fix bug in GL_MIRRORED_REPEAT_ARB (Ian Romanick)
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /* $Id: s_tritemp.h,v 1.40 2002/10/17 15:26:39 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26 /* $XFree86: xc/extras/Mesa/src/swrast/s_tritemp.h,v 1.2 2002/02/27 21:07:54 tsi Exp $ */
27
28 /*
29 * Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom triangle rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated across the triangle:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_FOG - if defined, interpolate fog values
37 * INTERP_RGB - if defined, interpolate RGB values
38 * INTERP_ALPHA - if defined, interpolate Alpha values (req's INTERP_RGB)
39 * INTERP_SPEC - if defined, interpolate specular RGB values
40 * INTERP_INDEX - if defined, interpolate color index values
41 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
42 * (fast, simple 2-D texture mapping)
43 * INTERP_TEX - if defined, interpolate set 0 float STRQ texcoords
44 * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
45 * INTERP_MULTITEX - if defined, interpolate N units of STRQ texcoords
46 * INTERP_FLOAT_RGBA - if defined, interpolate RGBA with floating point
47 * INTERP_FLOAT_SPEC - if defined, interpolate specular with floating point
48 *
49 * When one can directly address pixels in the color buffer the following
50 * macros can be defined and used to compute pixel addresses during
51 * rasterization (see pRow):
52 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
53 * BYTES_PER_ROW - number of bytes per row in the color buffer
54 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
55 * Y==0 at bottom of screen and increases upward.
56 *
57 * Similarly, for direct depth buffer access, this type is used for depth
58 * buffer addressing:
59 * DEPTH_TYPE - either GLushort or GLuint
60 *
61 * Optionally, one may provide one-time setup code per triangle:
62 * SETUP_CODE - code which is to be executed once per triangle
63 * CLEANUP_CODE - code to execute at end of triangle
64 *
65 * The following macro MUST be defined:
66 * RENDER_SPAN(span) - code to write a span of pixels.
67 *
68 * This code was designed for the origin to be in the lower-left corner.
69 *
70 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
71 */
72
73
74 /*
75 * This is a bit of a hack, but it's a centralized place to enable floating-
76 * point color interpolation when GLchan is actually floating point.
77 */
78 #if CHAN_TYPE == GL_FLOAT
79
80 #if defined(INTERP_RGB)
81 #undef INTERP_RGB
82 #undef INTERP_ALPHA
83 #define INTERP_FLOAT_RGBA
84 #endif
85
86 #if defined(INTERP_SPEC)
87 #undef INTERP_SPEC
88 #define INTERP_FLOAT_SPEC
89 #endif
90
91 #endif
92
93
94 /*void triangle( GLcontext *ctx, SWvertex *v0, SWvertex *v1, SWvertex *v2 )*/
95 {
96 typedef struct {
97 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
98 GLfloat dx; /* X(v1) - X(v0) */
99 GLfloat dy; /* Y(v1) - Y(v0) */
100 GLfixed fdxdy; /* dx/dy in fixed-point */
101 GLfixed fsx; /* first sample point x coord */
102 GLfixed fsy;
103 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
104 GLint lines; /* number of lines to be sampled on this edge */
105 GLfixed fx0; /* fixed pt X of lower endpoint */
106 } EdgeT;
107
108 #ifdef INTERP_Z
109 const GLint depthBits = ctx->Visual.depthBits;
110 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
111 const GLfloat maxDepth = ctx->DepthMaxF;
112 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
113 #endif
114 EdgeT eMaj, eTop, eBot;
115 GLfloat oneOverArea;
116 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
117 float bf = SWRAST_CONTEXT(ctx)->_backface_sign;
118 const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
119 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
120
121 struct sw_span span;
122
123 INIT_SPAN(span, GL_POLYGON, 0, 0, 0);
124
125 #ifdef INTERP_Z
126 (void) fixedToDepthShift;
127 #endif
128
129 /*
130 printf("%s()\n", __FUNCTION__);
131 printf(" %g, %g, %g\n", v0->win[0], v0->win[1], v0->win[2]);
132 printf(" %g, %g, %g\n", v1->win[0], v1->win[1], v1->win[2]);
133 printf(" %g, %g, %g\n", v2->win[0], v2->win[1], v2->win[2]);
134 */
135
136 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
137 * And find the order of the 3 vertices along the Y axis.
138 */
139 {
140 const GLfixed fy0 = FloatToFixed(v0->win[1] - 0.5F) & snapMask;
141 const GLfixed fy1 = FloatToFixed(v1->win[1] - 0.5F) & snapMask;
142 const GLfixed fy2 = FloatToFixed(v2->win[1] - 0.5F) & snapMask;
143
144 if (fy0 <= fy1) {
145 if (fy1 <= fy2) {
146 /* y0 <= y1 <= y2 */
147 vMin = v0; vMid = v1; vMax = v2;
148 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
149 }
150 else if (fy2 <= fy0) {
151 /* y2 <= y0 <= y1 */
152 vMin = v2; vMid = v0; vMax = v1;
153 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
154 }
155 else {
156 /* y0 <= y2 <= y1 */
157 vMin = v0; vMid = v2; vMax = v1;
158 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
159 bf = -bf;
160 }
161 }
162 else {
163 if (fy0 <= fy2) {
164 /* y1 <= y0 <= y2 */
165 vMin = v1; vMid = v0; vMax = v2;
166 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
167 bf = -bf;
168 }
169 else if (fy2 <= fy1) {
170 /* y2 <= y1 <= y0 */
171 vMin = v2; vMid = v1; vMax = v0;
172 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
173 bf = -bf;
174 }
175 else {
176 /* y1 <= y2 <= y0 */
177 vMin = v1; vMid = v2; vMax = v0;
178 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
179 }
180 }
181
182 /* fixed point X coords */
183 vMin_fx = FloatToFixed(vMin->win[0] + 0.5F) & snapMask;
184 vMid_fx = FloatToFixed(vMid->win[0] + 0.5F) & snapMask;
185 vMax_fx = FloatToFixed(vMax->win[0] + 0.5F) & snapMask;
186 }
187
188 /* vertex/edge relationship */
189 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
190 eTop.v0 = vMid; eTop.v1 = vMax;
191 eBot.v0 = vMin; eBot.v1 = vMid;
192
193 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
194 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
195 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
196 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
197 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
198 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
199 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
200
201 /* compute area, oneOverArea and perform backface culling */
202 {
203 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
204
205 /* Do backface culling */
206 if (area * bf < 0.0)
207 return;
208
209 if (IS_INF_OR_NAN(area) || area == 0.0F)
210 return;
211
212 oneOverArea = 1.0F / area;
213 }
214
215 #ifndef DO_OCCLUSION_TEST
216 ctx->OcclusionResult = GL_TRUE;
217 #endif
218 span.facing = ctx->_Facing; /* for 2-sided stencil test */
219
220 /* Edge setup. For a triangle strip these could be reused... */
221 {
222 eMaj.fsy = FixedCeil(vMin_fy);
223 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
224 if (eMaj.lines > 0) {
225 GLfloat dxdy = eMaj.dx / eMaj.dy;
226 eMaj.fdxdy = SignedFloatToFixed(dxdy);
227 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
228 eMaj.fx0 = vMin_fx;
229 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * dxdy);
230 }
231 else {
232 return; /*CULLED*/
233 }
234
235 eTop.fsy = FixedCeil(vMid_fy);
236 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
237 if (eTop.lines > 0) {
238 GLfloat dxdy = eTop.dx / eTop.dy;
239 eTop.fdxdy = SignedFloatToFixed(dxdy);
240 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
241 eTop.fx0 = vMid_fx;
242 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * dxdy);
243 }
244
245 eBot.fsy = FixedCeil(vMin_fy);
246 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
247 if (eBot.lines > 0) {
248 GLfloat dxdy = eBot.dx / eBot.dy;
249 eBot.fdxdy = SignedFloatToFixed(dxdy);
250 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
251 eBot.fx0 = vMin_fx;
252 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * dxdy);
253 }
254 }
255
256 /*
257 * Conceptually, we view a triangle as two subtriangles
258 * separated by a perfectly horizontal line. The edge that is
259 * intersected by this line is one with maximal absolute dy; we
260 * call it a ``major'' edge. The other two edges are the
261 * ``top'' edge (for the upper subtriangle) and the ``bottom''
262 * edge (for the lower subtriangle). If either of these two
263 * edges is horizontal or very close to horizontal, the
264 * corresponding subtriangle might cover zero sample points;
265 * we take care to handle such cases, for performance as well
266 * as correctness.
267 *
268 * By stepping rasterization parameters along the major edge,
269 * we can avoid recomputing them at the discontinuity where
270 * the top and bottom edges meet. However, this forces us to
271 * be able to scan both left-to-right and right-to-left.
272 * Also, we must determine whether the major edge is at the
273 * left or right side of the triangle. We do this by
274 * computing the magnitude of the cross-product of the major
275 * and top edges. Since this magnitude depends on the sine of
276 * the angle between the two edges, its sign tells us whether
277 * we turn to the left or to the right when travelling along
278 * the major edge to the top edge, and from this we infer
279 * whether the major edge is on the left or the right.
280 *
281 * Serendipitously, this cross-product magnitude is also a
282 * value we need to compute the iteration parameter
283 * derivatives for the triangle, and it can be used to perform
284 * backface culling because its sign tells us whether the
285 * triangle is clockwise or counterclockwise. In this code we
286 * refer to it as ``area'' because it's also proportional to
287 * the pixel area of the triangle.
288 */
289
290 {
291 GLint scan_from_left_to_right; /* true if scanning left-to-right */
292 #ifdef INTERP_Z
293 GLfloat dzdx, dzdy;
294 #endif
295 #ifdef INTERP_FOG
296 GLfloat dfogdy;
297 #endif
298 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
299 GLfloat drdx, drdy;
300 GLfloat dgdx, dgdy;
301 GLfloat dbdx, dbdy;
302 #endif
303 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
304 GLfloat dadx, dady;
305 #endif
306 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
307 GLfloat dsrdx, dsrdy;
308 GLfloat dsgdx, dsgdy;
309 GLfloat dsbdx, dsbdy;
310 #endif
311 #ifdef INTERP_INDEX
312 GLfloat didx, didy;
313 #endif
314 #ifdef INTERP_INT_TEX
315 GLfloat dsdx, dsdy;
316 GLfloat dtdx, dtdy;
317 #endif
318 #ifdef INTERP_TEX
319 GLfloat dsdx, dsdy;
320 GLfloat dtdx, dtdy;
321 GLfloat dudx, dudy;
322 GLfloat dvdx, dvdy;
323 #endif
324 #ifdef INTERP_MULTITEX
325 GLfloat dsdx[MAX_TEXTURE_UNITS], dsdy[MAX_TEXTURE_UNITS];
326 GLfloat dtdx[MAX_TEXTURE_UNITS], dtdy[MAX_TEXTURE_UNITS];
327 GLfloat dudx[MAX_TEXTURE_UNITS], dudy[MAX_TEXTURE_UNITS];
328 GLfloat dvdx[MAX_TEXTURE_UNITS], dvdy[MAX_TEXTURE_UNITS];
329 #endif
330
331 /*
332 * Execute user-supplied setup code
333 */
334 #ifdef SETUP_CODE
335 SETUP_CODE
336 #endif
337
338 scan_from_left_to_right = (oneOverArea < 0.0F);
339
340
341 /* compute d?/dx and d?/dy derivatives */
342 #ifdef INTERP_Z
343 span.interpMask |= SPAN_Z;
344 {
345 GLfloat eMaj_dz, eBot_dz;
346 eMaj_dz = vMax->win[2] - vMin->win[2];
347 eBot_dz = vMid->win[2] - vMin->win[2];
348 dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
349 if (dzdx > maxDepth || dzdx < -maxDepth) {
350 /* probably a sliver triangle */
351 dzdx = 0.0;
352 dzdy = 0.0;
353 }
354 else {
355 dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
356 }
357 if (depthBits <= 16)
358 span.zStep = SignedFloatToFixed(dzdx);
359 else
360 span.zStep = (GLint) dzdx;
361 }
362 #endif
363 #ifdef INTERP_FOG
364 span.interpMask |= SPAN_FOG;
365 {
366 const GLfloat eMaj_dfog = vMax->fog - vMin->fog;
367 const GLfloat eBot_dfog = vMid->fog - vMin->fog;
368 span.fogStep = oneOverArea * (eMaj_dfog * eBot.dy - eMaj.dy * eBot_dfog);
369 dfogdy = oneOverArea * (eMaj.dx * eBot_dfog - eMaj_dfog * eBot.dx);
370 }
371 #endif
372 #ifdef INTERP_RGB
373 span.interpMask |= SPAN_RGBA;
374 if (ctx->Light.ShadeModel == GL_SMOOTH) {
375 GLfloat eMaj_dr, eBot_dr;
376 GLfloat eMaj_dg, eBot_dg;
377 GLfloat eMaj_db, eBot_db;
378 # ifdef INTERP_ALPHA
379 GLfloat eMaj_da, eBot_da;
380 # endif
381 eMaj_dr = (GLfloat) ((GLint) vMax->color[RCOMP] -
382 (GLint) vMin->color[RCOMP]);
383 eBot_dr = (GLfloat) ((GLint) vMid->color[RCOMP] -
384 (GLint) vMin->color[RCOMP]);
385 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
386 span.redStep = SignedFloatToFixed(drdx);
387 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
388 eMaj_dg = (GLfloat) ((GLint) vMax->color[GCOMP] -
389 (GLint) vMin->color[GCOMP]);
390 eBot_dg = (GLfloat) ((GLint) vMid->color[GCOMP] -
391 (GLint) vMin->color[GCOMP]);
392 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
393 span.greenStep = SignedFloatToFixed(dgdx);
394 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
395 eMaj_db = (GLfloat) ((GLint) vMax->color[BCOMP] -
396 (GLint) vMin->color[BCOMP]);
397 eBot_db = (GLfloat) ((GLint) vMid->color[BCOMP] -
398 (GLint) vMin->color[BCOMP]);
399 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
400 span.blueStep = SignedFloatToFixed(dbdx);
401 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
402 # ifdef INTERP_ALPHA
403 eMaj_da = (GLfloat) ((GLint) vMax->color[ACOMP] -
404 (GLint) vMin->color[ACOMP]);
405 eBot_da = (GLfloat) ((GLint) vMid->color[ACOMP] -
406 (GLint) vMin->color[ACOMP]);
407 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
408 span.alphaStep = SignedFloatToFixed(dadx);
409 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
410 # endif
411 }
412 else {
413 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
414 span.interpMask |= SPAN_FLAT;
415 drdx = drdy = 0.0F;
416 dgdx = dgdy = 0.0F;
417 dbdx = dbdy = 0.0F;
418 span.redStep = 0;
419 span.greenStep = 0;
420 span.blueStep = 0;
421 # ifdef INTERP_ALPHA
422 dadx = dady = 0.0F;
423 span.alphaStep = 0;
424 # endif
425 }
426 #endif
427 #ifdef INTERP_FLOAT_RGBA
428 span.interpMask |= SPAN_RGBA;
429 if (ctx->Light.ShadeModel == GL_SMOOTH) {
430 GLfloat eMaj_dr, eBot_dr;
431 GLfloat eMaj_dg, eBot_dg;
432 GLfloat eMaj_db, eBot_db;
433 GLfloat eMaj_da, eBot_da;
434 eMaj_dr = vMax->color[RCOMP] - vMin->color[RCOMP];
435 eBot_dr = vMid->color[RCOMP] - vMin->color[RCOMP];
436 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
437 span.redStep = drdx;
438 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
439 eMaj_dg = vMax->color[GCOMP] - vMin->color[GCOMP];
440 eBot_dg = vMid->color[GCOMP] - vMin->color[GCOMP];
441 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
442 span.greenStep = dgdx;
443 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
444 eMaj_db = vMax->color[BCOMP] - vMin->color[BCOMP];
445 eBot_db = vMid->color[BCOMP] - vMin->color[BCOMP];
446 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
447 span.blueStep = dbdx;
448 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
449 eMaj_da = vMax->color[ACOMP] - vMin->color[ACOMP];
450 eBot_da = vMid->color[ACOMP] - vMin->color[ACOMP];
451 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
452 span.alphaStep = dadx;
453 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
454 }
455 else {
456 drdx = drdy = span.redStep = 0.0F;
457 dgdx = dgdy = span.greenStep = 0.0F;
458 dbdx = dbdy = span.blueStep = 0.0F;
459 dadx = dady = span.alphaStep = 0.0F;
460 }
461 #endif
462 #ifdef INTERP_SPEC
463 span.interpMask |= SPAN_SPEC;
464 if (ctx->Light.ShadeModel == GL_SMOOTH) {
465 GLfloat eMaj_dsr, eBot_dsr;
466 GLfloat eMaj_dsg, eBot_dsg;
467 GLfloat eMaj_dsb, eBot_dsb;
468 eMaj_dsr = (GLfloat) ((GLint) vMax->specular[RCOMP] -
469 (GLint) vMin->specular[RCOMP]);
470 eBot_dsr = (GLfloat) ((GLint) vMid->specular[RCOMP] -
471 (GLint) vMin->specular[RCOMP]);
472 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
473 span.specRedStep = SignedFloatToFixed(dsrdx);
474 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
475 eMaj_dsg = (GLfloat) ((GLint) vMax->specular[GCOMP] -
476 (GLint) vMin->specular[GCOMP]);
477 eBot_dsg = (GLfloat) ((GLint) vMid->specular[GCOMP] -
478 (GLint) vMin->specular[GCOMP]);
479 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
480 span.specGreenStep = SignedFloatToFixed(dsgdx);
481 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
482 eMaj_dsb = (GLfloat) ((GLint) vMax->specular[BCOMP] -
483 (GLint) vMin->specular[BCOMP]);
484 eBot_dsb = (GLfloat) ((GLint) vMid->specular[BCOMP] -
485 (GLint) vMin->specular[BCOMP]);
486 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
487 span.specBlueStep = SignedFloatToFixed(dsbdx);
488 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
489 }
490 else {
491 dsrdx = dsrdy = 0.0F;
492 dsgdx = dsgdy = 0.0F;
493 dsbdx = dsbdy = 0.0F;
494 span.specRedStep = 0;
495 span.specGreenStep = 0;
496 span.specBlueStep = 0;
497 }
498 #endif
499 #ifdef INTERP_FLOAT_SPEC
500 span.interpMask |= SPAN_SPEC;
501 if (ctx->Light.ShadeModel == GL_SMOOTH) {
502 GLfloat eMaj_dsr, eBot_dsr;
503 GLfloat eMaj_dsg, eBot_dsg;
504 GLfloat eMaj_dsb, eBot_dsb;
505 eMaj_dsr = vMax->specular[RCOMP] - vMin->specular[RCOMP];
506 eBot_dsr = vMid->specular[RCOMP] - vMin->specular[RCOMP];
507 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
508 span.specRedStep = dsrdx;
509 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
510 eMaj_dsg = vMax->specular[GCOMP] - vMin->specular[GCOMP];
511 eBot_dsg = vMid->specular[GCOMP] - vMin->specular[GCOMP];
512 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
513 span.specGreenStep = dsgdx;
514 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
515 eMaj_dsb = vMax->specular[BCOMP] - vMin->specular[BCOMP];
516 eBot_dsb = vMid->specular[BCOMP] - vMin->specular[BCOMP];
517 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
518 span.specBlueStep = dsbdx;
519 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
520 }
521 else {
522 dsrdx = dsrdy = span.specRedStep = 0;
523 dsgdx = dsgdy = span.specGreenStep = 0;
524 dsbdx = dsbdy = span.specBlueStep = 0;
525 }
526 #endif
527 #ifdef INTERP_INDEX
528 span.interpMask |= SPAN_INDEX;
529 if (ctx->Light.ShadeModel == GL_SMOOTH) {
530 GLfloat eMaj_di, eBot_di;
531 eMaj_di = (GLfloat) ((GLint) vMax->index - (GLint) vMin->index);
532 eBot_di = (GLfloat) ((GLint) vMid->index - (GLint) vMin->index);
533 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
534 span.indexStep = SignedFloatToFixed(didx);
535 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
536 }
537 else {
538 span.interpMask |= SPAN_FLAT;
539 didx = didy = 0.0F;
540 span.indexStep = 0;
541 }
542 #endif
543 #ifdef INTERP_INT_TEX
544 span.interpMask |= SPAN_INT_TEXTURE;
545 {
546 GLfloat eMaj_ds, eBot_ds;
547 eMaj_ds = (vMax->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
548 eBot_ds = (vMid->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
549 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
550 span.intTexStep[0] = SignedFloatToFixed(dsdx);
551 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
552 }
553 {
554 GLfloat eMaj_dt, eBot_dt;
555 eMaj_dt = (vMax->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
556 eBot_dt = (vMid->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
557 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
558 span.intTexStep[1] = SignedFloatToFixed(dtdx);
559 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
560 }
561
562 #endif
563 #ifdef INTERP_TEX
564 span.interpMask |= SPAN_TEXTURE;
565 {
566 GLfloat wMax = vMax->win[3];
567 GLfloat wMin = vMin->win[3];
568 GLfloat wMid = vMid->win[3];
569 GLfloat eMaj_ds, eBot_ds;
570 GLfloat eMaj_dt, eBot_dt;
571 GLfloat eMaj_du, eBot_du;
572 GLfloat eMaj_dv, eBot_dv;
573
574 eMaj_ds = vMax->texcoord[0][0] * wMax - vMin->texcoord[0][0] * wMin;
575 eBot_ds = vMid->texcoord[0][0] * wMid - vMin->texcoord[0][0] * wMin;
576 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
577 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
578 span.texStepX[0][0] = dsdx;
579 span.texStepY[0][0] = dsdy;
580
581 eMaj_dt = vMax->texcoord[0][1] * wMax - vMin->texcoord[0][1] * wMin;
582 eBot_dt = vMid->texcoord[0][1] * wMid - vMin->texcoord[0][1] * wMin;
583 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
584 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
585 span.texStepX[0][1] = dtdx;
586 span.texStepY[0][1] = dtdy;
587
588 eMaj_du = vMax->texcoord[0][2] * wMax - vMin->texcoord[0][2] * wMin;
589 eBot_du = vMid->texcoord[0][2] * wMid - vMin->texcoord[0][2] * wMin;
590 dudx = oneOverArea * (eMaj_du * eBot.dy - eMaj.dy * eBot_du);
591 dudy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
592 span.texStepX[0][2] = dudx;
593 span.texStepY[0][2] = dudy;
594
595 eMaj_dv = vMax->texcoord[0][3] * wMax - vMin->texcoord[0][3] * wMin;
596 eBot_dv = vMid->texcoord[0][3] * wMid - vMin->texcoord[0][3] * wMin;
597 dvdx = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
598 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
599 span.texStepX[0][3] = dvdx;
600 span.texStepY[0][3] = dvdy;
601 }
602 #endif
603 #ifdef INTERP_MULTITEX
604 span.interpMask |= SPAN_TEXTURE;
605 {
606 GLfloat wMax = vMax->win[3];
607 GLfloat wMin = vMin->win[3];
608 GLfloat wMid = vMid->win[3];
609 GLuint u;
610 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
611 if (ctx->Texture.Unit[u]._ReallyEnabled) {
612 GLfloat eMaj_ds, eBot_ds;
613 GLfloat eMaj_dt, eBot_dt;
614 GLfloat eMaj_du, eBot_du;
615 GLfloat eMaj_dv, eBot_dv;
616 eMaj_ds = vMax->texcoord[u][0] * wMax
617 - vMin->texcoord[u][0] * wMin;
618 eBot_ds = vMid->texcoord[u][0] * wMid
619 - vMin->texcoord[u][0] * wMin;
620 dsdx[u] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
621 dsdy[u] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
622 span.texStepX[u][0] = dsdx[u];
623 span.texStepY[u][0] = dsdy[u];
624
625 eMaj_dt = vMax->texcoord[u][1] * wMax
626 - vMin->texcoord[u][1] * wMin;
627 eBot_dt = vMid->texcoord[u][1] * wMid
628 - vMin->texcoord[u][1] * wMin;
629 dtdx[u] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
630 dtdy[u] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
631 span.texStepX[u][1] = dtdx[u];
632 span.texStepY[u][1] = dtdy[u];
633
634 eMaj_du = vMax->texcoord[u][2] * wMax
635 - vMin->texcoord[u][2] * wMin;
636 eBot_du = vMid->texcoord[u][2] * wMid
637 - vMin->texcoord[u][2] * wMin;
638 dudx[u] = oneOverArea * (eMaj_du * eBot.dy - eMaj.dy * eBot_du);
639 dudy[u] = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
640 span.texStepX[u][2] = dudx[u];
641 span.texStepY[u][2] = dudy[u];
642
643 eMaj_dv = vMax->texcoord[u][3] * wMax
644 - vMin->texcoord[u][3] * wMin;
645 eBot_dv = vMid->texcoord[u][3] * wMid
646 - vMin->texcoord[u][3] * wMin;
647 dvdx[u] = oneOverArea * (eMaj_dv * eBot.dy - eMaj.dy * eBot_dv);
648 dvdy[u] = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
649 span.texStepX[u][3] = dvdx[u];
650 span.texStepY[u][3] = dvdy[u];
651 }
652 }
653 }
654 #endif
655
656 /*
657 * We always sample at pixel centers. However, we avoid
658 * explicit half-pixel offsets in this code by incorporating
659 * the proper offset in each of x and y during the
660 * transformation to window coordinates.
661 *
662 * We also apply the usual rasterization rules to prevent
663 * cracks and overlaps. A pixel is considered inside a
664 * subtriangle if it meets all of four conditions: it is on or
665 * to the right of the left edge, strictly to the left of the
666 * right edge, on or below the top edge, and strictly above
667 * the bottom edge. (Some edges may be degenerate.)
668 *
669 * The following discussion assumes left-to-right scanning
670 * (that is, the major edge is on the left); the right-to-left
671 * case is a straightforward variation.
672 *
673 * We start by finding the half-integral y coordinate that is
674 * at or below the top of the triangle. This gives us the
675 * first scan line that could possibly contain pixels that are
676 * inside the triangle.
677 *
678 * Next we creep down the major edge until we reach that y,
679 * and compute the corresponding x coordinate on the edge.
680 * Then we find the half-integral x that lies on or just
681 * inside the edge. This is the first pixel that might lie in
682 * the interior of the triangle. (We won't know for sure
683 * until we check the other edges.)
684 *
685 * As we rasterize the triangle, we'll step down the major
686 * edge. For each step in y, we'll move an integer number
687 * of steps in x. There are two possible x step sizes, which
688 * we'll call the ``inner'' step (guaranteed to land on the
689 * edge or inside it) and the ``outer'' step (guaranteed to
690 * land on the edge or outside it). The inner and outer steps
691 * differ by one. During rasterization we maintain an error
692 * term that indicates our distance from the true edge, and
693 * select either the inner step or the outer step, whichever
694 * gets us to the first pixel that falls inside the triangle.
695 *
696 * All parameters (z, red, etc.) as well as the buffer
697 * addresses for color and z have inner and outer step values,
698 * so that we can increment them appropriately. This method
699 * eliminates the need to adjust parameters by creeping a
700 * sub-pixel amount into the triangle at each scanline.
701 */
702
703 {
704 int subTriangle;
705 GLfixed fx;
706 GLfixed fxLeftEdge = 0, fxRightEdge = 0;
707 GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
708 GLfixed fdxOuter;
709 int idxOuter;
710 float dxOuter;
711 GLfixed fError = 0, fdError = 0;
712 float adjx, adjy;
713 GLfixed fy;
714 #ifdef PIXEL_ADDRESS
715 PIXEL_TYPE *pRow = NULL;
716 int dPRowOuter = 0, dPRowInner; /* offset in bytes */
717 #endif
718 #ifdef INTERP_Z
719 # ifdef DEPTH_TYPE
720 DEPTH_TYPE *zRow = NULL;
721 int dZRowOuter = 0, dZRowInner; /* offset in bytes */
722 # endif
723 GLfixed fz = 0, fdzOuter = 0, fdzInner;
724 #endif
725 #ifdef INTERP_FOG
726 GLfloat fogLeft = 0, dfogOuter = 0, dfogInner;
727 #endif
728 #ifdef INTERP_RGB
729 GLfixed fr = 0, fdrOuter = 0, fdrInner;
730 GLfixed fg = 0, fdgOuter = 0, fdgInner;
731 GLfixed fb = 0, fdbOuter = 0, fdbInner;
732 #endif
733 #ifdef INTERP_ALPHA
734 GLfixed fa = 0, fdaOuter = 0, fdaInner;
735 #endif
736 #ifdef INTERP_FLOAT_RGBA
737 GLfloat fr, fdrOuter, fdrInner;
738 GLfloat fg, fdgOuter, fdgInner;
739 GLfloat fb, fdbOuter, fdbInner;
740 GLfloat fa, fdaOuter, fdaInner;
741 #endif
742 #ifdef INTERP_SPEC
743 GLfixed fsr=0, fdsrOuter=0, fdsrInner;
744 GLfixed fsg=0, fdsgOuter=0, fdsgInner;
745 GLfixed fsb=0, fdsbOuter=0, fdsbInner;
746 #endif
747 #ifdef INTERP_FLOAT_SPEC
748 GLfloat fsr=0, fdsrOuter=0, fdsrInner;
749 GLfloat fsg=0, fdsgOuter=0, fdsgInner;
750 GLfloat fsb=0, fdsbOuter=0, fdsbInner;
751 #endif
752 #ifdef INTERP_INDEX
753 GLfixed fi=0, fdiOuter=0, fdiInner;
754 #endif
755 #ifdef INTERP_INT_TEX
756 GLfixed fs=0, fdsOuter=0, fdsInner;
757 GLfixed ft=0, fdtOuter=0, fdtInner;
758 #endif
759 #ifdef INTERP_TEX
760 GLfloat sLeft=0, dsOuter=0, dsInner;
761 GLfloat tLeft=0, dtOuter=0, dtInner;
762 GLfloat uLeft=0, duOuter=0, duInner;
763 GLfloat vLeft=0, dvOuter=0, dvInner;
764 #endif
765 #ifdef INTERP_MULTITEX
766 GLfloat sLeft[MAX_TEXTURE_UNITS];
767 GLfloat tLeft[MAX_TEXTURE_UNITS];
768 GLfloat uLeft[MAX_TEXTURE_UNITS];
769 GLfloat vLeft[MAX_TEXTURE_UNITS];
770 GLfloat dsOuter[MAX_TEXTURE_UNITS], dsInner[MAX_TEXTURE_UNITS];
771 GLfloat dtOuter[MAX_TEXTURE_UNITS], dtInner[MAX_TEXTURE_UNITS];
772 GLfloat duOuter[MAX_TEXTURE_UNITS], duInner[MAX_TEXTURE_UNITS];
773 GLfloat dvOuter[MAX_TEXTURE_UNITS], dvInner[MAX_TEXTURE_UNITS];
774 #endif
775
776 for (subTriangle=0; subTriangle<=1; subTriangle++) {
777 EdgeT *eLeft, *eRight;
778 int setupLeft, setupRight;
779 int lines;
780
781 if (subTriangle==0) {
782 /* bottom half */
783 if (scan_from_left_to_right) {
784 eLeft = &eMaj;
785 eRight = &eBot;
786 lines = eRight->lines;
787 setupLeft = 1;
788 setupRight = 1;
789 }
790 else {
791 eLeft = &eBot;
792 eRight = &eMaj;
793 lines = eLeft->lines;
794 setupLeft = 1;
795 setupRight = 1;
796 }
797 }
798 else {
799 /* top half */
800 if (scan_from_left_to_right) {
801 eLeft = &eMaj;
802 eRight = &eTop;
803 lines = eRight->lines;
804 setupLeft = 0;
805 setupRight = 1;
806 }
807 else {
808 eLeft = &eTop;
809 eRight = &eMaj;
810 lines = eLeft->lines;
811 setupLeft = 1;
812 setupRight = 0;
813 }
814 if (lines == 0)
815 return;
816 }
817
818 if (setupLeft && eLeft->lines > 0) {
819 const SWvertex *vLower;
820 GLfixed fsx = eLeft->fsx;
821 fx = FixedCeil(fsx);
822 fError = fx - fsx - FIXED_ONE;
823 fxLeftEdge = fsx - FIXED_EPSILON;
824 fdxLeftEdge = eLeft->fdxdy;
825 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
826 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
827 idxOuter = FixedToInt(fdxOuter);
828 dxOuter = (float) idxOuter;
829 (void) dxOuter;
830
831 fy = eLeft->fsy;
832 span.y = FixedToInt(fy);
833
834 adjx = (float)(fx - eLeft->fx0); /* SCALED! */
835 adjy = eLeft->adjy; /* SCALED! */
836 (void) adjx; /* silence compiler warnings */
837 (void) adjy; /* silence compiler warnings */
838
839 vLower = eLeft->v0;
840 (void) vLower; /* silence compiler warnings */
841
842 #ifdef PIXEL_ADDRESS
843 {
844 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
845 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
846 /* negative because Y=0 at bottom and increases upward */
847 }
848 #endif
849 /*
850 * Now we need the set of parameter (z, color, etc.) values at
851 * the point (fx, fy). This gives us properly-sampled parameter
852 * values that we can step from pixel to pixel. Furthermore,
853 * although we might have intermediate results that overflow
854 * the normal parameter range when we step temporarily outside
855 * the triangle, we shouldn't overflow or underflow for any
856 * pixel that's actually inside the triangle.
857 */
858
859 #ifdef INTERP_Z
860 {
861 GLfloat z0 = vLower->win[2];
862 if (depthBits <= 16) {
863 /* interpolate fixed-pt values */
864 GLfloat tmp = (z0 * FIXED_SCALE +
865 dzdx * adjx + dzdy * adjy) + FIXED_HALF;
866 if (tmp < MAX_GLUINT / 2)
867 fz = (GLfixed) tmp;
868 else
869 fz = MAX_GLUINT / 2;
870 fdzOuter = SignedFloatToFixed(dzdy + dxOuter * dzdx);
871 }
872 else {
873 /* interpolate depth values exactly */
874 fz = (GLint) (z0 + dzdx * FixedToFloat(adjx)
875 + dzdy * FixedToFloat(adjy));
876 fdzOuter = (GLint) (dzdy + dxOuter * dzdx);
877 }
878 # ifdef DEPTH_TYPE
879 zRow = (DEPTH_TYPE *)
880 _mesa_zbuffer_address(ctx, FixedToInt(fxLeftEdge), span.y);
881 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
882 # endif
883 }
884 #endif
885 #ifdef INTERP_FOG
886 fogLeft = vLower->fog + (span.fogStep * adjx + dfogdy * adjy)
887 * (1.0F/FIXED_SCALE);
888 dfogOuter = dfogdy + dxOuter * span.fogStep;
889 #endif
890 #ifdef INTERP_RGB
891 if (ctx->Light.ShadeModel == GL_SMOOTH) {
892 fr = (GLfixed) (ChanToFixed(vLower->color[RCOMP])
893 + drdx * adjx + drdy * adjy) + FIXED_HALF;
894 fdrOuter = SignedFloatToFixed(drdy + dxOuter * drdx);
895 fg = (GLfixed) (ChanToFixed(vLower->color[GCOMP])
896 + dgdx * adjx + dgdy * adjy) + FIXED_HALF;
897 fdgOuter = SignedFloatToFixed(dgdy + dxOuter * dgdx);
898 fb = (GLfixed) (ChanToFixed(vLower->color[BCOMP])
899 + dbdx * adjx + dbdy * adjy) + FIXED_HALF;
900 fdbOuter = SignedFloatToFixed(dbdy + dxOuter * dbdx);
901 # ifdef INTERP_ALPHA
902 fa = (GLfixed) (ChanToFixed(vLower->color[ACOMP])
903 + dadx * adjx + dady * adjy) + FIXED_HALF;
904 fdaOuter = SignedFloatToFixed(dady + dxOuter * dadx);
905 # endif
906 }
907 else {
908 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
909 fr = ChanToFixed(v2->color[RCOMP]);
910 fg = ChanToFixed(v2->color[GCOMP]);
911 fb = ChanToFixed(v2->color[BCOMP]);
912 fdrOuter = fdgOuter = fdbOuter = 0;
913 # ifdef INTERP_ALPHA
914 fa = ChanToFixed(v2->color[ACOMP]);
915 fdaOuter = 0;
916 # endif
917 }
918 #endif
919 #ifdef INTERP_FLOAT_RGBA
920 if (ctx->Light.ShadeModel == GL_SMOOTH) {
921 fr = vLower->color[RCOMP]
922 + (drdx * adjx + drdy * adjy) * (1.0F / FIXED_SCALE);
923 fdrOuter = drdy + dxOuter * drdx;
924 fg = vLower->color[GCOMP]
925 + (dgdx * adjx + dgdy * adjy) * (1.0F / FIXED_SCALE);
926 fdgOuter = dgdy + dxOuter * dgdx;
927 fb = vLower->color[BCOMP]
928 + (dbdx * adjx + dbdy * adjy) * (1.0F / FIXED_SCALE);
929 fdbOuter = dbdy + dxOuter * dbdx;
930 fa = vLower->color[ACOMP]
931 + (dadx * adjx + dady * adjy) * (1.0F / FIXED_SCALE);
932 fdaOuter = dady + dxOuter * dadx;
933 }
934 else {
935 fr = v2->color[RCOMP];
936 fg = v2->color[GCOMP];
937 fb = v2->color[BCOMP];
938 fa = v2->color[ACOMP];
939 fdrOuter = fdgOuter = fdbOuter = fdaOuter = 0.0F;
940 }
941 #endif
942 #ifdef INTERP_SPEC
943 if (ctx->Light.ShadeModel == GL_SMOOTH) {
944 fsr = (GLfixed) (ChanToFixed(vLower->specular[RCOMP])
945 + dsrdx * adjx + dsrdy * adjy) + FIXED_HALF;
946 fdsrOuter = SignedFloatToFixed(dsrdy + dxOuter * dsrdx);
947 fsg = (GLfixed) (ChanToFixed(vLower->specular[GCOMP])
948 + dsgdx * adjx + dsgdy * adjy) + FIXED_HALF;
949 fdsgOuter = SignedFloatToFixed(dsgdy + dxOuter * dsgdx);
950 fsb = (GLfixed) (ChanToFixed(vLower->specular[BCOMP])
951 + dsbdx * adjx + dsbdy * adjy) + FIXED_HALF;
952 fdsbOuter = SignedFloatToFixed(dsbdy + dxOuter * dsbdx);
953 }
954 else {
955 fsr = ChanToFixed(v2->specular[RCOMP]);
956 fsg = ChanToFixed(v2->specular[GCOMP]);
957 fsb = ChanToFixed(v2->specular[BCOMP]);
958 fdsrOuter = fdsgOuter = fdsbOuter = 0;
959 }
960 #endif
961 #ifdef INTERP_FLOAT_SPEC
962 if (ctx->Light.ShadeModel == GL_SMOOTH) {
963 fsr = vLower->specular[RCOMP]
964 + (dsrdx * adjx + dsrdy * adjy) * (1.0F / FIXED_SCALE);
965 fdsrOuter = dsrdy + dxOuter * dsrdx;
966 fsg = vLower->specular[GCOMP]
967 + (dsgdx * adjx + dsgdy * adjy) * (1.0F / FIXED_SCALE);
968 fdsgOuter = dsgdy + dxOuter * dsgdx;
969 fsb = vLower->specular[BCOMP]
970 + (dsbdx * adjx + dsbdy * adjy) * (1.0F / FIXED_SCALE);
971 fdsbOuter = dsbdy + dxOuter * dsbdx;
972 }
973 else {
974 fsr = v2->specular[RCOMP];
975 fsg = v2->specular[GCOMP];
976 fsb = v2->specular[BCOMP];
977 fdsrOuter = fdsgOuter = fdsbOuter = 0.0F;
978 }
979 #endif
980 #ifdef INTERP_INDEX
981 if (ctx->Light.ShadeModel == GL_SMOOTH) {
982 fi = (GLfixed)(vLower->index * FIXED_SCALE
983 + didx * adjx + didy * adjy) + FIXED_HALF;
984 fdiOuter = SignedFloatToFixed(didy + dxOuter * didx);
985 }
986 else {
987 fi = (GLfixed) (v2->index * FIXED_SCALE);
988 fdiOuter = 0;
989 }
990 #endif
991 #ifdef INTERP_INT_TEX
992 {
993 GLfloat s0, t0;
994 s0 = vLower->texcoord[0][0] * S_SCALE;
995 fs = (GLfixed)(s0 * FIXED_SCALE + dsdx * adjx
996 + dsdy * adjy) + FIXED_HALF;
997 fdsOuter = SignedFloatToFixed(dsdy + dxOuter * dsdx);
998
999 t0 = vLower->texcoord[0][1] * T_SCALE;
1000 ft = (GLfixed)(t0 * FIXED_SCALE + dtdx * adjx
1001 + dtdy * adjy) + FIXED_HALF;
1002 fdtOuter = SignedFloatToFixed(dtdy + dxOuter * dtdx);
1003 }
1004 #endif
1005 #ifdef INTERP_TEX
1006 {
1007 GLfloat invW = vLower->win[3];
1008 GLfloat s0, t0, u0, v0;
1009 s0 = vLower->texcoord[0][0] * invW;
1010 sLeft = s0 + (span.texStepX[0][0] * adjx + dsdy * adjy)
1011 * (1.0F/FIXED_SCALE);
1012 dsOuter = dsdy + dxOuter * span.texStepX[0][0];
1013 t0 = vLower->texcoord[0][1] * invW;
1014 tLeft = t0 + (span.texStepX[0][1] * adjx + dtdy * adjy)
1015 * (1.0F/FIXED_SCALE);
1016 dtOuter = dtdy + dxOuter * span.texStepX[0][1];
1017 u0 = vLower->texcoord[0][2] * invW;
1018 uLeft = u0 + (span.texStepX[0][2] * adjx + dudy * adjy)
1019 * (1.0F/FIXED_SCALE);
1020 duOuter = dudy + dxOuter * span.texStepX[0][2];
1021 v0 = vLower->texcoord[0][3] * invW;
1022 vLeft = v0 + (span.texStepX[0][3] * adjx + dvdy * adjy)
1023 * (1.0F/FIXED_SCALE);
1024 dvOuter = dvdy + dxOuter * span.texStepX[0][3];
1025 }
1026 #endif
1027 #ifdef INTERP_MULTITEX
1028 {
1029 GLuint u;
1030 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1031 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1032 GLfloat invW = vLower->win[3];
1033 GLfloat s0, t0, u0, v0;
1034 s0 = vLower->texcoord[u][0] * invW;
1035 sLeft[u] = s0 + (span.texStepX[u][0] * adjx + dsdy[u]
1036 * adjy) * (1.0F/FIXED_SCALE);
1037 dsOuter[u] = dsdy[u] + dxOuter * span.texStepX[u][0];
1038 t0 = vLower->texcoord[u][1] * invW;
1039 tLeft[u] = t0 + (span.texStepX[u][1] * adjx + dtdy[u]
1040 * adjy) * (1.0F/FIXED_SCALE);
1041 dtOuter[u] = dtdy[u] + dxOuter * span.texStepX[u][1];
1042 u0 = vLower->texcoord[u][2] * invW;
1043 uLeft[u] = u0 + (span.texStepX[u][2] * adjx + dudy[u]
1044 * adjy) * (1.0F/FIXED_SCALE);
1045 duOuter[u] = dudy[u] + dxOuter * span.texStepX[u][2];
1046 v0 = vLower->texcoord[u][3] * invW;
1047 vLeft[u] = v0 + (span.texStepX[u][3] * adjx + dvdy[u]
1048 * adjy) * (1.0F/FIXED_SCALE);
1049 dvOuter[u] = dvdy[u] + dxOuter * span.texStepX[u][3];
1050 }
1051 }
1052 }
1053 #endif
1054
1055 } /*if setupLeft*/
1056
1057
1058 if (setupRight && eRight->lines>0) {
1059 fxRightEdge = eRight->fsx - FIXED_EPSILON;
1060 fdxRightEdge = eRight->fdxdy;
1061 }
1062
1063 if (lines==0) {
1064 continue;
1065 }
1066
1067
1068 /* Rasterize setup */
1069 #ifdef PIXEL_ADDRESS
1070 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
1071 #endif
1072 #ifdef INTERP_Z
1073 # ifdef DEPTH_TYPE
1074 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
1075 # endif
1076 fdzInner = fdzOuter + span.zStep;
1077 #endif
1078 #ifdef INTERP_FOG
1079 dfogInner = dfogOuter + span.fogStep;
1080 #endif
1081 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1082 fdrInner = fdrOuter + span.redStep;
1083 fdgInner = fdgOuter + span.greenStep;
1084 fdbInner = fdbOuter + span.blueStep;
1085 #endif
1086 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1087 fdaInner = fdaOuter + span.alphaStep;
1088 #endif
1089 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1090 fdsrInner = fdsrOuter + span.specRedStep;
1091 fdsgInner = fdsgOuter + span.specGreenStep;
1092 fdsbInner = fdsbOuter + span.specBlueStep;
1093 #endif
1094 #ifdef INTERP_INDEX
1095 fdiInner = fdiOuter + span.indexStep;
1096 #endif
1097 #ifdef INTERP_INT_TEX
1098 fdsInner = fdsOuter + span.intTexStep[0];
1099 fdtInner = fdtOuter + span.intTexStep[1];
1100 #endif
1101 #ifdef INTERP_TEX
1102 dsInner = dsOuter + span.texStepX[0][0];
1103 dtInner = dtOuter + span.texStepX[0][1];
1104 duInner = duOuter + span.texStepX[0][2];
1105 dvInner = dvOuter + span.texStepX[0][3];
1106 #endif
1107 #ifdef INTERP_MULTITEX
1108 {
1109 GLuint u;
1110 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1111 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1112 dsInner[u] = dsOuter[u] + span.texStepX[u][0];
1113 dtInner[u] = dtOuter[u] + span.texStepX[u][1];
1114 duInner[u] = duOuter[u] + span.texStepX[u][2];
1115 dvInner[u] = dvOuter[u] + span.texStepX[u][3];
1116 }
1117 }
1118 }
1119 #endif
1120
1121 while (lines > 0) {
1122 /* initialize the span interpolants to the leftmost value */
1123 /* ff = fixed-pt fragment */
1124 const GLint right = FixedToInt(fxRightEdge);
1125
1126 span.x = FixedToInt(fxLeftEdge);
1127
1128 if (right <= span.x)
1129 span.end = 0;
1130 else
1131 span.end = right - span.x;
1132
1133 #ifdef INTERP_Z
1134 span.z = fz;
1135 #endif
1136 #ifdef INTERP_FOG
1137 span.fog = fogLeft;
1138 #endif
1139 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1140 span.red = fr;
1141 span.green = fg;
1142 span.blue = fb;
1143 #endif
1144 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1145 span.alpha = fa;
1146 #endif
1147 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1148 span.specRed = fsr;
1149 span.specGreen = fsg;
1150 span.specBlue = fsb;
1151 #endif
1152 #ifdef INTERP_INDEX
1153 span.index = fi;
1154 #endif
1155 #ifdef INTERP_INT_TEX
1156 span.intTex[0] = fs;
1157 span.intTex[1] = ft;
1158 #endif
1159
1160 #ifdef INTERP_TEX
1161 span.tex[0][0] = sLeft;
1162 span.tex[0][1] = tLeft;
1163 span.tex[0][2] = uLeft;
1164 span.tex[0][3] = vLeft;
1165 #endif
1166
1167 #ifdef INTERP_MULTITEX
1168 {
1169 GLuint u;
1170 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1171 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1172 span.tex[u][0] = sLeft[u];
1173 span.tex[u][1] = tLeft[u];
1174 span.tex[u][2] = uLeft[u];
1175 span.tex[u][3] = vLeft[u];
1176 }
1177 }
1178 }
1179 #endif
1180
1181 #ifdef INTERP_RGB
1182 {
1183 /* need this to accomodate round-off errors */
1184 const GLint len = right - span.x - 1;
1185 GLfixed ffrend = span.red + len * span.redStep;
1186 GLfixed ffgend = span.green + len * span.greenStep;
1187 GLfixed ffbend = span.blue + len * span.blueStep;
1188 if (ffrend < 0) {
1189 span.red -= ffrend;
1190 if (span.red < 0)
1191 span.red = 0;
1192 }
1193 if (ffgend < 0) {
1194 span.green -= ffgend;
1195 if (span.green < 0)
1196 span.green = 0;
1197 }
1198 if (ffbend < 0) {
1199 span.blue -= ffbend;
1200 if (span.blue < 0)
1201 span.blue = 0;
1202 }
1203 }
1204 #endif
1205 #ifdef INTERP_ALPHA
1206 {
1207 const GLint len = right - span.x - 1;
1208 GLfixed ffaend = span.alpha + len * span.alphaStep;
1209 if (ffaend < 0) {
1210 span.alpha -= ffaend;
1211 if (span.alpha < 0)
1212 span.alpha = 0;
1213 }
1214 }
1215 #endif
1216 #ifdef INTERP_SPEC
1217 {
1218 /* need this to accomodate round-off errors */
1219 const GLint len = right - span.x - 1;
1220 GLfixed ffsrend = span.specRed + len * span.specRedStep;
1221 GLfixed ffsgend = span.specGreen + len * span.specGreenStep;
1222 GLfixed ffsbend = span.specBlue + len * span.specBlueStep;
1223 if (ffsrend < 0) {
1224 span.specRed -= ffsrend;
1225 if (span.specRed < 0)
1226 span.specRed = 0;
1227 }
1228 if (ffsgend < 0) {
1229 span.specGreen -= ffsgend;
1230 if (span.specGreen < 0)
1231 span.specGreen = 0;
1232 }
1233 if (ffsbend < 0) {
1234 span.specBlue -= ffsbend;
1235 if (span.specBlue < 0)
1236 span.specBlue = 0;
1237 }
1238 }
1239 #endif
1240 #ifdef INTERP_INDEX
1241 if (span.index < 0) span.index = 0;
1242 #endif
1243
1244 /* This is where we actually generate fragments */
1245 if (span.end > 0) {
1246 RENDER_SPAN( span );
1247 }
1248
1249 /*
1250 * Advance to the next scan line. Compute the
1251 * new edge coordinates, and adjust the
1252 * pixel-center x coordinate so that it stays
1253 * on or inside the major edge.
1254 */
1255 (span.y)++;
1256 lines--;
1257
1258 fxLeftEdge += fdxLeftEdge;
1259 fxRightEdge += fdxRightEdge;
1260
1261
1262 fError += fdError;
1263 if (fError >= 0) {
1264 fError -= FIXED_ONE;
1265 #ifdef PIXEL_ADDRESS
1266 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
1267 #endif
1268 #ifdef INTERP_Z
1269 # ifdef DEPTH_TYPE
1270 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
1271 # endif
1272 fz += fdzOuter;
1273 #endif
1274 #ifdef INTERP_FOG
1275 fogLeft += dfogOuter;
1276 #endif
1277 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1278 fr += fdrOuter;
1279 fg += fdgOuter;
1280 fb += fdbOuter;
1281 #endif
1282 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1283 fa += fdaOuter;
1284 #endif
1285 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1286 fsr += fdsrOuter;
1287 fsg += fdsgOuter;
1288 fsb += fdsbOuter;
1289 #endif
1290 #ifdef INTERP_INDEX
1291 fi += fdiOuter;
1292 #endif
1293 #ifdef INTERP_INT_TEX
1294 fs += fdsOuter;
1295 ft += fdtOuter;
1296 #endif
1297 #ifdef INTERP_TEX
1298 sLeft += dsOuter;
1299 tLeft += dtOuter;
1300 uLeft += duOuter;
1301 vLeft += dvOuter;
1302 #endif
1303 #ifdef INTERP_MULTITEX
1304 {
1305 GLuint u;
1306 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1307 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1308 sLeft[u] += dsOuter[u];
1309 tLeft[u] += dtOuter[u];
1310 uLeft[u] += duOuter[u];
1311 vLeft[u] += dvOuter[u];
1312 }
1313 }
1314 }
1315 #endif
1316 }
1317 else {
1318 #ifdef PIXEL_ADDRESS
1319 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
1320 #endif
1321 #ifdef INTERP_Z
1322 # ifdef DEPTH_TYPE
1323 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
1324 # endif
1325 fz += fdzInner;
1326 #endif
1327 #ifdef INTERP_FOG
1328 fogLeft += dfogInner;
1329 #endif
1330 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1331 fr += fdrInner;
1332 fg += fdgInner;
1333 fb += fdbInner;
1334 #endif
1335 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1336 fa += fdaInner;
1337 #endif
1338 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1339 fsr += fdsrInner;
1340 fsg += fdsgInner;
1341 fsb += fdsbInner;
1342 #endif
1343 #ifdef INTERP_INDEX
1344 fi += fdiInner;
1345 #endif
1346 #ifdef INTERP_INT_TEX
1347 fs += fdsInner;
1348 ft += fdtInner;
1349 #endif
1350 #ifdef INTERP_TEX
1351 sLeft += dsInner;
1352 tLeft += dtInner;
1353 uLeft += duInner;
1354 vLeft += dvInner;
1355 #endif
1356 #ifdef INTERP_MULTITEX
1357 {
1358 GLuint u;
1359 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1360 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1361 sLeft[u] += dsInner[u];
1362 tLeft[u] += dtInner[u];
1363 uLeft[u] += duInner[u];
1364 vLeft[u] += dvInner[u];
1365 }
1366 }
1367 }
1368 #endif
1369 }
1370 } /*while lines>0*/
1371
1372 } /* for subTriangle */
1373
1374 }
1375 #ifdef CLEANUP_CODE
1376 CLEANUP_CODE
1377 #endif
1378 }
1379 }
1380
1381 #undef SETUP_CODE
1382 #undef CLEANUP_CODE
1383 #undef RENDER_SPAN
1384
1385 #undef PIXEL_TYPE
1386 #undef BYTES_PER_ROW
1387 #undef PIXEL_ADDRESS
1388
1389 #undef INTERP_Z
1390 #undef INTERP_FOG
1391 #undef INTERP_RGB
1392 #undef INTERP_ALPHA
1393 #undef INTERP_SPEC
1394 #undef INTERP_INDEX
1395 #undef INTERP_INT_TEX
1396 #undef INTERP_TEX
1397 #undef INTERP_MULTITEX
1398 #undef INTERP_FLOAT_RGBA
1399 #undef INTERP_FLOAT_SPEC
1400
1401 #undef S_SCALE
1402 #undef T_SCALE
1403
1404 #undef FixedToDepth
1405
1406 #undef DO_OCCLUSION_TEST