struct persp_info *info)
600 {
601 GLchan sample[4]; /* the filtered texture sample */
602
603 /* Instead of defining a function for each mode, a test is done
604 * between the outer and inner loops. This is to reduce code size
605 * and complexity. Observe that an optimizing compiler kills
606 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
607 */
608 #define SPAN_NEAREST(DO_TEX,COMP) \
609 for (i = 0; i < span->end; i++) { \
610 GLdouble invQ = tex_coord[2] ? \
611 (1.0 / tex_coord[2]) : 1.0; \
612 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
613 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
614 GLint s = IFLOOR(s_tmp) & info->smask; \
615 GLint t = IFLOOR(t_tmp) & info->tmask; \
616 GLint pos = (t << info->twidth_log2) + s; \
617 const GLchan *tex00 = info->texture + COMP * pos; \
618 DO_TEX; \
619 span->red += span->redStep; \
620 span->green += span->greenStep; \
621 span->blue += span->blueStep; \
622 span->alpha += span->alphaStep; \
623 tex_coord[0] += tex_step[0]; \
624 tex_coord[1] += tex_step[1]; \
625 tex_coord[2] += tex_step[2]; \
626 dest += 4; \
627 }
628
629 #define SPAN_LINEAR(DO_TEX,COMP) \
630 for (i = 0; i < span->end; i++) { \
631 GLdouble invQ = tex_coord[2] ? \
632 (1.0 / tex_coord[2]) : 1.0; \
633 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
634 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
635 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
636 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
637 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
638 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
639 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
640 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
641 const GLint pos = (t << info->twidth_log2) + s; \
642 const GLchan *tex00 = info->texture + COMP * pos; \
643 const GLchan *tex10 = tex00 + info->tbytesline; \
644 const GLchan *tex01 = tex00 + COMP; \
645 const GLchan *tex11 = tex10 + COMP; \
646 if (t == info->tmask) { \
647 tex10 -= info->tsize; \
648 tex11 -= info->tsize; \
649 } \
650 if (s == info->smask) { \
651 tex01 -= info->tbytesline; \
652 tex11 -= info->tbytesline; \
653 } \
654 DO_TEX; \
655 span->red += span->redStep; \
656 span->green += span->greenStep; \
657 span->blue += span->blueStep; \
658 span->alpha += span->alphaStep; \
659 tex_coord[0] += tex_step[0]; \
660 tex_coord[1] += tex_step[1]; \
661 tex_coord[2] += tex_step[2]; \
662 dest += 4; \
663 }
664
665 GLuint i;
666 GLfloat tex_coord[3], tex_step[3];
667 GLchan *dest = span->array->rgba[0];
668
669 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
670 ctx->Texture._EnabledCoordUnits = 0;
671
672 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
673 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
674 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
675 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
676 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
677 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
678 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
679
680 switch (info->filter) {
681 case GL_NEAREST:
682 switch (info->format) {
683 case GL_RGB:
684 switch (info->envmode) {
685 case GL_MODULATE:
686 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
687 break;
688 case GL_DECAL:
689 case GL_REPLACE:
690 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
691 break;
692 case GL_BLEND:
693 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
694 break;
695 case GL_ADD:
696 SPAN_NEAREST(NEAREST_RGB;ADD,3);
697 break;
698 default:
699 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
700 return;
701 }
702 break;
703 case GL_RGBA:
704 switch(info->envmode) {
705 case GL_MODULATE:
706 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
707 break;
708 case GL_DECAL:
709 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
710 break;
711 case GL_BLEND:
712 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
713 break;
714 case GL_ADD:
715 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
716 break;
717 case GL_REPLACE:
718 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
719 break;
720 default:
721 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
722 return;
723 }
724 break;
725 }
726 break;
727
728 case GL_LINEAR:
729 switch (info->format) {
730 case GL_RGB:
731 switch (info->envmode) {
732 case GL_MODULATE:
733 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
734 break;
735 case GL_DECAL:
736 case GL_REPLACE:
737 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
738 break;
739 case GL_BLEND:
740 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
741 break;
742 case GL_ADD:
743 SPAN_LINEAR(LINEAR_RGB;ADD,3);
744 break;
745 default:
746 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
747 return;
748 }
749 break;
750 case GL_RGBA:
751 switch (info->envmode) {
752 case GL_MODULATE:
753 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
754 break;
755 case GL_DECAL:
756 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
757 break;
758 case GL_BLEND:
759 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
760 break;
761 case GL_ADD:
762 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
763 break;
764 case GL_REPLACE:
765 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
766 break;
767 default:
768 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
769 return;
770 }
771 break;
772 }
773 break;
774 }
775
776 ASSERT(span->arrayMask & SPAN_RGBA);
777 _swrast_write_rgba_span(ctx, span);
778
779 #undef SPAN_NEAREST
780 #undef SPAN_LINEAR
781
782 /* restore state */
783 ctx->Texture._EnabledCoordUnits = texEnableSave;
784 }
785
786
787 /*
788 * Render an perspective corrected RGB/RGBA textured triangle.
789 * The Q (aka V in Mesa) coordinate must be zero such that the divide
790 * by interpolated Q/W comes out right.
791 *
792 */
793 #define NAME persp_textured_triangle
794 #define INTERP_Z 1
795 #define INTERP_RGB 1
796 #define INTERP_ALPHA 1
797 #define INTERP_ATTRIBS 1
798
799 #define SETUP_CODE \
800 struct persp_info info; \
801 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
802 struct gl_texture_object *obj = \
803 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
804 const GLint b = obj->BaseLevel; \
805 info.texture = (const GLchan *) obj->Image[0][b]->Data; \
806 info.twidth_log2 = obj->Image[0][b]->WidthLog2; \
807 info.smask = obj->Image[0][b]->Width - 1; \
808 info.tmask = obj->Image[0][b]->Height - 1; \
809 info.format = obj->Image[0][b]->_BaseFormat; \
810 info.filter = obj->MinFilter; \
811 info.envmode = unit->EnvMode; \
812 \
813 if (info.envmode == GL_BLEND) { \
814 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
815 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
816 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
817 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
818 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
819 } \
820 if (!info.texture) { \
821 /* this shouldn't happen */ \
822 return; \
823 } \
824 \
825 switch (info.format) { \
826 case GL_ALPHA: \
827 case GL_LUMINANCE: \
828 case GL_INTENSITY: \
829 info.tbytesline = obj->Image[0][b]->Width; \
830 break; \
831 case GL_LUMINANCE_ALPHA: \
832 info.tbytesline = obj->Image[0][b]->Width * 2; \
833 break; \
834 case GL_RGB: \
835 info.tbytesline = obj->Image[0][b]->Width * 3; \
836 break; \
837 case GL_RGBA: \
838 info.tbytesline = obj->Image[0][b]->Width * 4; \
839 break; \
840 default: \
841 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
842 return; \
843 } \
844 info.tsize = obj->Image[0][b]->Height * info.tbytesline;
845
846 #define RENDER_SPAN( span ) \
847 span.interpMask &= ~SPAN_RGBA; \
848 span.arrayMask |= SPAN_RGBA; \
849 fast_persp_span(ctx, &span, &info);
850
851 #include "s_tritemp.h"
852
853 #endif /*CHAN_TYPE != GL_FLOAT*/
854
855
856
857 /*
858 * Render an RGBA triangle with arbitrary attributes.
859 */
860 #define NAME general_triangle
861 #define INTERP_Z 1
862 #define INTERP_RGB 1
863 #define INTERP_ALPHA 1
864 #define INTERP_ATTRIBS 1
865 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
866 #include "s_tritemp.h"
867
868
869
870
871 /*
872 * Special tri function for occlusion testing
873 */
874 #define NAME occlusion_zless_triangle
875 #define INTERP_Z 1
876 #define SETUP_CODE \
877 struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \
878 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
879 ASSERT(ctx->Depth.Test); \
880 ASSERT(!ctx->Depth.Mask); \
881 ASSERT(ctx->Depth.Func == GL_LESS); \
882 if (!q) { \
883 return; \
884 }
885 #define RENDER_SPAN( span ) \
886 if (rb->DepthBits <= 16) { \
887 GLuint i; \
888 const GLushort *zRow = (const GLushort *) \
889 rb->GetPointer(ctx, rb, span.x, span.y); \
890 for (i = 0; i < span.end; i++) { \
891 GLuint z = FixedToDepth(span.z); \
892 if (z < zRow[i]) { \
893 q->Result++; \
894 } \
895 span.z += span.zStep; \
896 } \
897 } \
898 else { \
899 GLuint i; \
900 const GLuint *zRow = (const GLuint *) \
901 rb->GetPointer(ctx, rb, span.x, span.y); \
902 for (i = 0; i < span.end; i++) { \
903 if ((GLuint)span.z < zRow[i]) { \
904 q->Result++; \
905 } \
906 span.z += span.zStep; \
907 } \
908 }
909 #include "s_tritemp.h"
910
911
912
913 static void
914 nodraw_triangle( GLcontext *ctx,
915 const SWvertex *v0,
916 const SWvertex *v1,
917 const SWvertex *v2 )
918 {
919 (void) (ctx && v0 && v1 && v2);
920 }
921
922
923 /*
924 * This is used when separate specular color is enabled, but not
925 * texturing. We add the specular color to the primary color,
926 * draw the triangle, then restore the original primary color.
927 * Inefficient, but seldom needed.
928 */
929 void
930 _swrast_add_spec_terms_triangle(GLcontext *ctx, const SWvertex *v0,
931 const SWvertex *v1, const SWvertex *v2)
932 {
933 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
934 SWvertex *ncv1 = (SWvertex *)v1;
935 SWvertex *ncv2 = (SWvertex *)v2;
936 GLfloat rSum, gSum, bSum;
937 GLchan cSave[3][4];
938
939 /* save original colors */
940 COPY_CHAN4( cSave[0], ncv0->color );
941 COPY_CHAN4( cSave[1], ncv1->color );
942 COPY_CHAN4( cSave[2], ncv2->color );
943 /* sum v0 */
944 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0];
945 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1];
946 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2];
947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
948 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
949 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
950 /* sum v1 */
951 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0];
952 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1];
953 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2];
954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
955 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
956 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
957 /* sum v2 */
958 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0];
959 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1];
960 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2];
961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
962 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
963 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
964 /* draw */
965 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
966 /* restore original colors */
967 COPY_CHAN4( ncv0->color, cSave[0] );
968 COPY_CHAN4( ncv1->color, cSave[1] );
969 COPY_CHAN4( ncv2->color, cSave[2] );
970 }
971
972
973
974 #ifdef DEBUG
975
976 /* record the current triangle function name */
977 const char *_mesa_triFuncName = NULL;
978
979 #define USE(triFunc) \
980 do { \
981 _mesa_triFuncName = #triFunc; \
982 /*printf("%s\n", _mesa_triFuncName);*/ \
983 swrast->Triangle = triFunc; \
984 } while (0)
985
986 #else
987
988 #define USE(triFunc) swrast->Triangle = triFunc;
989
990 #endif
991
992
993
994
995 /*
996 * Determine which triangle rendering function to use given the current
997 * rendering context.
998 *
999 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1000 * remove tests to this code.
1001 */
1002 void
1003 _swrast_choose_triangle( GLcontext *ctx )
1004 {
1005 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1006 const GLboolean rgbmode = ctx->Visual.rgbMode;
1007
1008 if (ctx->Polygon.CullFlag &&
1009 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1010 USE(nodraw_triangle);
1011 return;
1012 }
1013
1014 if (ctx->RenderMode==GL_RENDER) {
1015
1016 if (ctx->Polygon.SmoothFlag) {
1017 _swrast_set_aa_triangle_function(ctx);
1018 ASSERT(swrast->Triangle);
1019 return;
1020 }
1021
1022 /* special case for occlusion testing */
1023 if (ctx->Query.CurrentOcclusionObject &&
1024 ctx->Depth.Test &&
1025 ctx->Depth.Mask == GL_FALSE &&
1026 ctx->Depth.Func == GL_LESS &&
1027 !ctx->Stencil._Enabled) {
1028 if ((rgbmode &&
1029 ctx->Color.ColorMask[0] == 0 &&
1030 ctx->Color.ColorMask[1] == 0 &&
1031 ctx->Color.ColorMask[2] == 0 &&
1032 ctx->Color.ColorMask[3] == 0)
1033 ||
1034 (!rgbmode && ctx->Color.IndexMask == 0)) {
1035 USE(occlusion_zless_triangle);
1036 return;
1037 }
1038 }
1039
1040 if (!rgbmode) {
1041 USE(ci_triangle);
1042 return;
1043 }
1044
1045 /*
1046 * XXX should examine swrast->_ActiveAttribMask to determine what
1047 * needs to be interpolated.
1048 */
1049 if (ctx->Texture._EnabledCoordUnits ||
1050 ctx->FragmentProgram._Current ||
1051 ctx->ATIFragmentShader._Enabled ||
1052 NEED_SECONDARY_COLOR(ctx) ||
1053 swrast->_FogEnabled) {
1054 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1055 const struct gl_texture_object *texObj2D;
1056 const struct gl_texture_image *texImg;
1057 GLenum minFilter, magFilter, envMode;
1058 GLint format;
1059 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
1060
1061 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
1062 format = texImg ? texImg->TexFormat->MesaFormat : -1;
1063 minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1064 magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1065 envMode = ctx->Texture.Unit[0].EnvMode;
1066
1067 /* First see if we can use an optimized 2-D texture function */
1068 if (ctx->Texture._EnabledCoordUnits == 0x1
1069 && !ctx->FragmentProgram._Current
1070 && !ctx->ATIFragmentShader._Enabled
1071 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1072 && texObj2D->WrapS == GL_REPEAT
1073 && texObj2D->WrapT == GL_REPEAT
1074 && texObj2D->_Swizzle == SWIZZLE_NOOP
1075 && texImg->_IsPowerOfTwo
1076 && texImg->Border == 0
1077 && texImg->Width == texImg->RowStride
1078 && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1079 && minFilter == magFilter
1080 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1081 && !swrast->_FogEnabled
1082 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
1083 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
1084 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1085 if (minFilter == GL_NEAREST
1086 && format == MESA_FORMAT_RGB
1087 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1088 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1089 && ctx->Depth.Func == GL_LESS
1090 && ctx->Depth.Mask == GL_TRUE)
1091 || swrast->_RasterMask == TEXTURE_BIT)
1092 && ctx->Polygon.StippleFlag == GL_FALSE
1093 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1094 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1095 USE(simple_z_textured_triangle);
1096 }
1097 else {
1098 USE(simple_textured_triangle);
1099 }
1100 }
1101 else {
1102 #if CHAN_BITS != 8
1103 USE(general_triangle);
1104 #else
1105 USE(affine_textured_triangle);
1106 #endif
1107 }
1108 }
1109 else {
1110 #if CHAN_BITS != 8
1111 USE(general_triangle);
1112 #else
1113 USE(persp_textured_triangle);
1114 #endif
1115 }
1116 }
1117 else {
1118 /* general case textured triangles */
1119 USE(general_triangle);
1120 }
1121 }
1122 else {
1123 ASSERT(!swrast->_FogEnabled);
1124 ASSERT(!NEED_SECONDARY_COLOR(ctx));
1125 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1126 /* smooth shaded, no texturing, stippled or some raster ops */
1127 #if CHAN_BITS != 8
1128 USE(general_triangle);
1129 #else
1130 USE(smooth_rgba_triangle);
1131 #endif
1132 }
1133 else {
1134 /* flat shaded, no texturing, stippled or some raster ops */
1135 #if CHAN_BITS != 8
1136 USE(general_triangle);
1137 #else
1138 USE(flat_rgba_triangle);
1139 #endif
1140 }
1141 }
1142 }
1143 else if (ctx->RenderMode==GL_FEEDBACK) {
1144 USE(_swrast_feedback_triangle);
1145 }
1146 else {
1147 /* GL_SELECT mode */
1148 USE(_swrast_select_triangle);
1149 }
1150 }