added some debug printfs (disabled)
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /* $Id: s_tritemp.h,v 1.30 2001/12/17 04:58:50 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom triangle rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated across the triangle:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_FOG - if defined, interpolate fog values
37 * INTERP_RGB - if defined, interpolate RGB values
38 * INTERP_ALPHA - if defined, interpolate Alpha values (req's INTERP_RGB)
39 * INTERP_SPEC - if defined, interpolate specular RGB values
40 * INTERP_INDEX - if defined, interpolate color index values
41 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
42 * (fast, simple 2-D texture mapping)
43 * INTERP_TEX - if defined, interpolate set 0 float STRQ texcoords
44 * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
45 * INTERP_MULTITEX - if defined, interpolate N units of STRQ texcoords
46 * INTERP_LAMBDA - if defined, compute lambda value (for mipmapping)
47 * a lambda value for every texture unit
48 * INTERP_FLOAT_RGBA - if defined, interpolate RGBA with floating point
49 * INTERP_FLOAT_SPEC - if defined, interpolate specular with floating point
50 *
51 * When one can directly address pixels in the color buffer the following
52 * macros can be defined and used to compute pixel addresses during
53 * rasterization (see pRow):
54 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
55 * BYTES_PER_ROW - number of bytes per row in the color buffer
56 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
57 * Y==0 at bottom of screen and increases upward.
58 *
59 * Similarly, for direct depth buffer access, this type is used for depth
60 * buffer addressing:
61 * DEPTH_TYPE - either GLushort or GLuint
62 *
63 * Optionally, one may provide one-time setup code per triangle:
64 * SETUP_CODE - code which is to be executed once per triangle
65 * CLEANUP_CODE - code to execute at end of triangle
66 *
67 * The following macro MUST be defined:
68 * RENDER_SPAN(span) - code to write a span of pixels.
69 *
70 * This code was designed for the origin to be in the lower-left corner.
71 *
72 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
73 */
74
75
76 /*
77 * This is a bit of a hack, but it's a centralized place to enable floating-
78 * point color interpolation when GLchan is actually floating point.
79 */
80 #if CHAN_TYPE == GL_FLOAT
81
82 #if defined(INTERP_RGB)
83 #undef INTERP_RGB
84 #undef INTERP_ALPHA
85 #define INTERP_FLOAT_RGBA
86 #endif
87
88 #if defined(INTERP_SPEC)
89 #undef INTERP_SPEC
90 #define INTERP_FLOAT_SPEC
91 #endif
92
93 #endif
94
95
96 /*void triangle( GLcontext *ctx, SWvertex *v0, SWvertex *v1, SWvertex *v2 )*/
97 {
98 typedef struct {
99 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
100 GLfloat dx; /* X(v1) - X(v0) */
101 GLfloat dy; /* Y(v1) - Y(v0) */
102 GLfixed fdxdy; /* dx/dy in fixed-point */
103 GLfixed fsx; /* first sample point x coord */
104 GLfixed fsy;
105 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
106 GLint lines; /* number of lines to be sampled on this edge */
107 GLfixed fx0; /* fixed pt X of lower endpoint */
108 } EdgeT;
109
110 #ifdef INTERP_Z
111 const GLint depthBits = ctx->Visual.depthBits;
112 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
113 const GLfloat maxDepth = ctx->DepthMaxF;
114 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
115 #endif
116 EdgeT eMaj, eTop, eBot;
117 GLfloat oneOverArea;
118 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
119 float bf = SWRAST_CONTEXT(ctx)->_backface_sign;
120 const GLint snapMask = ~((FIXED_ONE / 16) - 1); /* for x/y coord snapping */
121 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
122
123 struct sw_span span;
124
125 #ifdef INTERP_Z
126 (void) fixedToDepthShift;
127 #endif
128
129 /*
130 printf("%s()\n", __FUNCTION__);
131 printf(" %g, %g, %g\n", v0->win[0], v0->win[1], v0->win[2]);
132 printf(" %g, %g, %g\n", v1->win[0], v1->win[1], v1->win[2]);
133 printf(" %g, %g, %g\n", v2->win[0], v2->win[1], v2->win[2]);
134 */
135
136 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
137 * And find the order of the 3 vertices along the Y axis.
138 */
139 {
140 const GLfixed fy0 = FloatToFixed(v0->win[1] - 0.5F) & snapMask;
141 const GLfixed fy1 = FloatToFixed(v1->win[1] - 0.5F) & snapMask;
142 const GLfixed fy2 = FloatToFixed(v2->win[1] - 0.5F) & snapMask;
143
144 if (fy0 <= fy1) {
145 if (fy1 <= fy2) {
146 /* y0 <= y1 <= y2 */
147 vMin = v0; vMid = v1; vMax = v2;
148 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
149 }
150 else if (fy2 <= fy0) {
151 /* y2 <= y0 <= y1 */
152 vMin = v2; vMid = v0; vMax = v1;
153 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
154 }
155 else {
156 /* y0 <= y2 <= y1 */
157 vMin = v0; vMid = v2; vMax = v1;
158 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
159 bf = -bf;
160 }
161 }
162 else {
163 if (fy0 <= fy2) {
164 /* y1 <= y0 <= y2 */
165 vMin = v1; vMid = v0; vMax = v2;
166 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
167 bf = -bf;
168 }
169 else if (fy2 <= fy1) {
170 /* y2 <= y1 <= y0 */
171 vMin = v2; vMid = v1; vMax = v0;
172 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
173 bf = -bf;
174 }
175 else {
176 /* y1 <= y2 <= y0 */
177 vMin = v1; vMid = v2; vMax = v0;
178 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
179 }
180 }
181
182 /* fixed point X coords */
183 vMin_fx = FloatToFixed(vMin->win[0] + 0.5F) & snapMask;
184 vMid_fx = FloatToFixed(vMid->win[0] + 0.5F) & snapMask;
185 vMax_fx = FloatToFixed(vMax->win[0] + 0.5F) & snapMask;
186 }
187
188 /* vertex/edge relationship */
189 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
190 eTop.v0 = vMid; eTop.v1 = vMax;
191 eBot.v0 = vMin; eBot.v1 = vMid;
192
193 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
194 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
195 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
196 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
197 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
198 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
199 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
200
201 /* compute area, oneOverArea and perform backface culling */
202 {
203 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
204
205 /* Do backface culling */
206 if (area * bf < 0.0)
207 return;
208
209 if (area == 0.0F || IS_INF_OR_NAN(area))
210 return;
211
212 oneOverArea = 1.0F / area;
213 }
214
215 #ifndef DO_OCCLUSION_TEST
216 ctx->OcclusionResult = GL_TRUE;
217 #endif
218
219 /* Edge setup. For a triangle strip these could be reused... */
220 {
221 eMaj.fsy = FixedCeil(vMin_fy);
222 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
223 if (eMaj.lines > 0) {
224 GLfloat dxdy = eMaj.dx / eMaj.dy;
225 eMaj.fdxdy = SignedFloatToFixed(dxdy);
226 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
227 eMaj.fx0 = vMin_fx;
228 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * dxdy);
229 }
230 else {
231 return; /*CULLED*/
232 }
233
234 eTop.fsy = FixedCeil(vMid_fy);
235 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
236 if (eTop.lines > 0) {
237 GLfloat dxdy = eTop.dx / eTop.dy;
238 eTop.fdxdy = SignedFloatToFixed(dxdy);
239 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
240 eTop.fx0 = vMid_fx;
241 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * dxdy);
242 }
243
244 eBot.fsy = FixedCeil(vMin_fy);
245 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
246 if (eBot.lines > 0) {
247 GLfloat dxdy = eBot.dx / eBot.dy;
248 eBot.fdxdy = SignedFloatToFixed(dxdy);
249 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
250 eBot.fx0 = vMin_fx;
251 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * dxdy);
252 }
253 }
254
255 /*
256 * Conceptually, we view a triangle as two subtriangles
257 * separated by a perfectly horizontal line. The edge that is
258 * intersected by this line is one with maximal absolute dy; we
259 * call it a ``major'' edge. The other two edges are the
260 * ``top'' edge (for the upper subtriangle) and the ``bottom''
261 * edge (for the lower subtriangle). If either of these two
262 * edges is horizontal or very close to horizontal, the
263 * corresponding subtriangle might cover zero sample points;
264 * we take care to handle such cases, for performance as well
265 * as correctness.
266 *
267 * By stepping rasterization parameters along the major edge,
268 * we can avoid recomputing them at the discontinuity where
269 * the top and bottom edges meet. However, this forces us to
270 * be able to scan both left-to-right and right-to-left.
271 * Also, we must determine whether the major edge is at the
272 * left or right side of the triangle. We do this by
273 * computing the magnitude of the cross-product of the major
274 * and top edges. Since this magnitude depends on the sine of
275 * the angle between the two edges, its sign tells us whether
276 * we turn to the left or to the right when travelling along
277 * the major edge to the top edge, and from this we infer
278 * whether the major edge is on the left or the right.
279 *
280 * Serendipitously, this cross-product magnitude is also a
281 * value we need to compute the iteration parameter
282 * derivatives for the triangle, and it can be used to perform
283 * backface culling because its sign tells us whether the
284 * triangle is clockwise or counterclockwise. In this code we
285 * refer to it as ``area'' because it's also proportional to
286 * the pixel area of the triangle.
287 */
288
289 {
290 GLint scan_from_left_to_right; /* true if scanning left-to-right */
291 #ifdef INTERP_Z
292 GLfloat dzdx, dzdy;
293 #endif
294 #ifdef INTERP_FOG
295 GLfloat dfogdy;
296 #endif
297 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
298 GLfloat drdx, drdy;
299 GLfloat dgdx, dgdy;
300 GLfloat dbdx, dbdy;
301 #endif
302 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
303 GLfloat dadx, dady;
304 #endif
305 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
306 GLfloat dsrdx, dsrdy;
307 GLfloat dsgdx, dsgdy;
308 GLfloat dsbdx, dsbdy;
309 #endif
310 #ifdef INTERP_INDEX
311 GLfloat didx, didy;
312 #endif
313 #ifdef INTERP_INT_TEX
314 GLfloat dsdx, dsdy;
315 GLfloat dtdx, dtdy;
316 #endif
317 #ifdef INTERP_TEX
318 GLfloat dsdy;
319 GLfloat dtdy;
320 GLfloat dudy;
321 GLfloat dvdy;
322 #endif
323 #ifdef INTERP_MULTITEX
324 GLfloat dsdy[MAX_TEXTURE_UNITS];
325 GLfloat dtdy[MAX_TEXTURE_UNITS];
326 GLfloat dudy[MAX_TEXTURE_UNITS];
327 GLfloat dvdy[MAX_TEXTURE_UNITS];
328 #endif
329
330 #if defined(INTERP_LAMBDA) && !defined(INTERP_TEX) && !defined(INTERP_MULTITEX)
331 #error "Mipmapping without texturing doesn't make sense."
332 #endif
333
334 /*
335 * Execute user-supplied setup code
336 */
337 #ifdef SETUP_CODE
338 SETUP_CODE
339 #endif
340
341 scan_from_left_to_right = (oneOverArea < 0.0F);
342
343 span.activeMask = 0;
344
345 /* compute d?/dx and d?/dy derivatives */
346 #ifdef INTERP_Z
347 span.activeMask |= SPAN_Z;
348 {
349 GLfloat eMaj_dz, eBot_dz;
350 eMaj_dz = vMax->win[2] - vMin->win[2];
351 eBot_dz = vMid->win[2] - vMin->win[2];
352 dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
353 if (dzdx > maxDepth || dzdx < -maxDepth) {
354 /* probably a sliver triangle */
355 dzdx = 0.0;
356 dzdy = 0.0;
357 }
358 else {
359 dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
360 }
361 if (depthBits <= 16)
362 span.zStep = SignedFloatToFixed(dzdx);
363 else
364 span.zStep = (GLint) dzdx;
365 }
366 #endif
367 #ifdef INTERP_FOG
368 span.activeMask |= SPAN_FOG;
369 {
370 const GLfloat eMaj_dfog = vMax->fog - vMin->fog;
371 const GLfloat eBot_dfog = vMid->fog - vMin->fog;
372 span.fogStep = oneOverArea * (eMaj_dfog * eBot.dy - eMaj.dy * eBot_dfog);
373 dfogdy = oneOverArea * (eMaj.dx * eBot_dfog - eMaj_dfog * eBot.dx);
374 }
375 #endif
376 #ifdef INTERP_RGB
377 span.activeMask |= SPAN_RGBA;
378 if (ctx->Light.ShadeModel == GL_SMOOTH) {
379 GLfloat eMaj_dr, eBot_dr;
380 GLfloat eMaj_dg, eBot_dg;
381 GLfloat eMaj_db, eBot_db;
382 # ifdef INTERP_ALPHA
383 GLfloat eMaj_da, eBot_da;
384 # endif
385 eMaj_dr = (GLfloat) ((GLint) vMax->color[RCOMP] -
386 (GLint) vMin->color[RCOMP]);
387 eBot_dr = (GLfloat) ((GLint) vMid->color[RCOMP] -
388 (GLint) vMin->color[RCOMP]);
389 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
390 span.redStep = SignedFloatToFixed(drdx);
391 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
392 eMaj_dg = (GLfloat) ((GLint) vMax->color[GCOMP] -
393 (GLint) vMin->color[GCOMP]);
394 eBot_dg = (GLfloat) ((GLint) vMid->color[GCOMP] -
395 (GLint) vMin->color[GCOMP]);
396 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
397 span.greenStep = SignedFloatToFixed(dgdx);
398 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
399 eMaj_db = (GLfloat) ((GLint) vMax->color[BCOMP] -
400 (GLint) vMin->color[BCOMP]);
401 eBot_db = (GLfloat) ((GLint) vMid->color[BCOMP] -
402 (GLint) vMin->color[BCOMP]);
403 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
404 span.blueStep = SignedFloatToFixed(dbdx);
405 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
406 # ifdef INTERP_ALPHA
407 eMaj_da = (GLfloat) ((GLint) vMax->color[ACOMP] -
408 (GLint) vMin->color[ACOMP]);
409 eBot_da = (GLfloat) ((GLint) vMid->color[ACOMP] -
410 (GLint) vMin->color[ACOMP]);
411 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
412 span.alphaStep = SignedFloatToFixed(dadx);
413 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
414 # endif
415 }
416 else {
417 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
418 span.activeMask |= SPAN_FLAT;
419 drdx = drdy = 0.0F;
420 dgdx = dgdy = 0.0F;
421 dbdx = dbdy = 0.0F;
422 span.redStep = 0;
423 span.greenStep = 0;
424 span.blueStep = 0;
425 # ifdef INTERP_ALPHA
426 dadx = dady = 0.0F;
427 span.alphaStep = 0;
428 # endif
429 }
430 #endif
431 #ifdef INTERP_FLOAT_RGBA
432 span.activeMask |= SPAN_RGBA;
433 if (ctx->Light.ShadeModel == GL_SMOOTH) {
434 GLfloat eMaj_dr, eBot_dr;
435 GLfloat eMaj_dg, eBot_dg;
436 GLfloat eMaj_db, eBot_db;
437 GLfloat eMaj_da, eBot_da;
438 eMaj_dr = vMax->color[RCOMP] - vMin->color[RCOMP];
439 eBot_dr = vMid->color[RCOMP] - vMin->color[RCOMP];
440 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
441 span.redStep = drdx;
442 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
443 eMaj_dg = vMax->color[GCOMP] - vMin->color[GCOMP];
444 eBot_dg = vMid->color[GCOMP] - vMin->color[GCOMP];
445 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
446 span.greenStep = dgdx;
447 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
448 eMaj_db = vMax->color[BCOMP] - vMin->color[BCOMP];
449 eBot_db = vMid->color[BCOMP] - vMin->color[BCOMP];
450 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
451 span.blueStep = dbdx;
452 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
453 eMaj_da = vMax->color[ACOMP] - vMin->color[ACOMP];
454 eBot_da = vMid->color[ACOMP] - vMin->color[ACOMP];
455 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
456 span.alphaStep = dadx;
457 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
458 }
459 else {
460 drdx = drdy = span.redStep = 0.0F;
461 dgdx = dgdy = span.greenStep = 0.0F;
462 dbdx = dbdy = span.blueStep = 0.0F;
463 dadx = dady = span.alphaStep = 0.0F;
464 }
465 #endif
466 #ifdef INTERP_SPEC
467 span.activeMask |= SPAN_SPEC;
468 if (ctx->Light.ShadeModel == GL_SMOOTH) {
469 GLfloat eMaj_dsr, eBot_dsr;
470 GLfloat eMaj_dsg, eBot_dsg;
471 GLfloat eMaj_dsb, eBot_dsb;
472 eMaj_dsr = (GLfloat) ((GLint) vMax->specular[RCOMP] -
473 (GLint) vMin->specular[RCOMP]);
474 eBot_dsr = (GLfloat) ((GLint) vMid->specular[RCOMP] -
475 (GLint) vMin->specular[RCOMP]);
476 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
477 span.specRedStep = SignedFloatToFixed(dsrdx);
478 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
479 eMaj_dsg = (GLfloat) ((GLint) vMax->specular[GCOMP] -
480 (GLint) vMin->specular[GCOMP]);
481 eBot_dsg = (GLfloat) ((GLint) vMid->specular[GCOMP] -
482 (GLint) vMin->specular[GCOMP]);
483 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
484 span.specGreenStep = SignedFloatToFixed(dsgdx);
485 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
486 eMaj_dsb = (GLfloat) ((GLint) vMax->specular[BCOMP] -
487 (GLint) vMin->specular[BCOMP]);
488 eBot_dsb = (GLfloat) ((GLint) vMid->specular[BCOMP] -
489 (GLint) vMin->specular[BCOMP]);
490 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
491 span.specBlueStep = SignedFloatToFixed(dsbdx);
492 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
493 }
494 else {
495 dsrdx = dsrdy = 0.0F;
496 dsgdx = dsgdy = 0.0F;
497 dsbdx = dsbdy = 0.0F;
498 span.specRedStep = 0;
499 span.specGreenStep = 0;
500 span.specBlueStep = 0;
501 }
502 #endif
503 #ifdef INTERP_FLOAT_SPEC
504 span.activeMask |= SPAN_SPEC;
505 if (ctx->Light.ShadeModel == GL_SMOOTH) {
506 GLfloat eMaj_dsr, eBot_dsr;
507 GLfloat eMaj_dsg, eBot_dsg;
508 GLfloat eMaj_dsb, eBot_dsb;
509 eMaj_dsr = vMax->specular[RCOMP] - vMin->specular[RCOMP];
510 eBot_dsr = vMid->specular[RCOMP] - vMin->specular[RCOMP];
511 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
512 span.specRedStep = dsrdx;
513 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
514 eMaj_dsg = vMax->specular[GCOMP] - vMin->specular[GCOMP];
515 eBot_dsg = vMid->specular[GCOMP] - vMin->specular[GCOMP];
516 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
517 span.specGreenStep = dsgdx;
518 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
519 eMaj_dsb = vMax->specular[BCOMP] - vMin->specular[BCOMP];
520 eBot_dsb = vMid->specular[BCOMP] - vMin->specular[BCOMP];
521 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
522 span.specBlueStep = dsbdx;
523 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
524 }
525 else {
526 dsrdx = dsrdy = span.specRedStep = 0;
527 dsgdx = dsgdy = span.specGreenStep = 0;
528 dsbdx = dsbdy = span.specBlueStep = 0;
529 }
530 #endif
531 #ifdef INTERP_INDEX
532 span.activeMask |= SPAN_INDEX;
533 if (ctx->Light.ShadeModel == GL_SMOOTH) {
534 GLfloat eMaj_di, eBot_di;
535 eMaj_di = (GLfloat) ((GLint) vMax->index - (GLint) vMin->index);
536 eBot_di = (GLfloat) ((GLint) vMid->index - (GLint) vMin->index);
537 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
538 span.indexStep = SignedFloatToFixed(didx);
539 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
540 }
541 else {
542 span.activeMask |= SPAN_FLAT;
543 didx = didy = 0.0F;
544 span.indexStep = 0;
545 }
546 #endif
547 #ifdef INTERP_INT_TEX
548 span.activeMask |= SPAN_INT_TEXTURE;
549 {
550 GLfloat eMaj_ds, eBot_ds;
551 eMaj_ds = (vMax->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
552 eBot_ds = (vMid->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
553 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
554 span.intTexStep[0] = SignedFloatToFixed(dsdx);
555 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
556 }
557 {
558 GLfloat eMaj_dt, eBot_dt;
559 eMaj_dt = (vMax->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
560 eBot_dt = (vMid->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
561 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
562 span.intTexStep[1] = SignedFloatToFixed(dtdx);
563 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
564 }
565
566 #endif
567 #ifdef INTERP_TEX
568 span.activeMask |= SPAN_TEXTURE;
569 {
570 GLfloat wMax = vMax->win[3];
571 GLfloat wMin = vMin->win[3];
572 GLfloat wMid = vMid->win[3];
573 GLfloat eMaj_ds, eBot_ds;
574 GLfloat eMaj_dt, eBot_dt;
575 GLfloat eMaj_du, eBot_du;
576 GLfloat eMaj_dv, eBot_dv;
577
578 eMaj_ds = vMax->texcoord[0][0] * wMax - vMin->texcoord[0][0] * wMin;
579 eBot_ds = vMid->texcoord[0][0] * wMid - vMin->texcoord[0][0] * wMin;
580 span.texStep[0][0] = oneOverArea * (eMaj_ds * eBot.dy
581 - eMaj.dy * eBot_ds);
582 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
583
584 eMaj_dt = vMax->texcoord[0][1] * wMax - vMin->texcoord[0][1] * wMin;
585 eBot_dt = vMid->texcoord[0][1] * wMid - vMin->texcoord[0][1] * wMin;
586 span.texStep[0][1] = oneOverArea * (eMaj_dt * eBot.dy
587 - eMaj.dy * eBot_dt);
588 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
589
590 eMaj_du = vMax->texcoord[0][2] * wMax - vMin->texcoord[0][2] * wMin;
591 eBot_du = vMid->texcoord[0][2] * wMid - vMin->texcoord[0][2] * wMin;
592 span.texStep[0][2] = oneOverArea * (eMaj_du * eBot.dy
593 - eMaj.dy * eBot_du);
594 dudy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
595
596 eMaj_dv = vMax->texcoord[0][3] * wMax - vMin->texcoord[0][3] * wMin;
597 eBot_dv = vMid->texcoord[0][3] * wMid - vMin->texcoord[0][3] * wMin;
598 span.texStep[0][3] = oneOverArea * (eMaj_dv * eBot.dy
599 - eMaj.dy * eBot_dv);
600 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
601 }
602 # ifdef INTERP_LAMBDA
603 {
604 GLfloat dudx = span.texStep[0][0] * span.texWidth[0];
605 GLfloat dudy = dsdy * span.texWidth[0];
606 GLfloat dvdx = span.texStep[0][1] * span.texHeight[0];
607 GLfloat dvdy = dtdy * span.texHeight[0];
608 GLfloat r1 = dudx * dudx + dudy * dudy;
609 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
610 span.rho[0] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
611 span.activeMask |= SPAN_LAMBDA;
612 }
613 # endif
614 #endif
615 #ifdef INTERP_MULTITEX
616 span.activeMask |= SPAN_TEXTURE;
617 # ifdef INTERP_LAMBDA
618 span.activeMask |= SPAN_LAMBDA;
619 # endif
620 {
621 GLfloat wMax = vMax->win[3];
622 GLfloat wMin = vMin->win[3];
623 GLfloat wMid = vMid->win[3];
624 GLuint u;
625 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
626 if (ctx->Texture.Unit[u]._ReallyEnabled) {
627 GLfloat eMaj_ds, eBot_ds;
628 GLfloat eMaj_dt, eBot_dt;
629 GLfloat eMaj_du, eBot_du;
630 GLfloat eMaj_dv, eBot_dv;
631 eMaj_ds = vMax->texcoord[u][0] * wMax
632 - vMin->texcoord[u][0] * wMin;
633 eBot_ds = vMid->texcoord[u][0] * wMid
634 - vMin->texcoord[u][0] * wMin;
635 span.texStep[u][0] = oneOverArea * (eMaj_ds * eBot.dy
636 - eMaj.dy * eBot_ds);
637 dsdy[u] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
638
639 eMaj_dt = vMax->texcoord[u][1] * wMax
640 - vMin->texcoord[u][1] * wMin;
641 eBot_dt = vMid->texcoord[u][1] * wMid
642 - vMin->texcoord[u][1] * wMin;
643 span.texStep[u][1] = oneOverArea * (eMaj_dt * eBot.dy
644 - eMaj.dy * eBot_dt);
645 dtdy[u] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
646
647 eMaj_du = vMax->texcoord[u][2] * wMax
648 - vMin->texcoord[u][2] * wMin;
649 eBot_du = vMid->texcoord[u][2] * wMid
650 - vMin->texcoord[u][2] * wMin;
651 span.texStep[u][2] = oneOverArea * (eMaj_du * eBot.dy
652 - eMaj.dy * eBot_du);
653 dudy[u] = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
654
655 eMaj_dv = vMax->texcoord[u][3] * wMax
656 - vMin->texcoord[u][3] * wMin;
657 eBot_dv = vMid->texcoord[u][3] * wMid
658 - vMin->texcoord[u][3] * wMin;
659 span.texStep[u][3] = oneOverArea * (eMaj_dv * eBot.dy
660 - eMaj.dy * eBot_dv);
661 dvdy[u] = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
662 # ifdef INTERP_LAMBDA
663 {
664 GLfloat dudx = span.texStep[u][0] * span.texWidth[u];
665 GLfloat dudy = dsdy[u] * span.texWidth[u];
666 GLfloat dvdx = span.texStep[u][1] * span.texHeight[u];
667 GLfloat dvdy = dtdy[u] * span.texHeight[u];
668 GLfloat r1 = dudx * dudx + dudy * dudy;
669 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
670 span.rho[u] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
671 }
672 # endif
673 }
674 }
675 }
676 #endif
677
678 /*
679 * We always sample at pixel centers. However, we avoid
680 * explicit half-pixel offsets in this code by incorporating
681 * the proper offset in each of x and y during the
682 * transformation to window coordinates.
683 *
684 * We also apply the usual rasterization rules to prevent
685 * cracks and overlaps. A pixel is considered inside a
686 * subtriangle if it meets all of four conditions: it is on or
687 * to the right of the left edge, strictly to the left of the
688 * right edge, on or below the top edge, and strictly above
689 * the bottom edge. (Some edges may be degenerate.)
690 *
691 * The following discussion assumes left-to-right scanning
692 * (that is, the major edge is on the left); the right-to-left
693 * case is a straightforward variation.
694 *
695 * We start by finding the half-integral y coordinate that is
696 * at or below the top of the triangle. This gives us the
697 * first scan line that could possibly contain pixels that are
698 * inside the triangle.
699 *
700 * Next we creep down the major edge until we reach that y,
701 * and compute the corresponding x coordinate on the edge.
702 * Then we find the half-integral x that lies on or just
703 * inside the edge. This is the first pixel that might lie in
704 * the interior of the triangle. (We won't know for sure
705 * until we check the other edges.)
706 *
707 * As we rasterize the triangle, we'll step down the major
708 * edge. For each step in y, we'll move an integer number
709 * of steps in x. There are two possible x step sizes, which
710 * we'll call the ``inner'' step (guaranteed to land on the
711 * edge or inside it) and the ``outer'' step (guaranteed to
712 * land on the edge or outside it). The inner and outer steps
713 * differ by one. During rasterization we maintain an error
714 * term that indicates our distance from the true edge, and
715 * select either the inner step or the outer step, whichever
716 * gets us to the first pixel that falls inside the triangle.
717 *
718 * All parameters (z, red, etc.) as well as the buffer
719 * addresses for color and z have inner and outer step values,
720 * so that we can increment them appropriately. This method
721 * eliminates the need to adjust parameters by creeping a
722 * sub-pixel amount into the triangle at each scanline.
723 */
724
725 {
726 int subTriangle;
727 GLfixed fx;
728 GLfixed fxLeftEdge, fxRightEdge, fdxLeftEdge, fdxRightEdge;
729 GLfixed fdxOuter;
730 int idxOuter;
731 float dxOuter;
732 GLfixed fError, fdError;
733 float adjx, adjy;
734 GLfixed fy;
735 #ifdef PIXEL_ADDRESS
736 PIXEL_TYPE *pRow;
737 int dPRowOuter, dPRowInner; /* offset in bytes */
738 #endif
739 #ifdef INTERP_Z
740 # ifdef DEPTH_TYPE
741 DEPTH_TYPE *zRow;
742 int dZRowOuter, dZRowInner; /* offset in bytes */
743 # endif
744 GLfixed fz, fdzOuter, fdzInner;
745 #endif
746 #ifdef INTERP_FOG
747 GLfloat fogLeft, dfogOuter, dfogInner;
748 #endif
749 #ifdef INTERP_RGB
750 GLfixed fr, fdrOuter, fdrInner;
751 GLfixed fg, fdgOuter, fdgInner;
752 GLfixed fb, fdbOuter, fdbInner;
753 #endif
754 #ifdef INTERP_ALPHA
755 GLfixed fa, fdaOuter, fdaInner;
756 #endif
757 #ifdef INTERP_FLOAT_RGBA
758 GLfloat fr, fdrOuter, fdrInner;
759 GLfloat fg, fdgOuter, fdgInner;
760 GLfloat fb, fdbOuter, fdbInner;
761 GLfloat fa, fdaOuter, fdaInner;
762 #endif
763 #ifdef INTERP_SPEC
764 GLfixed fsr=0, fdsrOuter=0, fdsrInner;
765 GLfixed fsg=0, fdsgOuter=0, fdsgInner;
766 GLfixed fsb=0, fdsbOuter=0, fdsbInner;
767 #endif
768 #ifdef INTERP_FLOAT_SPEC
769 GLfloat fsr=0, fdsrOuter=0, fdsrInner;
770 GLfloat fsg=0, fdsgOuter=0, fdsgInner;
771 GLfloat fsb=0, fdsbOuter=0, fdsbInner;
772 #endif
773 #ifdef INTERP_INDEX
774 GLfixed fi=0, fdiOuter=0, fdiInner;
775 #endif
776 #ifdef INTERP_INT_TEX
777 GLfixed fs=0, fdsOuter=0, fdsInner;
778 GLfixed ft=0, fdtOuter=0, fdtInner;
779 #endif
780 #ifdef INTERP_TEX
781 GLfloat sLeft=0, dsOuter=0, dsInner;
782 GLfloat tLeft=0, dtOuter=0, dtInner;
783 GLfloat uLeft=0, duOuter=0, duInner;
784 GLfloat vLeft=0, dvOuter=0, dvInner;
785 #endif
786 #ifdef INTERP_MULTITEX
787 GLfloat sLeft[MAX_TEXTURE_UNITS];
788 GLfloat tLeft[MAX_TEXTURE_UNITS];
789 GLfloat uLeft[MAX_TEXTURE_UNITS];
790 GLfloat vLeft[MAX_TEXTURE_UNITS];
791 GLfloat dsOuter[MAX_TEXTURE_UNITS], dsInner[MAX_TEXTURE_UNITS];
792 GLfloat dtOuter[MAX_TEXTURE_UNITS], dtInner[MAX_TEXTURE_UNITS];
793 GLfloat duOuter[MAX_TEXTURE_UNITS], duInner[MAX_TEXTURE_UNITS];
794 GLfloat dvOuter[MAX_TEXTURE_UNITS], dvInner[MAX_TEXTURE_UNITS];
795 #endif
796
797 for (subTriangle=0; subTriangle<=1; subTriangle++) {
798 EdgeT *eLeft, *eRight;
799 int setupLeft, setupRight;
800 int lines;
801
802 if (subTriangle==0) {
803 /* bottom half */
804 if (scan_from_left_to_right) {
805 eLeft = &eMaj;
806 eRight = &eBot;
807 lines = eRight->lines;
808 setupLeft = 1;
809 setupRight = 1;
810 }
811 else {
812 eLeft = &eBot;
813 eRight = &eMaj;
814 lines = eLeft->lines;
815 setupLeft = 1;
816 setupRight = 1;
817 }
818 }
819 else {
820 /* top half */
821 if (scan_from_left_to_right) {
822 eLeft = &eMaj;
823 eRight = &eTop;
824 lines = eRight->lines;
825 setupLeft = 0;
826 setupRight = 1;
827 }
828 else {
829 eLeft = &eTop;
830 eRight = &eMaj;
831 lines = eLeft->lines;
832 setupLeft = 1;
833 setupRight = 0;
834 }
835 if (lines == 0)
836 return;
837 }
838
839 if (setupLeft && eLeft->lines > 0) {
840 const SWvertex *vLower;
841 GLfixed fsx = eLeft->fsx;
842 fx = FixedCeil(fsx);
843 fError = fx - fsx - FIXED_ONE;
844 fxLeftEdge = fsx - FIXED_EPSILON;
845 fdxLeftEdge = eLeft->fdxdy;
846 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
847 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
848 idxOuter = FixedToInt(fdxOuter);
849 dxOuter = (float) idxOuter;
850 (void) dxOuter;
851
852 fy = eLeft->fsy;
853 span.y = FixedToInt(fy);
854
855 adjx = (float)(fx - eLeft->fx0); /* SCALED! */
856 adjy = eLeft->adjy; /* SCALED! */
857 (void) adjx; /* silence compiler warnings */
858 (void) adjy; /* silence compiler warnings */
859
860 vLower = eLeft->v0;
861 (void) vLower; /* silence compiler warnings */
862
863 #ifdef PIXEL_ADDRESS
864 {
865 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
866 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
867 /* negative because Y=0 at bottom and increases upward */
868 }
869 #endif
870 /*
871 * Now we need the set of parameter (z, color, etc.) values at
872 * the point (fx, fy). This gives us properly-sampled parameter
873 * values that we can step from pixel to pixel. Furthermore,
874 * although we might have intermediate results that overflow
875 * the normal parameter range when we step temporarily outside
876 * the triangle, we shouldn't overflow or underflow for any
877 * pixel that's actually inside the triangle.
878 */
879
880 #ifdef INTERP_Z
881 {
882 GLfloat z0 = vLower->win[2];
883 if (depthBits <= 16) {
884 /* interpolate fixed-pt values */
885 GLfloat tmp = (z0 * FIXED_SCALE +
886 dzdx * adjx + dzdy * adjy) + FIXED_HALF;
887 if (tmp < MAX_GLUINT / 2)
888 fz = (GLfixed) tmp;
889 else
890 fz = MAX_GLUINT / 2;
891 fdzOuter = SignedFloatToFixed(dzdy + dxOuter * dzdx);
892 }
893 else {
894 /* interpolate depth values exactly */
895 fz = (GLint) (z0 + dzdx * FixedToFloat(adjx)
896 + dzdy * FixedToFloat(adjy));
897 fdzOuter = (GLint) (dzdy + dxOuter * dzdx);
898 }
899 # ifdef DEPTH_TYPE
900 zRow = (DEPTH_TYPE *)
901 _mesa_zbuffer_address(ctx, FixedToInt(fxLeftEdge), span.y);
902 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
903 # endif
904 }
905 #endif
906 #ifdef INTERP_FOG
907 fogLeft = vLower->fog + (span.fogStep * adjx + dfogdy * adjy)
908 * (1.0F/FIXED_SCALE);
909 dfogOuter = dfogdy + dxOuter * span.fogStep;
910 #endif
911 #ifdef INTERP_RGB
912 if (ctx->Light.ShadeModel == GL_SMOOTH) {
913 fr = (GLfixed) (ChanToFixed(vLower->color[RCOMP])
914 + drdx * adjx + drdy * adjy) + FIXED_HALF;
915 fdrOuter = SignedFloatToFixed(drdy + dxOuter * drdx);
916 fg = (GLfixed) (ChanToFixed(vLower->color[GCOMP])
917 + dgdx * adjx + dgdy * adjy) + FIXED_HALF;
918 fdgOuter = SignedFloatToFixed(dgdy + dxOuter * dgdx);
919 fb = (GLfixed) (ChanToFixed(vLower->color[BCOMP])
920 + dbdx * adjx + dbdy * adjy) + FIXED_HALF;
921 fdbOuter = SignedFloatToFixed(dbdy + dxOuter * dbdx);
922 # ifdef INTERP_ALPHA
923 fa = (GLfixed) (ChanToFixed(vLower->color[ACOMP])
924 + dadx * adjx + dady * adjy) + FIXED_HALF;
925 fdaOuter = SignedFloatToFixed(dady + dxOuter * dadx);
926 # endif
927 }
928 else {
929 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
930 fr = ChanToFixed(v2->color[RCOMP]);
931 fg = ChanToFixed(v2->color[GCOMP]);
932 fb = ChanToFixed(v2->color[BCOMP]);
933 fdrOuter = fdgOuter = fdbOuter = 0;
934 # ifdef INTERP_ALPHA
935 fa = ChanToFixed(v2->color[ACOMP]);
936 fdaOuter = 0;
937 # endif
938 }
939 #endif
940 #ifdef INTERP_FLOAT_RGBA
941 if (ctx->Light.ShadeModel == GL_SMOOTH) {
942 fr = vLower->color[RCOMP]
943 + (drdx * adjx + drdy * adjy) * (1.0F / FIXED_SCALE);
944 fdrOuter = drdy + dxOuter * drdx;
945 fg = vLower->color[GCOMP]
946 + (dgdx * adjx + dgdy * adjy) * (1.0F / FIXED_SCALE);
947 fdgOuter = dgdy + dxOuter * dgdx;
948 fb = vLower->color[BCOMP]
949 + (dbdx * adjx + dbdy * adjy) * (1.0F / FIXED_SCALE);
950 fdbOuter = dbdy + dxOuter * dbdx;
951 fa = vLower->color[ACOMP]
952 + (dadx * adjx + dady * adjy) * (1.0F / FIXED_SCALE);
953 fdaOuter = dady + dxOuter * dadx;
954 }
955 else {
956 fr = v2->color[RCOMP];
957 fg = v2->color[GCOMP];
958 fb = v2->color[BCOMP];
959 fa = v2->color[ACOMP];
960 fdrOuter = fdgOuter = fdbOuter = fdaOuter = 0.0F;
961 }
962 #endif
963 #ifdef INTERP_SPEC
964 if (ctx->Light.ShadeModel == GL_SMOOTH) {
965 fsr = (GLfixed) (ChanToFixed(vLower->specular[RCOMP])
966 + dsrdx * adjx + dsrdy * adjy) + FIXED_HALF;
967 fdsrOuter = SignedFloatToFixed(dsrdy + dxOuter * dsrdx);
968 fsg = (GLfixed) (ChanToFixed(vLower->specular[GCOMP])
969 + dsgdx * adjx + dsgdy * adjy) + FIXED_HALF;
970 fdsgOuter = SignedFloatToFixed(dsgdy + dxOuter * dsgdx);
971 fsb = (GLfixed) (ChanToFixed(vLower->specular[BCOMP])
972 + dsbdx * adjx + dsbdy * adjy) + FIXED_HALF;
973 fdsbOuter = SignedFloatToFixed(dsbdy + dxOuter * dsbdx);
974 }
975 else {
976 fsr = ChanToFixed(v2->specular[RCOMP]);
977 fsg = ChanToFixed(v2->specular[GCOMP]);
978 fsb = ChanToFixed(v2->specular[BCOMP]);
979 fdsrOuter = fdsgOuter = fdsbOuter = 0;
980 }
981 #endif
982 #ifdef INTERP_FLOAT_SPEC
983 if (ctx->Light.ShadeModel == GL_SMOOTH) {
984 fsr = vLower->specular[RCOMP]
985 + (dsrdx * adjx + dsrdy * adjy) * (1.0F / FIXED_SCALE);
986 fdsrOuter = dsrdy + dxOuter * dsrdx;
987 fsg = vLower->specular[GCOMP]
988 + (dsgdx * adjx + dsgdy * adjy) * (1.0F / FIXED_SCALE);
989 fdsgOuter = dsgdy + dxOuter * dsgdx;
990 fsb = vLower->specular[BCOMP]
991 + (dsbdx * adjx + dsbdy * adjy) * (1.0F / FIXED_SCALE);
992 fdsbOuter = dsbdy + dxOuter * dsbdx;
993 }
994 else {
995 fsr = v2->specular[RCOMP];
996 fsg = v2->specular[GCOMP];
997 fsb = v2->specular[BCOMP];
998 fdsrOuter = fdsgOuter = fdsbOuter = 0.0F;
999 }
1000 #endif
1001 #ifdef INTERP_INDEX
1002 if (ctx->Light.ShadeModel == GL_SMOOTH) {
1003 fi = (GLfixed)(vLower->index * FIXED_SCALE
1004 + didx * adjx + didy * adjy) + FIXED_HALF;
1005 fdiOuter = SignedFloatToFixed(didy + dxOuter * didx);
1006 }
1007 else {
1008 fi = (GLfixed) (v2->index * FIXED_SCALE);
1009 fdiOuter = 0;
1010 }
1011 #endif
1012 #ifdef INTERP_INT_TEX
1013 {
1014 GLfloat s0, t0;
1015 s0 = vLower->texcoord[0][0] * S_SCALE;
1016 fs = (GLfixed)(s0 * FIXED_SCALE + dsdx * adjx
1017 + dsdy * adjy) + FIXED_HALF;
1018 fdsOuter = SignedFloatToFixed(dsdy + dxOuter * dsdx);
1019
1020 t0 = vLower->texcoord[0][1] * T_SCALE;
1021 ft = (GLfixed)(t0 * FIXED_SCALE + dtdx * adjx
1022 + dtdy * adjy) + FIXED_HALF;
1023 fdtOuter = SignedFloatToFixed(dtdy + dxOuter * dtdx);
1024 }
1025 #endif
1026 #ifdef INTERP_TEX
1027 {
1028 GLfloat invW = vLower->win[3];
1029 GLfloat s0, t0, u0, v0;
1030 s0 = vLower->texcoord[0][0] * invW;
1031 sLeft = s0 + (span.texStep[0][0] * adjx + dsdy * adjy)
1032 * (1.0F/FIXED_SCALE);
1033 dsOuter = dsdy + dxOuter * span.texStep[0][0];
1034 t0 = vLower->texcoord[0][1] * invW;
1035 tLeft = t0 + (span.texStep[0][1] * adjx + dtdy * adjy)
1036 * (1.0F/FIXED_SCALE);
1037 dtOuter = dtdy + dxOuter * span.texStep[0][1];
1038 u0 = vLower->texcoord[0][2] * invW;
1039 uLeft = u0 + (span.texStep[0][2] * adjx + dudy * adjy)
1040 * (1.0F/FIXED_SCALE);
1041 duOuter = dudy + dxOuter * span.texStep[0][2];
1042 v0 = vLower->texcoord[0][3] * invW;
1043 vLeft = v0 + (span.texStep[0][3] * adjx + dvdy * adjy)
1044 * (1.0F/FIXED_SCALE);
1045 dvOuter = dvdy + dxOuter * span.texStep[0][3];
1046 }
1047 #endif
1048 #ifdef INTERP_MULTITEX
1049 {
1050 GLuint u;
1051 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1052 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1053 GLfloat invW = vLower->win[3];
1054 GLfloat s0, t0, u0, v0;
1055 s0 = vLower->texcoord[u][0] * invW;
1056 sLeft[u] = s0 + (span.texStep[u][0] * adjx + dsdy[u]
1057 * adjy) * (1.0F/FIXED_SCALE);
1058 dsOuter[u] = dsdy[u] + dxOuter * span.texStep[u][0];
1059 t0 = vLower->texcoord[u][1] * invW;
1060 tLeft[u] = t0 + (span.texStep[u][1] * adjx + dtdy[u]
1061 * adjy) * (1.0F/FIXED_SCALE);
1062 dtOuter[u] = dtdy[u] + dxOuter * span.texStep[u][1];
1063 u0 = vLower->texcoord[u][2] * invW;
1064 uLeft[u] = u0 + (span.texStep[u][2] * adjx + dudy[u]
1065 * adjy) * (1.0F/FIXED_SCALE);
1066 duOuter[u] = dudy[u] + dxOuter * span.texStep[u][2];
1067 v0 = vLower->texcoord[u][3] * invW;
1068 vLeft[u] = v0 + (span.texStep[u][3] * adjx + dvdy[u]
1069 * adjy) * (1.0F/FIXED_SCALE);
1070 dvOuter[u] = dvdy[u] + dxOuter * span.texStep[u][3];
1071 }
1072 }
1073 }
1074 #endif
1075
1076 } /*if setupLeft*/
1077
1078
1079 if (setupRight && eRight->lines>0) {
1080 fxRightEdge = eRight->fsx - FIXED_EPSILON;
1081 fdxRightEdge = eRight->fdxdy;
1082 }
1083
1084 if (lines==0) {
1085 continue;
1086 }
1087
1088
1089 /* Rasterize setup */
1090 #ifdef PIXEL_ADDRESS
1091 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
1092 #endif
1093 #ifdef INTERP_Z
1094 # ifdef DEPTH_TYPE
1095 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
1096 # endif
1097 fdzInner = fdzOuter + span.zStep;
1098 #endif
1099 #ifdef INTERP_FOG
1100 dfogInner = dfogOuter + span.fogStep;
1101 #endif
1102 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1103 fdrInner = fdrOuter + span.redStep;
1104 fdgInner = fdgOuter + span.greenStep;
1105 fdbInner = fdbOuter + span.blueStep;
1106 #endif
1107 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1108 fdaInner = fdaOuter + span.alphaStep;
1109 #endif
1110 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1111 fdsrInner = fdsrOuter + span.specRedStep;
1112 fdsgInner = fdsgOuter + span.specGreenStep;
1113 fdsbInner = fdsbOuter + span.specBlueStep;
1114 #endif
1115 #ifdef INTERP_INDEX
1116 fdiInner = fdiOuter + span.indexStep;
1117 #endif
1118 #ifdef INTERP_INT_TEX
1119 fdsInner = fdsOuter + span.intTexStep[0];
1120 fdtInner = fdtOuter + span.intTexStep[1];
1121 #endif
1122 #ifdef INTERP_TEX
1123 dsInner = dsOuter + span.texStep[0][0];
1124 dtInner = dtOuter + span.texStep[0][1];
1125 duInner = duOuter + span.texStep[0][2];
1126 dvInner = dvOuter + span.texStep[0][3];
1127 #endif
1128 #ifdef INTERP_MULTITEX
1129 {
1130 GLuint u;
1131 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1132 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1133 dsInner[u] = dsOuter[u] + span.texStep[u][0];
1134 dtInner[u] = dtOuter[u] + span.texStep[u][1];
1135 duInner[u] = duOuter[u] + span.texStep[u][2];
1136 dvInner[u] = dvOuter[u] + span.texStep[u][3];
1137 }
1138 }
1139 }
1140 #endif
1141
1142 while (lines > 0) {
1143 /* initialize the span interpolants to the leftmost value */
1144 /* ff = fixed-pt fragment */
1145 const GLint right = FixedToInt(fxRightEdge);
1146 SW_SPAN_RESET(span);
1147 span.x = FixedToInt(fxLeftEdge);
1148
1149 if (right <= span.x)
1150 span.end = 0;
1151 else
1152 span.end = right - span.x;
1153
1154 #ifdef INTERP_Z
1155 span.z = fz;
1156 #endif
1157 #ifdef INTERP_FOG
1158 span.fog = fogLeft;
1159 #endif
1160 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1161 span.red = fr;
1162 span.green = fg;
1163 span.blue = fb;
1164 #endif
1165 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1166 span.alpha = fa;
1167 #endif
1168 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1169 span.specRed = fsr;
1170 span.specGreen = fsg;
1171 span.specBlue = fsb;
1172 #endif
1173 #ifdef INTERP_INDEX
1174 span.index = fi;
1175 #endif
1176 #ifdef INTERP_INT_TEX
1177 span.intTex[0] = fs;
1178 span.intTex[1] = ft;
1179 #endif
1180
1181 #ifdef INTERP_TEX
1182 span.tex[0][0] = sLeft;
1183 span.tex[0][1] = tLeft;
1184 span.tex[0][2] = uLeft;
1185 span.tex[0][3] = vLeft;
1186 #endif
1187
1188 #ifdef INTERP_MULTITEX
1189 {
1190 GLuint u;
1191 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1192 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1193 span.tex[u][0] = sLeft[u];
1194 span.tex[u][1] = tLeft[u];
1195 span.tex[u][2] = uLeft[u];
1196 span.tex[u][3] = vLeft[u];
1197 }
1198 }
1199 }
1200 #endif
1201
1202 #ifdef INTERP_RGB
1203 {
1204 /* need this to accomodate round-off errors */
1205 const GLint len = right - span.x - 1;
1206 GLfixed ffrend = span.red + len * span.redStep;
1207 GLfixed ffgend = span.green + len * span.greenStep;
1208 GLfixed ffbend = span.blue + len * span.blueStep;
1209 if (ffrend < 0) {
1210 span.red -= ffrend;
1211 if (span.red < 0)
1212 span.red = 0;
1213 }
1214 if (ffgend < 0) {
1215 span.green -= ffgend;
1216 if (span.green < 0)
1217 span.green = 0;
1218 }
1219 if (ffbend < 0) {
1220 span.blue -= ffbend;
1221 if (span.blue < 0)
1222 span.blue = 0;
1223 }
1224 }
1225 #endif
1226 #ifdef INTERP_ALPHA
1227 {
1228 const GLint len = right - span.x - 1;
1229 GLfixed ffaend = span.alpha + len * span.alphaStep;
1230 if (ffaend < 0) {
1231 span.alpha -= ffaend;
1232 if (span.alpha < 0)
1233 span.alpha = 0;
1234 }
1235 }
1236 #endif
1237 #ifdef INTERP_SPEC
1238 {
1239 /* need this to accomodate round-off errors */
1240 const GLint len = right - span.x - 1;
1241 GLfixed ffsrend = span.specRed + len * span.specRedStep;
1242 GLfixed ffsgend = span.specGreen + len * span.specGreenStep;
1243 GLfixed ffsbend = span.specBlue + len * span.specBlueStep;
1244 if (ffsrend < 0) {
1245 span.specRed -= ffsrend;
1246 if (span.specRed < 0)
1247 span.specRed = 0;
1248 }
1249 if (ffsgend < 0) {
1250 span.specGreen -= ffsgend;
1251 if (span.specGreen < 0)
1252 span.specGreen = 0;
1253 }
1254 if (ffsbend < 0) {
1255 span.specBlue -= ffsbend;
1256 if (span.specBlue < 0)
1257 span.specBlue = 0;
1258 }
1259 }
1260 #endif
1261 #ifdef INTERP_INDEX
1262 if (span.index < 0) span.index = 0;
1263 #endif
1264
1265 /* This is where we actually generate fragments */
1266 if (span.end > 0) {
1267 RENDER_SPAN( span );
1268 }
1269
1270 /*
1271 * Advance to the next scan line. Compute the
1272 * new edge coordinates, and adjust the
1273 * pixel-center x coordinate so that it stays
1274 * on or inside the major edge.
1275 */
1276 span.y++;
1277 lines--;
1278
1279 fxLeftEdge += fdxLeftEdge;
1280 fxRightEdge += fdxRightEdge;
1281
1282
1283 fError += fdError;
1284 if (fError >= 0) {
1285 fError -= FIXED_ONE;
1286 #ifdef PIXEL_ADDRESS
1287 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
1288 #endif
1289 #ifdef INTERP_Z
1290 # ifdef DEPTH_TYPE
1291 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
1292 # endif
1293 fz += fdzOuter;
1294 #endif
1295 #ifdef INTERP_FOG
1296 fogLeft += dfogOuter;
1297 #endif
1298 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1299 fr += fdrOuter;
1300 fg += fdgOuter;
1301 fb += fdbOuter;
1302 #endif
1303 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1304 fa += fdaOuter;
1305 #endif
1306 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1307 fsr += fdsrOuter;
1308 fsg += fdsgOuter;
1309 fsb += fdsbOuter;
1310 #endif
1311 #ifdef INTERP_INDEX
1312 fi += fdiOuter;
1313 #endif
1314 #ifdef INTERP_INT_TEX
1315 fs += fdsOuter;
1316 ft += fdtOuter;
1317 #endif
1318 #ifdef INTERP_TEX
1319 sLeft += dsOuter;
1320 tLeft += dtOuter;
1321 uLeft += duOuter;
1322 vLeft += dvOuter;
1323 #endif
1324 #ifdef INTERP_MULTITEX
1325 {
1326 GLuint u;
1327 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1328 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1329 sLeft[u] += dsOuter[u];
1330 tLeft[u] += dtOuter[u];
1331 uLeft[u] += duOuter[u];
1332 vLeft[u] += dvOuter[u];
1333 }
1334 }
1335 }
1336 #endif
1337 }
1338 else {
1339 #ifdef PIXEL_ADDRESS
1340 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
1341 #endif
1342 #ifdef INTERP_Z
1343 # ifdef DEPTH_TYPE
1344 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
1345 # endif
1346 fz += fdzInner;
1347 #endif
1348 #ifdef INTERP_FOG
1349 fogLeft += dfogInner;
1350 #endif
1351 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1352 fr += fdrInner;
1353 fg += fdgInner;
1354 fb += fdbInner;
1355 #endif
1356 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1357 fa += fdaInner;
1358 #endif
1359 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1360 fsr += fdsrInner;
1361 fsg += fdsgInner;
1362 fsb += fdsbInner;
1363 #endif
1364 #ifdef INTERP_INDEX
1365 fi += fdiInner;
1366 #endif
1367 #ifdef INTERP_INT_TEX
1368 fs += fdsInner;
1369 ft += fdtInner;
1370 #endif
1371 #ifdef INTERP_TEX
1372 sLeft += dsInner;
1373 tLeft += dtInner;
1374 uLeft += duInner;
1375 vLeft += dvInner;
1376 #endif
1377 #ifdef INTERP_MULTITEX
1378 {
1379 GLuint u;
1380 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1381 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1382 sLeft[u] += dsInner[u];
1383 tLeft[u] += dtInner[u];
1384 uLeft[u] += duInner[u];
1385 vLeft[u] += dvInner[u];
1386 }
1387 }
1388 }
1389 #endif
1390 }
1391 } /*while lines>0*/
1392
1393 } /* for subTriangle */
1394
1395 }
1396 #ifdef CLEANUP_CODE
1397 CLEANUP_CODE
1398 #endif
1399 }
1400 }
1401
1402 #undef SETUP_CODE
1403 #undef CLEANUP_CODE
1404 #undef RENDER_SPAN
1405
1406 #undef PIXEL_TYPE
1407 #undef BYTES_PER_ROW
1408 #undef PIXEL_ADDRESS
1409
1410 #undef INTERP_Z
1411 #undef INTERP_FOG
1412 #undef INTERP_RGB
1413 #undef INTERP_ALPHA
1414 #undef INTERP_SPEC
1415 #undef INTERP_INDEX
1416 #undef INTERP_INT_TEX
1417 #undef INTERP_TEX
1418 #undef INTERP_MULTITEX
1419 #undef INTERP_LAMBDA
1420 #undef INTERP_FLOAT_RGBA
1421 #undef INTERP_FLOAT_SPEC
1422
1423 #undef S_SCALE
1424 #undef T_SCALE
1425
1426 #undef FixedToDepth
1427
1428 #undef DO_OCCLUSION_TEST