c609210c0ec9f7bc0ee33edce200dddd901ff872
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.0
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /*
26 * Triangle Rasterizer Template
27 *
28 * This file is #include'd to generate custom triangle rasterizers.
29 *
30 * The following macros may be defined to indicate what auxillary information
31 * must be interpolated across the triangle:
32 * INTERP_Z - if defined, interpolate integer Z values
33 * INTERP_RGB - if defined, interpolate integer RGB values
34 * INTERP_ALPHA - if defined, interpolate integer Alpha values
35 * INTERP_INDEX - if defined, interpolate color index values
36 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
37 * (fast, simple 2-D texture mapping, without
38 * perspective correction)
39 * INTERP_ATTRIBS - if defined, interpolate arbitrary attribs (texcoords,
40 * varying vars, etc) This also causes W to be
41 * computed for perspective correction).
42 *
43 * When one can directly address pixels in the color buffer the following
44 * macros can be defined and used to compute pixel addresses during
45 * rasterization (see pRow):
46 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
47 * BYTES_PER_ROW - number of bytes per row in the color buffer
48 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
49 * Y==0 at bottom of screen and increases upward.
50 *
51 * Similarly, for direct depth buffer access, this type is used for depth
52 * buffer addressing (see zRow):
53 * DEPTH_TYPE - either GLushort or GLuint
54 *
55 * Optionally, one may provide one-time setup code per triangle:
56 * SETUP_CODE - code which is to be executed once per triangle
57 *
58 * The following macro MUST be defined:
59 * RENDER_SPAN(span) - code to write a span of pixels.
60 *
61 * This code was designed for the origin to be in the lower-left corner.
62 *
63 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
64 *
65 *
66 * Some notes on rasterization accuracy:
67 *
68 * This code uses fixed point arithmetic (the GLfixed type) to iterate
69 * over the triangle edges and interpolate ancillary data (such as Z,
70 * color, secondary color, etc). The number of fractional bits in
71 * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
72 * accuracy of rasterization.
73 *
74 * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
75 * 1/16 of a pixel. If we're walking up a long, nearly vertical edge
76 * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
77 * GLfixed to walk the edge without error. If the maximum viewport
78 * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
79 *
80 * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
81 * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
82 * pixels. 11 fractional bits is actually insufficient for accurately
83 * rasterizing some triangles. More recently, the maximum viewport
84 * height was increased to 4K pixels. Thus, Mesa should be using 16
85 * fractional bits in GLfixed. Unfortunately, there may be some issues
86 * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
87 * This will have to be examined in some detail...
88 *
89 * For now, if you find rasterization errors, particularly with tall,
90 * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
91 * SUB_PIXEL_BITS.
92 */
93
94
95 /*
96 * Some code we unfortunately need to prevent negative interpolated colors.
97 */
98 #ifndef CLAMP_INTERPOLANT
99 #define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN) \
100 do { \
101 GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP; \
102 if (endVal < 0) { \
103 span.CHANNEL -= endVal; \
104 } \
105 if (span.CHANNEL < 0) { \
106 span.CHANNEL = 0; \
107 } \
108 } while (0)
109 #endif
110
111
112 static void NAME(GLcontext *ctx, const SWvertex *v0,
113 const SWvertex *v1,
114 const SWvertex *v2 )
115 {
116 typedef struct {
117 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
118 GLfloat dx; /* X(v1) - X(v0) */
119 GLfloat dy; /* Y(v1) - Y(v0) */
120 GLfloat dxdy; /* dx/dy */
121 GLfixed fdxdy; /* dx/dy in fixed-point */
122 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
123 GLfixed fsx; /* first sample point x coord */
124 GLfixed fsy;
125 GLfixed fx0; /* fixed pt X of lower endpoint */
126 GLint lines; /* number of lines to be sampled on this edge */
127 } EdgeT;
128
129 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
130 #ifdef INTERP_Z
131 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
132 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
133 const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
134 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
135 #endif
136 EdgeT eMaj, eTop, eBot;
137 GLfloat oneOverArea;
138 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
139 GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
140 const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
141 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
142
143 SWspan span;
144
145 (void) swrast;
146
147 INIT_SPAN(span, GL_POLYGON);
148 span.y = 0; /* silence warnings */
149
150 #ifdef INTERP_Z
151 (void) fixedToDepthShift;
152 #endif
153
154 /*
155 printf("%s()\n", __FUNCTION__);
156 printf(" %g, %g, %g\n",
157 v0->attrib[FRAG_ATTRIB_WPOS][0],
158 v0->attrib[FRAG_ATTRIB_WPOS][1],
159 v0->attrib[FRAG_ATTRIB_WPOS][2]);
160 printf(" %g, %g, %g\n",
161 v1->attrib[FRAG_ATTRIB_WPOS][0],
162 v1->attrib[FRAG_ATTRIB_WPOS][1],
163 v1->attrib[FRAG_ATTRIB_WPOS][2]);
164 printf(" %g, %g, %g\n",
165 v2->attrib[FRAG_ATTRIB_WPOS][0],
166 v2->attrib[FRAG_ATTRIB_WPOS][1],
167 v2->attrib[FRAG_ATTRIB_WPOS][2]);
168 */
169
170 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
171 * And find the order of the 3 vertices along the Y axis.
172 */
173 {
174 const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
175 const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
176 const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
177 if (fy0 <= fy1) {
178 if (fy1 <= fy2) {
179 /* y0 <= y1 <= y2 */
180 vMin = v0; vMid = v1; vMax = v2;
181 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
182 }
183 else if (fy2 <= fy0) {
184 /* y2 <= y0 <= y1 */
185 vMin = v2; vMid = v0; vMax = v1;
186 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
187 }
188 else {
189 /* y0 <= y2 <= y1 */
190 vMin = v0; vMid = v2; vMax = v1;
191 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
192 bf = -bf;
193 }
194 }
195 else {
196 if (fy0 <= fy2) {
197 /* y1 <= y0 <= y2 */
198 vMin = v1; vMid = v0; vMax = v2;
199 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
200 bf = -bf;
201 }
202 else if (fy2 <= fy1) {
203 /* y2 <= y1 <= y0 */
204 vMin = v2; vMid = v1; vMax = v0;
205 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
206 bf = -bf;
207 }
208 else {
209 /* y1 <= y2 <= y0 */
210 vMin = v1; vMid = v2; vMax = v0;
211 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
212 }
213 }
214
215 /* fixed point X coords */
216 vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
217 vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
218 vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
219 }
220
221 /* vertex/edge relationship */
222 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
223 eTop.v0 = vMid; eTop.v1 = vMax;
224 eBot.v0 = vMin; eBot.v1 = vMid;
225
226 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
227 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
228 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
229 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
230 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
231 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
232 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
233
234 /* compute area, oneOverArea and perform backface culling */
235 {
236 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
237 /* Do backface culling */
238
239 if (area * bf < 0.0)
240 return;
241
242 if (IS_INF_OR_NAN(area) || area == 0.0F)
243 return;
244
245 oneOverArea = 1.0F / area;
246
247 /* 0 = front, 1 = back */
248 span.facing = oneOverArea * swrast->_BackfaceSign > 0.0F;
249 }
250
251 /* Edge setup. For a triangle strip these could be reused... */
252 {
253 eMaj.fsy = FixedCeil(vMin_fy);
254 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
255 if (eMaj.lines > 0) {
256 eMaj.dxdy = eMaj.dx / eMaj.dy;
257 eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
258 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
259 eMaj.fx0 = vMin_fx;
260 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
261 }
262 else {
263 return; /*CULLED*/
264 }
265
266 eTop.fsy = FixedCeil(vMid_fy);
267 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
268 if (eTop.lines > 0) {
269 eTop.dxdy = eTop.dx / eTop.dy;
270 eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
271 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
272 eTop.fx0 = vMid_fx;
273 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
274 }
275
276 eBot.fsy = FixedCeil(vMin_fy);
277 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
278 if (eBot.lines > 0) {
279 eBot.dxdy = eBot.dx / eBot.dy;
280 eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
281 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
282 eBot.fx0 = vMin_fx;
283 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
284 }
285 }
286
287 /*
288 * Conceptually, we view a triangle as two subtriangles
289 * separated by a perfectly horizontal line. The edge that is
290 * intersected by this line is one with maximal absolute dy; we
291 * call it a ``major'' edge. The other two edges are the
292 * ``top'' edge (for the upper subtriangle) and the ``bottom''
293 * edge (for the lower subtriangle). If either of these two
294 * edges is horizontal or very close to horizontal, the
295 * corresponding subtriangle might cover zero sample points;
296 * we take care to handle such cases, for performance as well
297 * as correctness.
298 *
299 * By stepping rasterization parameters along the major edge,
300 * we can avoid recomputing them at the discontinuity where
301 * the top and bottom edges meet. However, this forces us to
302 * be able to scan both left-to-right and right-to-left.
303 * Also, we must determine whether the major edge is at the
304 * left or right side of the triangle. We do this by
305 * computing the magnitude of the cross-product of the major
306 * and top edges. Since this magnitude depends on the sine of
307 * the angle between the two edges, its sign tells us whether
308 * we turn to the left or to the right when travelling along
309 * the major edge to the top edge, and from this we infer
310 * whether the major edge is on the left or the right.
311 *
312 * Serendipitously, this cross-product magnitude is also a
313 * value we need to compute the iteration parameter
314 * derivatives for the triangle, and it can be used to perform
315 * backface culling because its sign tells us whether the
316 * triangle is clockwise or counterclockwise. In this code we
317 * refer to it as ``area'' because it's also proportional to
318 * the pixel area of the triangle.
319 */
320
321 {
322 GLint scan_from_left_to_right; /* true if scanning left-to-right */
323 #ifdef INTERP_INDEX
324 GLfloat didx, didy;
325 #endif
326
327 /*
328 * Execute user-supplied setup code
329 */
330 #ifdef SETUP_CODE
331 SETUP_CODE
332 #endif
333
334 scan_from_left_to_right = (oneOverArea < 0.0F);
335
336
337 /* compute d?/dx and d?/dy derivatives */
338 #ifdef INTERP_Z
339 span.interpMask |= SPAN_Z;
340 {
341 GLfloat eMaj_dz = vMax->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
342 GLfloat eBot_dz = vMid->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
343 span.attrStepX[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
344 if (span.attrStepX[FRAG_ATTRIB_WPOS][2] > maxDepth ||
345 span.attrStepX[FRAG_ATTRIB_WPOS][2] < -maxDepth) {
346 /* probably a sliver triangle */
347 span.attrStepX[FRAG_ATTRIB_WPOS][2] = 0.0;
348 span.attrStepY[FRAG_ATTRIB_WPOS][2] = 0.0;
349 }
350 else {
351 span.attrStepY[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
352 }
353 if (depthBits <= 16)
354 span.zStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_WPOS][2]);
355 else
356 span.zStep = (GLint) span.attrStepX[FRAG_ATTRIB_WPOS][2];
357 }
358 #endif
359 #ifdef INTERP_RGB
360 span.interpMask |= SPAN_RGBA;
361 if (ctx->Light.ShadeModel == GL_SMOOTH) {
362 GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
363 GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
364 GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
365 GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
366 GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
367 GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
368 # ifdef INTERP_ALPHA
369 GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
370 GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
371 # endif
372 span.attrStepX[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
373 span.attrStepY[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
374 span.attrStepX[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
375 span.attrStepY[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
376 span.attrStepX[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
377 span.attrStepY[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
378 span.redStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][0]);
379 span.greenStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][1]);
380 span.blueStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][2]);
381 # ifdef INTERP_ALPHA
382 span.attrStepX[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
383 span.attrStepY[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
384 span.alphaStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][3]);
385 # endif /* INTERP_ALPHA */
386 }
387 else {
388 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
389 span.interpMask |= SPAN_FLAT;
390 span.attrStepX[FRAG_ATTRIB_COL0][0] = span.attrStepY[FRAG_ATTRIB_COL0][0] = 0.0F;
391 span.attrStepX[FRAG_ATTRIB_COL0][1] = span.attrStepY[FRAG_ATTRIB_COL0][1] = 0.0F;
392 span.attrStepX[FRAG_ATTRIB_COL0][2] = span.attrStepY[FRAG_ATTRIB_COL0][2] = 0.0F;
393 span.redStep = 0;
394 span.greenStep = 0;
395 span.blueStep = 0;
396 # ifdef INTERP_ALPHA
397 span.attrStepX[FRAG_ATTRIB_COL0][3] = span.attrStepY[FRAG_ATTRIB_COL0][3] = 0.0F;
398 span.alphaStep = 0;
399 # endif
400 }
401 #endif /* INTERP_RGB */
402 #ifdef INTERP_INDEX
403 span.interpMask |= SPAN_INDEX;
404 if (ctx->Light.ShadeModel == GL_SMOOTH) {
405 GLfloat eMaj_di = vMax->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0];
406 GLfloat eBot_di = vMid->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0];
407 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
408 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
409 span.indexStep = SignedFloatToFixed(didx);
410 }
411 else {
412 span.interpMask |= SPAN_FLAT;
413 didx = didy = 0.0F;
414 span.indexStep = 0;
415 }
416 #endif
417 #ifdef INTERP_INT_TEX
418 {
419 GLfloat eMaj_ds = (vMax->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
420 GLfloat eBot_ds = (vMid->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
421 GLfloat eMaj_dt = (vMax->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
422 GLfloat eBot_dt = (vMid->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
423 span.attrStepX[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
424 span.attrStepY[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
425 span.attrStepX[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
426 span.attrStepY[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
427 span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][0]);
428 span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][1]);
429 }
430 #endif
431 #ifdef INTERP_ATTRIBS
432 {
433 /* attrib[FRAG_ATTRIB_WPOS][3] is 1/W */
434 const GLfloat wMax = vMax->attrib[FRAG_ATTRIB_WPOS][3];
435 const GLfloat wMin = vMin->attrib[FRAG_ATTRIB_WPOS][3];
436 const GLfloat wMid = vMid->attrib[FRAG_ATTRIB_WPOS][3];
437 {
438 const GLfloat eMaj_dw = wMax - wMin;
439 const GLfloat eBot_dw = wMid - wMin;
440 span.attrStepX[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
441 span.attrStepY[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
442 }
443 ATTRIB_LOOP_BEGIN
444 if (swrast->_InterpMode[attr] == GL_FLAT) {
445 ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
446 ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
447 }
448 else {
449 GLuint c;
450 for (c = 0; c < 4; c++) {
451 GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
452 GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
453 span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
454 span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
455 }
456 }
457 ATTRIB_LOOP_END
458 }
459 #endif
460
461 /*
462 * We always sample at pixel centers. However, we avoid
463 * explicit half-pixel offsets in this code by incorporating
464 * the proper offset in each of x and y during the
465 * transformation to window coordinates.
466 *
467 * We also apply the usual rasterization rules to prevent
468 * cracks and overlaps. A pixel is considered inside a
469 * subtriangle if it meets all of four conditions: it is on or
470 * to the right of the left edge, strictly to the left of the
471 * right edge, on or below the top edge, and strictly above
472 * the bottom edge. (Some edges may be degenerate.)
473 *
474 * The following discussion assumes left-to-right scanning
475 * (that is, the major edge is on the left); the right-to-left
476 * case is a straightforward variation.
477 *
478 * We start by finding the half-integral y coordinate that is
479 * at or below the top of the triangle. This gives us the
480 * first scan line that could possibly contain pixels that are
481 * inside the triangle.
482 *
483 * Next we creep down the major edge until we reach that y,
484 * and compute the corresponding x coordinate on the edge.
485 * Then we find the half-integral x that lies on or just
486 * inside the edge. This is the first pixel that might lie in
487 * the interior of the triangle. (We won't know for sure
488 * until we check the other edges.)
489 *
490 * As we rasterize the triangle, we'll step down the major
491 * edge. For each step in y, we'll move an integer number
492 * of steps in x. There are two possible x step sizes, which
493 * we'll call the ``inner'' step (guaranteed to land on the
494 * edge or inside it) and the ``outer'' step (guaranteed to
495 * land on the edge or outside it). The inner and outer steps
496 * differ by one. During rasterization we maintain an error
497 * term that indicates our distance from the true edge, and
498 * select either the inner step or the outer step, whichever
499 * gets us to the first pixel that falls inside the triangle.
500 *
501 * All parameters (z, red, etc.) as well as the buffer
502 * addresses for color and z have inner and outer step values,
503 * so that we can increment them appropriately. This method
504 * eliminates the need to adjust parameters by creeping a
505 * sub-pixel amount into the triangle at each scanline.
506 */
507
508 {
509 GLint subTriangle;
510 GLfixed fxLeftEdge = 0, fxRightEdge = 0;
511 GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
512 GLfixed fError = 0, fdError = 0;
513 #ifdef PIXEL_ADDRESS
514 PIXEL_TYPE *pRow = NULL;
515 GLint dPRowOuter = 0, dPRowInner; /* offset in bytes */
516 #endif
517 #ifdef INTERP_Z
518 # ifdef DEPTH_TYPE
519 struct gl_renderbuffer *zrb
520 = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
521 DEPTH_TYPE *zRow = NULL;
522 GLint dZRowOuter = 0, dZRowInner; /* offset in bytes */
523 # endif
524 GLuint zLeft = 0;
525 GLfixed fdzOuter = 0, fdzInner;
526 #endif
527 #ifdef INTERP_RGB
528 GLint rLeft = 0, fdrOuter = 0, fdrInner;
529 GLint gLeft = 0, fdgOuter = 0, fdgInner;
530 GLint bLeft = 0, fdbOuter = 0, fdbInner;
531 #endif
532 #ifdef INTERP_ALPHA
533 GLint aLeft = 0, fdaOuter = 0, fdaInner;
534 #endif
535 #ifdef INTERP_INDEX
536 GLfixed iLeft=0, diOuter=0, diInner;
537 #endif
538 #ifdef INTERP_INT_TEX
539 GLfixed sLeft=0, dsOuter=0, dsInner;
540 GLfixed tLeft=0, dtOuter=0, dtInner;
541 #endif
542 #ifdef INTERP_ATTRIBS
543 GLfloat wLeft = 0, dwOuter = 0, dwInner;
544 GLfloat attrLeft[FRAG_ATTRIB_MAX][4];
545 GLfloat daOuter[FRAG_ATTRIB_MAX][4], daInner[FRAG_ATTRIB_MAX][4];
546 #endif
547
548 for (subTriangle=0; subTriangle<=1; subTriangle++) {
549 EdgeT *eLeft, *eRight;
550 int setupLeft, setupRight;
551 int lines;
552
553 if (subTriangle==0) {
554 /* bottom half */
555 if (scan_from_left_to_right) {
556 eLeft = &eMaj;
557 eRight = &eBot;
558 lines = eRight->lines;
559 setupLeft = 1;
560 setupRight = 1;
561 }
562 else {
563 eLeft = &eBot;
564 eRight = &eMaj;
565 lines = eLeft->lines;
566 setupLeft = 1;
567 setupRight = 1;
568 }
569 }
570 else {
571 /* top half */
572 if (scan_from_left_to_right) {
573 eLeft = &eMaj;
574 eRight = &eTop;
575 lines = eRight->lines;
576 setupLeft = 0;
577 setupRight = 1;
578 }
579 else {
580 eLeft = &eTop;
581 eRight = &eMaj;
582 lines = eLeft->lines;
583 setupLeft = 1;
584 setupRight = 0;
585 }
586 if (lines == 0)
587 return;
588 }
589
590 if (setupLeft && eLeft->lines > 0) {
591 const SWvertex *vLower = eLeft->v0;
592 const GLfixed fsy = eLeft->fsy;
593 const GLfixed fsx = eLeft->fsx; /* no fractional part */
594 const GLfixed fx = FixedCeil(fsx); /* no fractional part */
595 const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
596 const GLfixed adjy = (GLfixed) eLeft->adjy; /* SCALED! */
597 GLint idxOuter;
598 GLfloat dxOuter;
599 GLfixed fdxOuter;
600
601 fError = fx - fsx - FIXED_ONE;
602 fxLeftEdge = fsx - FIXED_EPSILON;
603 fdxLeftEdge = eLeft->fdxdy;
604 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
605 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
606 idxOuter = FixedToInt(fdxOuter);
607 dxOuter = (GLfloat) idxOuter;
608 span.y = FixedToInt(fsy);
609
610 /* silence warnings on some compilers */
611 (void) dxOuter;
612 (void) adjx;
613 (void) adjy;
614 (void) vLower;
615
616 #ifdef PIXEL_ADDRESS
617 {
618 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
619 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
620 /* negative because Y=0 at bottom and increases upward */
621 }
622 #endif
623 /*
624 * Now we need the set of parameter (z, color, etc.) values at
625 * the point (fx, fsy). This gives us properly-sampled parameter
626 * values that we can step from pixel to pixel. Furthermore,
627 * although we might have intermediate results that overflow
628 * the normal parameter range when we step temporarily outside
629 * the triangle, we shouldn't overflow or underflow for any
630 * pixel that's actually inside the triangle.
631 */
632
633 #ifdef INTERP_Z
634 {
635 GLfloat z0 = vLower->attrib[FRAG_ATTRIB_WPOS][2];
636 if (depthBits <= 16) {
637 /* interpolate fixed-pt values */
638 GLfloat tmp = (z0 * FIXED_SCALE
639 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * adjx
640 + span.attrStepY[FRAG_ATTRIB_WPOS][2] * adjy) + FIXED_HALF;
641 if (tmp < MAX_GLUINT / 2)
642 zLeft = (GLfixed) tmp;
643 else
644 zLeft = MAX_GLUINT / 2;
645 fdzOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_WPOS][2] +
646 dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
647 }
648 else {
649 /* interpolate depth values w/out scaling */
650 zLeft = (GLuint) (z0 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjx)
651 + span.attrStepY[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjy));
652 fdzOuter = (GLint) (span.attrStepY[FRAG_ATTRIB_WPOS][2] +
653 dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
654 }
655 # ifdef DEPTH_TYPE
656 zRow = (DEPTH_TYPE *)
657 zrb->GetPointer(ctx, zrb, FixedToInt(fxLeftEdge), span.y);
658 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
659 # endif
660 }
661 #endif
662 #ifdef INTERP_RGB
663 if (ctx->Light.ShadeModel == GL_SMOOTH) {
664 rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
665 + span.attrStepX[FRAG_ATTRIB_COL0][0] * adjx
666 + span.attrStepY[FRAG_ATTRIB_COL0][0] * adjy) + FIXED_HALF;
667 gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
668 + span.attrStepX[FRAG_ATTRIB_COL0][1] * adjx
669 + span.attrStepY[FRAG_ATTRIB_COL0][1] * adjy) + FIXED_HALF;
670 bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
671 + span.attrStepX[FRAG_ATTRIB_COL0][2] * adjx
672 + span.attrStepY[FRAG_ATTRIB_COL0][2] * adjy) + FIXED_HALF;
673 fdrOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][0]
674 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][0]);
675 fdgOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][1]
676 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][1]);
677 fdbOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][2]
678 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][2]);
679 # ifdef INTERP_ALPHA
680 aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
681 + span.attrStepX[FRAG_ATTRIB_COL0][3] * adjx
682 + span.attrStepY[FRAG_ATTRIB_COL0][3] * adjy) + FIXED_HALF;
683 fdaOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][3]
684 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][3]);
685 # endif
686 }
687 else {
688 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
689 rLeft = ChanToFixed(v2->color[RCOMP]);
690 gLeft = ChanToFixed(v2->color[GCOMP]);
691 bLeft = ChanToFixed(v2->color[BCOMP]);
692 fdrOuter = fdgOuter = fdbOuter = 0;
693 # ifdef INTERP_ALPHA
694 aLeft = ChanToFixed(v2->color[ACOMP]);
695 fdaOuter = 0;
696 # endif
697 }
698 #endif /* INTERP_RGB */
699
700
701 #ifdef INTERP_INDEX
702 if (ctx->Light.ShadeModel == GL_SMOOTH) {
703 iLeft = (GLfixed)(vLower->attrib[FRAG_ATTRIB_CI][0] * FIXED_SCALE
704 + didx * adjx + didy * adjy) + FIXED_HALF;
705 diOuter = SignedFloatToFixed(didy + dxOuter * didx);
706 }
707 else {
708 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
709 iLeft = FloatToFixed(v2->attrib[FRAG_ATTRIB_CI][0]);
710 diOuter = 0;
711 }
712 #endif
713 #ifdef INTERP_INT_TEX
714 {
715 GLfloat s0, t0;
716 s0 = vLower->attrib[FRAG_ATTRIB_TEX0][0] * S_SCALE;
717 sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][0] * adjx
718 + span.attrStepY[FRAG_ATTRIB_TEX0][0] * adjy) + FIXED_HALF;
719 dsOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][0]
720 + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][0]);
721
722 t0 = vLower->attrib[FRAG_ATTRIB_TEX0][1] * T_SCALE;
723 tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][1] * adjx
724 + span.attrStepY[FRAG_ATTRIB_TEX0][1] * adjy) + FIXED_HALF;
725 dtOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][1]
726 + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][1]);
727 }
728 #endif
729 #ifdef INTERP_ATTRIBS
730 {
731 const GLuint attr = FRAG_ATTRIB_WPOS;
732 wLeft = vLower->attrib[FRAG_ATTRIB_WPOS][3]
733 + (span.attrStepX[attr][3] * adjx
734 + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
735 dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
736 }
737 ATTRIB_LOOP_BEGIN
738 const GLfloat invW = vLower->attrib[FRAG_ATTRIB_WPOS][3];
739 if (swrast->_InterpMode[attr] == GL_FLAT) {
740 GLuint c;
741 for (c = 0; c < 4; c++) {
742 attrLeft[attr][c] = v2->attrib[attr][c] * invW;
743 daOuter[attr][c] = 0.0;
744 }
745 }
746 else {
747 GLuint c;
748 for (c = 0; c < 4; c++) {
749 const GLfloat a = vLower->attrib[attr][c] * invW;
750 attrLeft[attr][c] = a + ( span.attrStepX[attr][c] * adjx
751 + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
752 daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
753 }
754 }
755 ATTRIB_LOOP_END
756 #endif
757 } /*if setupLeft*/
758
759
760 if (setupRight && eRight->lines>0) {
761 fxRightEdge = eRight->fsx - FIXED_EPSILON;
762 fdxRightEdge = eRight->fdxdy;
763 }
764
765 if (lines==0) {
766 continue;
767 }
768
769
770 /* Rasterize setup */
771 #ifdef PIXEL_ADDRESS
772 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
773 #endif
774 #ifdef INTERP_Z
775 # ifdef DEPTH_TYPE
776 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
777 # endif
778 fdzInner = fdzOuter + span.zStep;
779 #endif
780 #ifdef INTERP_RGB
781 fdrInner = fdrOuter + span.redStep;
782 fdgInner = fdgOuter + span.greenStep;
783 fdbInner = fdbOuter + span.blueStep;
784 #endif
785 #ifdef INTERP_ALPHA
786 fdaInner = fdaOuter + span.alphaStep;
787 #endif
788 #ifdef INTERP_INDEX
789 diInner = diOuter + span.indexStep;
790 #endif
791 #ifdef INTERP_INT_TEX
792 dsInner = dsOuter + span.intTexStep[0];
793 dtInner = dtOuter + span.intTexStep[1];
794 #endif
795 #ifdef INTERP_ATTRIBS
796 dwInner = dwOuter + span.attrStepX[FRAG_ATTRIB_WPOS][3];
797 ATTRIB_LOOP_BEGIN
798 GLuint c;
799 for (c = 0; c < 4; c++) {
800 daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
801 }
802 ATTRIB_LOOP_END
803 #endif
804
805 while (lines > 0) {
806 /* initialize the span interpolants to the leftmost value */
807 /* ff = fixed-pt fragment */
808 const GLint right = FixedToInt(fxRightEdge);
809 span.x = FixedToInt(fxLeftEdge);
810 if (right <= span.x)
811 span.end = 0;
812 else
813 span.end = right - span.x;
814
815 #ifdef INTERP_Z
816 span.z = zLeft;
817 #endif
818 #ifdef INTERP_RGB
819 span.red = rLeft;
820 span.green = gLeft;
821 span.blue = bLeft;
822 #endif
823 #ifdef INTERP_ALPHA
824 span.alpha = aLeft;
825 #endif
826 #ifdef INTERP_INDEX
827 span.index = iLeft;
828 #endif
829 #ifdef INTERP_INT_TEX
830 span.intTex[0] = sLeft;
831 span.intTex[1] = tLeft;
832 #endif
833
834 #ifdef INTERP_ATTRIBS
835 span.attrStart[FRAG_ATTRIB_WPOS][3] = wLeft;
836 ATTRIB_LOOP_BEGIN
837 GLuint c;
838 for (c = 0; c < 4; c++) {
839 span.attrStart[attr][c] = attrLeft[attr][c];
840 }
841 ATTRIB_LOOP_END
842 #endif
843
844 /* This is where we actually generate fragments */
845 /* XXX the test for span.y > 0 _shouldn't_ be needed but
846 * it fixes a problem on 64-bit Opterons (bug 4842).
847 */
848 if (span.end > 0 && span.y >= 0) {
849 const GLint len = span.end - 1;
850 (void) len;
851 #ifdef INTERP_RGB
852 CLAMP_INTERPOLANT(red, redStep, len);
853 CLAMP_INTERPOLANT(green, greenStep, len);
854 CLAMP_INTERPOLANT(blue, blueStep, len);
855 #endif
856 #ifdef INTERP_ALPHA
857 CLAMP_INTERPOLANT(alpha, alphaStep, len);
858 #endif
859 #ifdef INTERP_INDEX
860 CLAMP_INTERPOLANT(index, indexStep, len);
861 #endif
862 {
863 RENDER_SPAN( span );
864 }
865 }
866
867 /*
868 * Advance to the next scan line. Compute the
869 * new edge coordinates, and adjust the
870 * pixel-center x coordinate so that it stays
871 * on or inside the major edge.
872 */
873 span.y++;
874 lines--;
875
876 fxLeftEdge += fdxLeftEdge;
877 fxRightEdge += fdxRightEdge;
878
879 fError += fdError;
880 if (fError >= 0) {
881 fError -= FIXED_ONE;
882
883 #ifdef PIXEL_ADDRESS
884 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
885 #endif
886 #ifdef INTERP_Z
887 # ifdef DEPTH_TYPE
888 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
889 # endif
890 zLeft += fdzOuter;
891 #endif
892 #ifdef INTERP_RGB
893 rLeft += fdrOuter;
894 gLeft += fdgOuter;
895 bLeft += fdbOuter;
896 #endif
897 #ifdef INTERP_ALPHA
898 aLeft += fdaOuter;
899 #endif
900 #ifdef INTERP_INDEX
901 iLeft += diOuter;
902 #endif
903 #ifdef INTERP_INT_TEX
904 sLeft += dsOuter;
905 tLeft += dtOuter;
906 #endif
907 #ifdef INTERP_ATTRIBS
908 wLeft += dwOuter;
909 ATTRIB_LOOP_BEGIN
910 GLuint c;
911 for (c = 0; c < 4; c++) {
912 attrLeft[attr][c] += daOuter[attr][c];
913 }
914 ATTRIB_LOOP_END
915 #endif
916 }
917 else {
918 #ifdef PIXEL_ADDRESS
919 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
920 #endif
921 #ifdef INTERP_Z
922 # ifdef DEPTH_TYPE
923 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
924 # endif
925 zLeft += fdzInner;
926 #endif
927 #ifdef INTERP_RGB
928 rLeft += fdrInner;
929 gLeft += fdgInner;
930 bLeft += fdbInner;
931 #endif
932 #ifdef INTERP_ALPHA
933 aLeft += fdaInner;
934 #endif
935 #ifdef INTERP_INDEX
936 iLeft += diInner;
937 #endif
938 #ifdef INTERP_INT_TEX
939 sLeft += dsInner;
940 tLeft += dtInner;
941 #endif
942 #ifdef INTERP_ATTRIBS
943 wLeft += dwInner;
944 ATTRIB_LOOP_BEGIN
945 GLuint c;
946 for (c = 0; c < 4; c++) {
947 attrLeft[attr][c] += daInner[attr][c];
948 }
949 ATTRIB_LOOP_END
950 #endif
951 }
952 } /*while lines>0*/
953
954 } /* for subTriangle */
955
956 }
957 }
958 }
959
960 #undef SETUP_CODE
961 #undef RENDER_SPAN
962
963 #undef PIXEL_TYPE
964 #undef BYTES_PER_ROW
965 #undef PIXEL_ADDRESS
966 #undef DEPTH_TYPE
967
968 #undef INTERP_Z
969 #undef INTERP_RGB
970 #undef INTERP_ALPHA
971 #undef INTERP_INDEX
972 #undef INTERP_INT_TEX
973 #undef INTERP_ATTRIBS
974
975 #undef S_SCALE
976 #undef T_SCALE
977
978 #undef FixedToDepth
979
980 #undef NAME