replaced some tabs with spaces
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /* $Id: s_tritemp.h,v 1.25 2001/09/13 21:54:29 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom triangle rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated across the triangle:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_FOG - if defined, interpolate fog values
37 * INTERP_RGB - if defined, interpolate RGB values
38 * INTERP_ALPHA - if defined, interpolate Alpha values (req's INTERP_RGB)
39 * INTERP_SPEC - if defined, interpolate specular RGB values
40 * INTERP_INDEX - if defined, interpolate color index values
41 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
42 * (fast, simple 2-D texture mapping)
43 * INTERP_TEX - if defined, interpolate set 0 float STRQ texcoords
44 * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
45 * INTERP_MULTITEX - if defined, interpolate N units of STRQ texcoords
46 * INTERP_LAMBDA - if defined, compute lambda value (for mipmapping)
47 * a lambda value for every texture unit
48 * INTERP_FLOAT_RGBA - if defined, interpolate RGBA with floating point
49 * INTERP_FLOAT_SPEC - if defined, interpolate specular with floating point
50 *
51 * When one can directly address pixels in the color buffer the following
52 * macros can be defined and used to compute pixel addresses during
53 * rasterization (see pRow):
54 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
55 * BYTES_PER_ROW - number of bytes per row in the color buffer
56 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
57 * Y==0 at bottom of screen and increases upward.
58 *
59 * Similarly, for direct depth buffer access, this type is used for depth
60 * buffer addressing:
61 * DEPTH_TYPE - either GLushort or GLuint
62 *
63 * Optionally, one may provide one-time setup code per triangle:
64 * SETUP_CODE - code which is to be executed once per triangle
65 * CLEANUP_CODE - code to execute at end of triangle
66 *
67 * The following macro MUST be defined:
68 * RENDER_SPAN(span) - code to write a span of pixels.
69 *
70 * This code was designed for the origin to be in the lower-left corner.
71 *
72 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
73 */
74
75
76 /*
77 * This is a bit of a hack, but it's a centralized place to enable floating-
78 * point color interpolation when GLchan is actually floating point.
79 */
80 #if CHAN_TYPE == GL_FLOAT
81
82 #if defined(INTERP_RGB)
83 #undef INTERP_RGB
84 #undef INTERP_ALPHA
85 #define INTERP_FLOAT_RGBA
86 #endif
87
88 #if defined(INTERP_SPEC)
89 #undef INTERP_SPEC
90 #define INTERP_FLOAT_SPEC
91 #endif
92
93 #endif
94
95
96 /*void triangle( GLcontext *ctx, SWvertex *v0, SWvertex *v1, SWvertex *v2 )*/
97 {
98 typedef struct {
99 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
100 GLfloat dx; /* X(v1) - X(v0) */
101 GLfloat dy; /* Y(v1) - Y(v0) */
102 GLfixed fdxdy; /* dx/dy in fixed-point */
103 GLfixed fsx; /* first sample point x coord */
104 GLfixed fsy;
105 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
106 GLint lines; /* number of lines to be sampled on this edge */
107 GLfixed fx0; /* fixed pt X of lower endpoint */
108 } EdgeT;
109
110 #ifdef INTERP_Z
111 const GLint depthBits = ctx->Visual.depthBits;
112 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
113 const GLfloat maxDepth = ctx->DepthMaxF;
114 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
115 #endif
116 EdgeT eMaj, eTop, eBot;
117 GLfloat oneOverArea;
118 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
119 float bf = SWRAST_CONTEXT(ctx)->_backface_sign;
120 const GLint snapMask = ~((FIXED_ONE / 16) - 1); /* for x/y coord snapping */
121 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
122
123 struct triangle_span span;
124
125 #ifdef INTERP_Z
126 (void) fixedToDepthShift;
127 #endif
128
129 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
130 * And find the order of the 3 vertices along the Y axis.
131 */
132 {
133 const GLfixed fy0 = FloatToFixed(v0->win[1] - 0.5F) & snapMask;
134 const GLfixed fy1 = FloatToFixed(v1->win[1] - 0.5F) & snapMask;
135 const GLfixed fy2 = FloatToFixed(v2->win[1] - 0.5F) & snapMask;
136
137 if (fy0 <= fy1) {
138 if (fy1 <= fy2) {
139 /* y0 <= y1 <= y2 */
140 vMin = v0; vMid = v1; vMax = v2;
141 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
142 }
143 else if (fy2 <= fy0) {
144 /* y2 <= y0 <= y1 */
145 vMin = v2; vMid = v0; vMax = v1;
146 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
147 }
148 else {
149 /* y0 <= y2 <= y1 */
150 vMin = v0; vMid = v2; vMax = v1;
151 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
152 bf = -bf;
153 }
154 }
155 else {
156 if (fy0 <= fy2) {
157 /* y1 <= y0 <= y2 */
158 vMin = v1; vMid = v0; vMax = v2;
159 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
160 bf = -bf;
161 }
162 else if (fy2 <= fy1) {
163 /* y2 <= y1 <= y0 */
164 vMin = v2; vMid = v1; vMax = v0;
165 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
166 bf = -bf;
167 }
168 else {
169 /* y1 <= y2 <= y0 */
170 vMin = v1; vMid = v2; vMax = v0;
171 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
172 }
173 }
174
175 /* fixed point X coords */
176 vMin_fx = FloatToFixed(vMin->win[0] + 0.5F) & snapMask;
177 vMid_fx = FloatToFixed(vMid->win[0] + 0.5F) & snapMask;
178 vMax_fx = FloatToFixed(vMax->win[0] + 0.5F) & snapMask;
179 }
180
181 /* vertex/edge relationship */
182 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
183 eTop.v0 = vMid; eTop.v1 = vMax;
184 eBot.v0 = vMin; eBot.v1 = vMid;
185
186 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
187 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
188 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
189 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
190 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
191 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
192 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
193
194 /* compute area, oneOverArea and perform backface culling */
195 {
196 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
197
198 /* Do backface culling */
199 if (area * bf < 0.0)
200 return;
201
202 if (area == 0.0F)
203 return;
204
205 oneOverArea = 1.0F / area;
206 }
207
208 #ifndef DO_OCCLUSION_TEST
209 ctx->OcclusionResult = GL_TRUE;
210 #endif
211
212 /* Edge setup. For a triangle strip these could be reused... */
213 {
214 eMaj.fsy = FixedCeil(vMin_fy);
215 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
216 if (eMaj.lines > 0) {
217 GLfloat dxdy = eMaj.dx / eMaj.dy;
218 eMaj.fdxdy = SignedFloatToFixed(dxdy);
219 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
220 eMaj.fx0 = vMin_fx;
221 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * dxdy);
222 }
223 else {
224 return; /*CULLED*/
225 }
226
227 eTop.fsy = FixedCeil(vMid_fy);
228 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
229 if (eTop.lines > 0) {
230 GLfloat dxdy = eTop.dx / eTop.dy;
231 eTop.fdxdy = SignedFloatToFixed(dxdy);
232 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
233 eTop.fx0 = vMid_fx;
234 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * dxdy);
235 }
236
237 eBot.fsy = FixedCeil(vMin_fy);
238 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
239 if (eBot.lines > 0) {
240 GLfloat dxdy = eBot.dx / eBot.dy;
241 eBot.fdxdy = SignedFloatToFixed(dxdy);
242 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
243 eBot.fx0 = vMin_fx;
244 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * dxdy);
245 }
246 }
247
248 /*
249 * Conceptually, we view a triangle as two subtriangles
250 * separated by a perfectly horizontal line. The edge that is
251 * intersected by this line is one with maximal absolute dy; we
252 * call it a ``major'' edge. The other two edges are the
253 * ``top'' edge (for the upper subtriangle) and the ``bottom''
254 * edge (for the lower subtriangle). If either of these two
255 * edges is horizontal or very close to horizontal, the
256 * corresponding subtriangle might cover zero sample points;
257 * we take care to handle such cases, for performance as well
258 * as correctness.
259 *
260 * By stepping rasterization parameters along the major edge,
261 * we can avoid recomputing them at the discontinuity where
262 * the top and bottom edges meet. However, this forces us to
263 * be able to scan both left-to-right and right-to-left.
264 * Also, we must determine whether the major edge is at the
265 * left or right side of the triangle. We do this by
266 * computing the magnitude of the cross-product of the major
267 * and top edges. Since this magnitude depends on the sine of
268 * the angle between the two edges, its sign tells us whether
269 * we turn to the left or to the right when travelling along
270 * the major edge to the top edge, and from this we infer
271 * whether the major edge is on the left or the right.
272 *
273 * Serendipitously, this cross-product magnitude is also a
274 * value we need to compute the iteration parameter
275 * derivatives for the triangle, and it can be used to perform
276 * backface culling because its sign tells us whether the
277 * triangle is clockwise or counterclockwise. In this code we
278 * refer to it as ``area'' because it's also proportional to
279 * the pixel area of the triangle.
280 */
281
282 {
283 GLint scan_from_left_to_right; /* true if scanning left-to-right */
284 #ifdef INTERP_Z
285 GLfloat dzdx, dzdy;
286 #endif
287 #ifdef INTERP_FOG
288 GLfloat dfogdy;
289 #endif
290 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
291 GLfloat drdx, drdy;
292 GLfloat dgdx, dgdy;
293 GLfloat dbdx, dbdy;
294 #endif
295 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
296 GLfloat dadx, dady;
297 #endif
298 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
299 GLfloat dsrdx, dsrdy;
300 GLfloat dsgdx, dsgdy;
301 GLfloat dsbdx, dsbdy;
302 #endif
303 #ifdef INTERP_INDEX
304 GLfloat didx, didy;
305 #endif
306 #ifdef INTERP_INT_TEX
307 GLfloat dsdx, dsdy;
308 GLfloat dtdx, dtdy;
309 #endif
310 #ifdef INTERP_TEX
311 GLfloat dsdy;
312 GLfloat dtdy;
313 GLfloat dudy;
314 GLfloat dvdy;
315 #endif
316 #ifdef INTERP_MULTITEX
317 GLfloat dsdy[MAX_TEXTURE_UNITS];
318 GLfloat dtdy[MAX_TEXTURE_UNITS];
319 GLfloat dudy[MAX_TEXTURE_UNITS];
320 GLfloat dvdy[MAX_TEXTURE_UNITS];
321 #endif
322
323 #if defined(INTERP_LAMBDA) && !defined(INTERP_TEX) && !defined(INTERP_MULTITEX)
324 #error "Mipmapping without texturing doesn't make sense."
325 #endif
326
327 /*
328 * Execute user-supplied setup code
329 */
330 #ifdef SETUP_CODE
331 SETUP_CODE
332 #endif
333
334 scan_from_left_to_right = (oneOverArea < 0.0F);
335
336 span.activeMask = 0;
337
338 /* compute d?/dx and d?/dy derivatives */
339 #ifdef INTERP_Z
340 span.activeMask |= SPAN_Z;
341 {
342 GLfloat eMaj_dz, eBot_dz;
343 eMaj_dz = vMax->win[2] - vMin->win[2];
344 eBot_dz = vMid->win[2] - vMin->win[2];
345 dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
346 if (dzdx > maxDepth || dzdx < -maxDepth) {
347 /* probably a sliver triangle */
348 dzdx = 0.0;
349 dzdy = 0.0;
350 }
351 else {
352 dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
353 }
354 if (depthBits <= 16)
355 span.zStep = SignedFloatToFixed(dzdx);
356 else
357 span.zStep = (GLint) dzdx;
358 }
359 #endif
360 #ifdef INTERP_FOG
361 span.activeMask |= SPAN_FOG;
362 {
363 const GLfloat eMaj_dfog = vMax->fog - vMin->fog;
364 const GLfloat eBot_dfog = vMid->fog - vMin->fog;
365 span.fogStep = oneOverArea * (eMaj_dfog * eBot.dy - eMaj.dy * eBot_dfog);
366 dfogdy = oneOverArea * (eMaj.dx * eBot_dfog - eMaj_dfog * eBot.dx);
367 }
368 #endif
369 #ifdef INTERP_RGB
370 span.activeMask |= SPAN_RGBA;
371 if (ctx->Light.ShadeModel == GL_SMOOTH) {
372 GLfloat eMaj_dr, eBot_dr;
373 GLfloat eMaj_dg, eBot_dg;
374 GLfloat eMaj_db, eBot_db;
375 # ifdef INTERP_ALPHA
376 GLfloat eMaj_da, eBot_da;
377 # endif
378 eMaj_dr = (GLint) vMax->color[RCOMP] - (GLint) vMin->color[RCOMP];
379 eBot_dr = (GLint) vMid->color[RCOMP] - (GLint) vMin->color[RCOMP];
380 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
381 span.redStep = SignedFloatToFixed(drdx);
382 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
383 eMaj_dg = (GLint) vMax->color[GCOMP] - (GLint) vMin->color[GCOMP];
384 eBot_dg = (GLint) vMid->color[GCOMP] - (GLint) vMin->color[GCOMP];
385 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
386 span.greenStep = SignedFloatToFixed(dgdx);
387 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
388 eMaj_db = (GLint) vMax->color[BCOMP] - (GLint) vMin->color[BCOMP];
389 eBot_db = (GLint) vMid->color[BCOMP] - (GLint) vMin->color[BCOMP];
390 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
391 span.blueStep = SignedFloatToFixed(dbdx);
392 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
393 # ifdef INTERP_ALPHA
394 eMaj_da = (GLint) vMax->color[ACOMP] - (GLint) vMin->color[ACOMP];
395 eBot_da = (GLint) vMid->color[ACOMP] - (GLint) vMin->color[ACOMP];
396 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
397 span.alphaStep = SignedFloatToFixed(dadx);
398 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
399 # endif
400 }
401 else {
402 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
403 drdx = drdy = 0.0F;
404 dgdx = dgdy = 0.0F;
405 dbdx = dbdy = 0.0F;
406 span.redStep = 0;
407 span.greenStep = 0;
408 span.blueStep = 0;
409 # ifdef INTERP_ALPHA
410 dadx = dady = 0.0F;
411 span.alphaStep = 0;
412 # endif
413 }
414 #endif
415 #ifdef INTERP_FLOAT_RGBA
416 span.activeMask |= SPAN_RGBA;
417 if (ctx->Light.ShadeModel == GL_SMOOTH) {
418 GLfloat eMaj_dr, eBot_dr;
419 GLfloat eMaj_dg, eBot_dg;
420 GLfloat eMaj_db, eBot_db;
421 GLfloat eMaj_da, eBot_da;
422 eMaj_dr = vMax->color[RCOMP] - vMin->color[RCOMP];
423 eBot_dr = vMid->color[RCOMP] - vMin->color[RCOMP];
424 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
425 span.redStep = drdx;
426 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
427 eMaj_dg = vMax->color[GCOMP] - vMin->color[GCOMP];
428 eBot_dg = vMid->color[GCOMP] - vMin->color[GCOMP];
429 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
430 span.greenStep = dgdx;
431 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
432 eMaj_db = vMax->color[BCOMP] - vMin->color[BCOMP];
433 eBot_db = vMid->color[BCOMP] - vMin->color[BCOMP];
434 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
435 span.blueStep = dbdx;
436 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
437 eMaj_da = vMax->color[ACOMP] - vMin->color[ACOMP];
438 eBot_da = vMid->color[ACOMP] - vMin->color[ACOMP];
439 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
440 span.alphaStep = dadx;
441 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
442 }
443 else {
444 drdx = drdy = span.redStep = 0.0F;
445 dgdx = dgdy = span.greenStep = 0.0F;
446 dbdx = dbdy = span.blueStep = 0.0F;
447 dadx = dady = span.alphaStep = 0.0F;
448 }
449 #endif
450 #ifdef INTERP_SPEC
451 span.activeMask |= SPAN_SPEC;
452 if (ctx->Light.ShadeModel == GL_SMOOTH) {
453 GLfloat eMaj_dsr, eBot_dsr;
454 GLfloat eMaj_dsg, eBot_dsg;
455 GLfloat eMaj_dsb, eBot_dsb;
456 eMaj_dsr = (GLint) vMax->specular[RCOMP] - (GLint) vMin->specular[RCOMP];
457 eBot_dsr = (GLint) vMid->specular[RCOMP] - (GLint) vMin->specular[RCOMP];
458 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
459 span.specRedStep = SignedFloatToFixed(dsrdx);
460 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
461 eMaj_dsg = (GLint) vMax->specular[GCOMP] - (GLint) vMin->specular[GCOMP];
462 eBot_dsg = (GLint) vMid->specular[GCOMP] - (GLint) vMin->specular[GCOMP];
463 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
464 span.specGreenStep = SignedFloatToFixed(dsgdx);
465 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
466 eMaj_dsb = (GLint) vMax->specular[BCOMP] - (GLint) vMin->specular[BCOMP];
467 eBot_dsb = (GLint) vMid->specular[BCOMP] - (GLint) vMin->specular[BCOMP];
468 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
469 span.specBlueStep = SignedFloatToFixed(dsbdx);
470 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
471 }
472 else {
473 dsrdx = dsrdy = 0.0F;
474 dsgdx = dsgdy = 0.0F;
475 dsbdx = dsbdy = 0.0F;
476 span.specRedStep = 0;
477 span.specGreenStep = 0;
478 span.specBlueStep = 0;
479 }
480 #endif
481 #ifdef INTERP_FLOAT_SPEC
482 span.activeMask |= SPAN_SPEC;
483 if (ctx->Light.ShadeModel == GL_SMOOTH) {
484 GLfloat eMaj_dsr, eBot_dsr;
485 GLfloat eMaj_dsg, eBot_dsg;
486 GLfloat eMaj_dsb, eBot_dsb;
487 eMaj_dsr = vMax->specular[RCOMP] - vMin->specular[RCOMP];
488 eBot_dsr = vMid->specular[RCOMP] - vMin->specular[RCOMP];
489 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
490 span.specRedStep = dsrdx;
491 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
492 eMaj_dsg = vMax->specular[GCOMP] - vMin->specular[GCOMP];
493 eBot_dsg = vMid->specular[GCOMP] - vMin->specular[GCOMP];
494 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
495 span.specGreenStep = dsgdx;
496 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
497 eMaj_dsb = vMax->specular[BCOMP] - vMin->specular[BCOMP];
498 eBot_dsb = vMid->specular[BCOMP] - vMin->specular[BCOMP];
499 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
500 span.specBlueStep = dsbdx;
501 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
502 }
503 else {
504 dsrdx = dsrdy = span.specRedStep = 0;
505 dsgdx = dsgdy = span.specGreenStep = 0;
506 dsbdx = dsbdy = span.specBlueStep = 0;
507 }
508 #endif
509
510 #ifdef INTERP_INDEX
511 span.activeMask |= SPAN_INDEX;
512 if (ctx->Light.ShadeModel == GL_SMOOTH) {
513 GLfloat eMaj_di, eBot_di;
514 eMaj_di = (GLint) vMax->index - (GLint) vMin->index;
515 eBot_di = (GLint) vMid->index - (GLint) vMin->index;
516 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
517 span.indexStep = SignedFloatToFixed(didx);
518 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
519 }
520 else {
521 didx = didy = 0.0F;
522 span.indexStep = 0;
523 }
524 #endif
525 #ifdef INTERP_INT_TEX
526 span.activeMask |= SPAN_INT_TEXTURE;
527 {
528 GLfloat eMaj_ds, eBot_ds;
529 eMaj_ds = (vMax->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
530 eBot_ds = (vMid->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
531 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
532 span.intTexStep[0] = SignedFloatToFixed(dsdx);
533 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
534 }
535 {
536 GLfloat eMaj_dt, eBot_dt;
537 eMaj_dt = (vMax->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
538 eBot_dt = (vMid->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
539 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
540 span.intTexStep[1] = SignedFloatToFixed(dtdx);
541 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
542 }
543
544 #endif
545
546 #ifdef INTERP_TEX
547 span.activeMask |= SPAN_TEXTURE;
548 {
549 GLfloat wMax = vMax->win[3];
550 GLfloat wMin = vMin->win[3];
551 GLfloat wMid = vMid->win[3];
552 GLfloat eMaj_ds, eBot_ds;
553 GLfloat eMaj_dt, eBot_dt;
554 GLfloat eMaj_du, eBot_du;
555 GLfloat eMaj_dv, eBot_dv;
556
557 eMaj_ds = vMax->texcoord[0][0] * wMax - vMin->texcoord[0][0] * wMin;
558 eBot_ds = vMid->texcoord[0][0] * wMid - vMin->texcoord[0][0] * wMin;
559 span.texStep[0][0] = oneOverArea * (eMaj_ds * eBot.dy
560 - eMaj.dy * eBot_ds);
561 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
562
563 eMaj_dt = vMax->texcoord[0][1] * wMax - vMin->texcoord[0][1] * wMin;
564 eBot_dt = vMid->texcoord[0][1] * wMid - vMin->texcoord[0][1] * wMin;
565 span.texStep[0][1] = oneOverArea * (eMaj_dt * eBot.dy
566 - eMaj.dy * eBot_dt);
567 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
568
569 eMaj_du = vMax->texcoord[0][2] * wMax - vMin->texcoord[0][2] * wMin;
570 eBot_du = vMid->texcoord[0][2] * wMid - vMin->texcoord[0][2] * wMin;
571 span.texStep[0][2] = oneOverArea * (eMaj_du * eBot.dy
572 - eMaj.dy * eBot_du);
573 dudy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
574
575 eMaj_dv = vMax->texcoord[0][3] * wMax - vMin->texcoord[0][3] * wMin;
576 eBot_dv = vMid->texcoord[0][3] * wMid - vMin->texcoord[0][3] * wMin;
577 span.texStep[0][3] = oneOverArea * (eMaj_dv * eBot.dy
578 - eMaj.dy * eBot_dv);
579 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
580 }
581 # ifdef INTERP_LAMBDA
582 {
583 GLfloat dudx = span.texStep[0][0] * span.texWidth[0];
584 GLfloat dudy = dsdy * span.texWidth[0];
585 GLfloat dvdx = span.texStep[0][1] * span.texHeight[0];
586 GLfloat dvdy = dtdy * span.texHeight[0];
587 GLfloat r1 = dudx * dudx + dudy * dudy;
588 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
589 span.rho[0] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
590 span.activeMask |= SPAN_LAMBDA;
591 }
592 # endif
593 #endif
594
595 #ifdef INTERP_MULTITEX
596 span.activeMask |= SPAN_TEXTURE;
597 # ifdef INTERP_LAMBDA
598 span.activeMask |= SPAN_LAMBDA;
599 # endif
600 {
601 GLfloat wMax = vMax->win[3];
602 GLfloat wMin = vMin->win[3];
603 GLfloat wMid = vMid->win[3];
604 GLuint u;
605 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
606 if (ctx->Texture.Unit[u]._ReallyEnabled) {
607 GLfloat eMaj_ds, eBot_ds;
608 GLfloat eMaj_dt, eBot_dt;
609 GLfloat eMaj_du, eBot_du;
610 GLfloat eMaj_dv, eBot_dv;
611 eMaj_ds = vMax->texcoord[u][0] * wMax
612 - vMin->texcoord[u][0] * wMin;
613 eBot_ds = vMid->texcoord[u][0] * wMid
614 - vMin->texcoord[u][0] * wMin;
615 span.texStep[u][0] = oneOverArea * (eMaj_ds * eBot.dy
616 - eMaj.dy * eBot_ds);
617 dsdy[u] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
618
619 eMaj_dt = vMax->texcoord[u][1] * wMax
620 - vMin->texcoord[u][1] * wMin;
621 eBot_dt = vMid->texcoord[u][1] * wMid
622 - vMin->texcoord[u][1] * wMin;
623 span.texStep[u][1] = oneOverArea * (eMaj_dt * eBot.dy
624 - eMaj.dy * eBot_dt);
625 dtdy[u] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
626
627 eMaj_du = vMax->texcoord[u][2] * wMax
628 - vMin->texcoord[u][2] * wMin;
629 eBot_du = vMid->texcoord[u][2] * wMid
630 - vMin->texcoord[u][2] * wMin;
631 span.texStep[u][2] = oneOverArea * (eMaj_du * eBot.dy
632 - eMaj.dy * eBot_du);
633 dudy[u] = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
634
635 eMaj_dv = vMax->texcoord[u][3] * wMax
636 - vMin->texcoord[u][3] * wMin;
637 eBot_dv = vMid->texcoord[u][3] * wMid
638 - vMin->texcoord[u][3] * wMin;
639 span.texStep[u][3] = oneOverArea * (eMaj_dv * eBot.dy
640 - eMaj.dy * eBot_dv);
641 dvdy[u] = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
642 # ifdef INTERP_LAMBDA
643 {
644 GLfloat dudx = span.texStep[u][0] * span.texWidth[u];
645 GLfloat dudy = dsdy[u] * span.texWidth[u];
646 GLfloat dvdx = span.texStep[u][1] * span.texHeight[u];
647 GLfloat dvdy = dtdy[u] * span.texHeight[u];
648 GLfloat r1 = dudx * dudx + dudy * dudy;
649 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
650 span.rho[u] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
651 }
652 # endif
653 }
654 }
655 }
656 #endif
657
658 /*
659 * We always sample at pixel centers. However, we avoid
660 * explicit half-pixel offsets in this code by incorporating
661 * the proper offset in each of x and y during the
662 * transformation to window coordinates.
663 *
664 * We also apply the usual rasterization rules to prevent
665 * cracks and overlaps. A pixel is considered inside a
666 * subtriangle if it meets all of four conditions: it is on or
667 * to the right of the left edge, strictly to the left of the
668 * right edge, on or below the top edge, and strictly above
669 * the bottom edge. (Some edges may be degenerate.)
670 *
671 * The following discussion assumes left-to-right scanning
672 * (that is, the major edge is on the left); the right-to-left
673 * case is a straightforward variation.
674 *
675 * We start by finding the half-integral y coordinate that is
676 * at or below the top of the triangle. This gives us the
677 * first scan line that could possibly contain pixels that are
678 * inside the triangle.
679 *
680 * Next we creep down the major edge until we reach that y,
681 * and compute the corresponding x coordinate on the edge.
682 * Then we find the half-integral x that lies on or just
683 * inside the edge. This is the first pixel that might lie in
684 * the interior of the triangle. (We won't know for sure
685 * until we check the other edges.)
686 *
687 * As we rasterize the triangle, we'll step down the major
688 * edge. For each step in y, we'll move an integer number
689 * of steps in x. There are two possible x step sizes, which
690 * we'll call the ``inner'' step (guaranteed to land on the
691 * edge or inside it) and the ``outer'' step (guaranteed to
692 * land on the edge or outside it). The inner and outer steps
693 * differ by one. During rasterization we maintain an error
694 * term that indicates our distance from the true edge, and
695 * select either the inner step or the outer step, whichever
696 * gets us to the first pixel that falls inside the triangle.
697 *
698 * All parameters (z, red, etc.) as well as the buffer
699 * addresses for color and z have inner and outer step values,
700 * so that we can increment them appropriately. This method
701 * eliminates the need to adjust parameters by creeping a
702 * sub-pixel amount into the triangle at each scanline.
703 */
704
705 {
706 int subTriangle;
707 GLfixed fx;
708 GLfixed fxLeftEdge, fxRightEdge, fdxLeftEdge, fdxRightEdge;
709 GLfixed fdxOuter;
710 int idxOuter;
711 float dxOuter;
712 GLfixed fError, fdError;
713 float adjx, adjy;
714 GLfixed fy;
715 #ifdef PIXEL_ADDRESS
716 PIXEL_TYPE *pRow;
717 int dPRowOuter, dPRowInner; /* offset in bytes */
718 #endif
719 #ifdef INTERP_Z
720 # ifdef DEPTH_TYPE
721 DEPTH_TYPE *zRow;
722 int dZRowOuter, dZRowInner; /* offset in bytes */
723 # endif
724 GLfixed fz, fdzOuter, fdzInner;
725 #endif
726 #ifdef INTERP_FOG
727 GLfloat fogLeft, dfogOuter, dfogInner;
728 #endif
729 #ifdef INTERP_RGB
730 GLfixed fr, fdrOuter, fdrInner;
731 GLfixed fg, fdgOuter, fdgInner;
732 GLfixed fb, fdbOuter, fdbInner;
733 #endif
734 #ifdef INTERP_ALPHA
735 GLfixed fa, fdaOuter, fdaInner;
736 #endif
737 #ifdef INTERP_FLOAT_RGBA
738 GLfloat fr, fdrOuter, fdrInner;
739 GLfloat fg, fdgOuter, fdgInner;
740 GLfloat fb, fdbOuter, fdbInner;
741 GLfloat fa, fdaOuter, fdaInner;
742 #endif
743 #ifdef INTERP_SPEC
744 GLfixed fsr=0, fdsrOuter=0, fdsrInner;
745 GLfixed fsg=0, fdsgOuter=0, fdsgInner;
746 GLfixed fsb=0, fdsbOuter=0, fdsbInner;
747 #endif
748 #ifdef INTERP_FLOAT_SPEC
749 GLfloat fsr=0, fdsrOuter=0, fdsrInner;
750 GLfloat fsg=0, fdsgOuter=0, fdsgInner;
751 GLfloat fsb=0, fdsbOuter=0, fdsbInner;
752 #endif
753 #ifdef INTERP_INDEX
754 GLfixed fi=0, fdiOuter=0, fdiInner;
755 #endif
756 #ifdef INTERP_INT_TEX
757 GLfixed fs=0, fdsOuter=0, fdsInner;
758 GLfixed ft=0, fdtOuter=0, fdtInner;
759 #endif
760 #ifdef INTERP_TEX
761 GLfloat sLeft=0, dsOuter=0, dsInner;
762 GLfloat tLeft=0, dtOuter=0, dtInner;
763 GLfloat uLeft=0, duOuter=0, duInner;
764 GLfloat vLeft=0, dvOuter=0, dvInner;
765 #endif
766 #ifdef INTERP_MULTITEX
767 GLfloat sLeft[MAX_TEXTURE_UNITS];
768 GLfloat tLeft[MAX_TEXTURE_UNITS];
769 GLfloat uLeft[MAX_TEXTURE_UNITS];
770 GLfloat vLeft[MAX_TEXTURE_UNITS];
771 GLfloat dsOuter[MAX_TEXTURE_UNITS], dsInner[MAX_TEXTURE_UNITS];
772 GLfloat dtOuter[MAX_TEXTURE_UNITS], dtInner[MAX_TEXTURE_UNITS];
773 GLfloat duOuter[MAX_TEXTURE_UNITS], duInner[MAX_TEXTURE_UNITS];
774 GLfloat dvOuter[MAX_TEXTURE_UNITS], dvInner[MAX_TEXTURE_UNITS];
775 #endif
776
777 for (subTriangle=0; subTriangle<=1; subTriangle++) {
778 EdgeT *eLeft, *eRight;
779 int setupLeft, setupRight;
780 int lines;
781
782 if (subTriangle==0) {
783 /* bottom half */
784 if (scan_from_left_to_right) {
785 eLeft = &eMaj;
786 eRight = &eBot;
787 lines = eRight->lines;
788 setupLeft = 1;
789 setupRight = 1;
790 }
791 else {
792 eLeft = &eBot;
793 eRight = &eMaj;
794 lines = eLeft->lines;
795 setupLeft = 1;
796 setupRight = 1;
797 }
798 }
799 else {
800 /* top half */
801 if (scan_from_left_to_right) {
802 eLeft = &eMaj;
803 eRight = &eTop;
804 lines = eRight->lines;
805 setupLeft = 0;
806 setupRight = 1;
807 }
808 else {
809 eLeft = &eTop;
810 eRight = &eMaj;
811 lines = eLeft->lines;
812 setupLeft = 1;
813 setupRight = 0;
814 }
815 if (lines == 0)
816 return;
817 }
818
819 if (setupLeft && eLeft->lines > 0) {
820 const SWvertex *vLower;
821 GLfixed fsx = eLeft->fsx;
822 fx = FixedCeil(fsx);
823 fError = fx - fsx - FIXED_ONE;
824 fxLeftEdge = fsx - FIXED_EPSILON;
825 fdxLeftEdge = eLeft->fdxdy;
826 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
827 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
828 idxOuter = FixedToInt(fdxOuter);
829 dxOuter = (float) idxOuter;
830 (void) dxOuter;
831
832 fy = eLeft->fsy;
833 span.y = FixedToInt(fy);
834
835 adjx = (float)(fx - eLeft->fx0); /* SCALED! */
836 adjy = eLeft->adjy; /* SCALED! */
837 (void) adjx; /* silence compiler warnings */
838 (void) adjy; /* silence compiler warnings */
839
840 vLower = eLeft->v0;
841 (void) vLower; /* silence compiler warnings */
842
843 #ifdef PIXEL_ADDRESS
844 {
845 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
846 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
847 /* negative because Y=0 at bottom and increases upward */
848 }
849 #endif
850 /*
851 * Now we need the set of parameter (z, color, etc.) values at
852 * the point (fx, fy). This gives us properly-sampled parameter
853 * values that we can step from pixel to pixel. Furthermore,
854 * although we might have intermediate results that overflow
855 * the normal parameter range when we step temporarily outside
856 * the triangle, we shouldn't overflow or underflow for any
857 * pixel that's actually inside the triangle.
858 */
859
860 #ifdef INTERP_Z
861 {
862 GLfloat z0 = vLower->win[2];
863 if (depthBits <= 16) {
864 /* interpolate fixed-pt values */
865 GLfloat tmp = (z0 * FIXED_SCALE +
866 dzdx * adjx + dzdy * adjy) + FIXED_HALF;
867 if (tmp < MAX_GLUINT / 2)
868 fz = (GLfixed) tmp;
869 else
870 fz = MAX_GLUINT / 2;
871 fdzOuter = SignedFloatToFixed(dzdy + dxOuter * dzdx);
872 }
873 else {
874 /* interpolate depth values exactly */
875 fz = (GLint) (z0 + dzdx * FixedToFloat(adjx)
876 + dzdy * FixedToFloat(adjy));
877 fdzOuter = (GLint) (dzdy + dxOuter * dzdx);
878 }
879 # ifdef DEPTH_TYPE
880 zRow = (DEPTH_TYPE *)
881 _mesa_zbuffer_address(ctx, FixedToInt(fxLeftEdge), span.y);
882 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
883 # endif
884 }
885 #endif
886 #ifdef INTERP_FOG
887 fogLeft = vLower->fog + (span.fogStep * adjx + dfogdy * adjy)
888 * (1.0F/FIXED_SCALE);
889 dfogOuter = dfogdy + dxOuter * span.fogStep;
890 #endif
891 #ifdef INTERP_RGB
892 if (ctx->Light.ShadeModel == GL_SMOOTH) {
893 fr = (GLfixed) (ChanToFixed(vLower->color[RCOMP])
894 + drdx * adjx + drdy * adjy) + FIXED_HALF;
895 fdrOuter = SignedFloatToFixed(drdy + dxOuter * drdx);
896 fg = (GLfixed) (ChanToFixed(vLower->color[GCOMP])
897 + dgdx * adjx + dgdy * adjy) + FIXED_HALF;
898 fdgOuter = SignedFloatToFixed(dgdy + dxOuter * dgdx);
899 fb = (GLfixed) (ChanToFixed(vLower->color[BCOMP])
900 + dbdx * adjx + dbdy * adjy) + FIXED_HALF;
901 fdbOuter = SignedFloatToFixed(dbdy + dxOuter * dbdx);
902 # ifdef INTERP_ALPHA
903 fa = (GLfixed) (ChanToFixed(vLower->color[ACOMP])
904 + dadx * adjx + dady * adjy) + FIXED_HALF;
905 fdaOuter = SignedFloatToFixed(dady + dxOuter * dadx);
906 # endif
907 }
908 else {
909 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
910 fr = ChanToFixed(v2->color[RCOMP]);
911 fg = ChanToFixed(v2->color[GCOMP]);
912 fb = ChanToFixed(v2->color[BCOMP]);
913 fdrOuter = fdgOuter = fdbOuter = 0;
914 # ifdef INTERP_ALPHA
915 fa = ChanToFixed(v2->color[ACOMP]);
916 fdaOuter = 0;
917 # endif
918 }
919 #endif
920 #ifdef INTERP_FLOAT_RGBA
921 if (ctx->Light.ShadeModel == GL_SMOOTH) {
922 fr = vLower->color[RCOMP]
923 + (drdx * adjx + drdy * adjy) * (1.0F / FIXED_SCALE);
924 fdrOuter = drdy + dxOuter * drdx;
925 fg = vLower->color[GCOMP]
926 + (dgdx * adjx + dgdy * adjy) * (1.0F / FIXED_SCALE);
927 fdgOuter = dgdy + dxOuter * dgdx;
928 fb = vLower->color[BCOMP]
929 + (dbdx * adjx + dbdy * adjy) * (1.0F / FIXED_SCALE);
930 fdbOuter = dbdy + dxOuter * dbdx;
931 fa = vLower->color[ACOMP]
932 + (dadx * adjx + dady * adjy) * (1.0F / FIXED_SCALE);
933 fdaOuter = dady + dxOuter * dadx;
934 }
935 else {
936 fr = v2->color[RCOMP];
937 fg = v2->color[GCOMP];
938 fb = v2->color[BCOMP];
939 fa = v2->color[ACOMP];
940 fdrOuter = fdgOuter = fdbOuter = fdaOuter = 0.0F;
941 }
942 #endif
943 #ifdef INTERP_SPEC
944 if (ctx->Light.ShadeModel == GL_SMOOTH) {
945 fsr = (GLfixed) (ChanToFixed(vLower->specular[RCOMP])
946 + dsrdx * adjx + dsrdy * adjy) + FIXED_HALF;
947 fdsrOuter = SignedFloatToFixed(dsrdy + dxOuter * dsrdx);
948 fsg = (GLfixed) (ChanToFixed(vLower->specular[GCOMP])
949 + dsgdx * adjx + dsgdy * adjy) + FIXED_HALF;
950 fdsgOuter = SignedFloatToFixed(dsgdy + dxOuter * dsgdx);
951 fsb = (GLfixed) (ChanToFixed(vLower->specular[BCOMP])
952 + dsbdx * adjx + dsbdy * adjy) + FIXED_HALF;
953 fdsbOuter = SignedFloatToFixed(dsbdy + dxOuter * dsbdx);
954 }
955 else {
956 fsr = ChanToFixed(v2->specular[RCOMP]);
957 fsg = ChanToFixed(v2->specular[GCOMP]);
958 fsb = ChanToFixed(v2->specular[BCOMP]);
959 fdsrOuter = fdsgOuter = fdsbOuter = 0;
960 }
961 #endif
962 #ifdef INTERP_FLOAT_SPEC
963 if (ctx->Light.ShadeModel == GL_SMOOTH) {
964 fsr = vLower->specular[RCOMP]
965 + (dsrdx * adjx + dsrdy * adjy) * (1.0F / FIXED_SCALE);
966 fdsrOuter = dsrdy + dxOuter * dsrdx;
967 fsg = vLower->specular[GCOMP]
968 + (dsgdx * adjx + dsgdy * adjy) * (1.0F / FIXED_SCALE);
969 fdsgOuter = dsgdy + dxOuter * dsgdx;
970 fsb = vLower->specular[BCOMP]
971 + (dsbdx * adjx + dsbdy * adjy) * (1.0F / FIXED_SCALE);
972 fdsbOuter = dsbdy + dxOuter * dsbdx;
973 }
974 else {
975 fsr = v2->specular[RCOMP];
976 fsg = v2->specular[GCOMP];
977 fsb = v2->specular[BCOMP];
978 fdsrOuter = fdsgOuter = fdsbOuter = 0.0F;
979 }
980 #endif
981 #ifdef INTERP_INDEX
982 if (ctx->Light.ShadeModel == GL_SMOOTH) {
983 fi = (GLfixed)(vLower->index * FIXED_SCALE
984 + didx * adjx + didy * adjy) + FIXED_HALF;
985 fdiOuter = SignedFloatToFixed(didy + dxOuter * didx);
986 }
987 else {
988 fi = (GLfixed) (v2->index * FIXED_SCALE);
989 fdiOuter = 0;
990 }
991 #endif
992 #ifdef INTERP_INT_TEX
993 {
994 GLfloat s0, t0;
995 s0 = vLower->texcoord[0][0] * S_SCALE;
996 fs = (GLfixed)(s0 * FIXED_SCALE + dsdx * adjx
997 + dsdy * adjy) + FIXED_HALF;
998 fdsOuter = SignedFloatToFixed(dsdy + dxOuter * dsdx);
999
1000 t0 = vLower->texcoord[0][1] * T_SCALE;
1001 ft = (GLfixed)(t0 * FIXED_SCALE + dtdx * adjx
1002 + dtdy * adjy) + FIXED_HALF;
1003 fdtOuter = SignedFloatToFixed(dtdy + dxOuter * dtdx);
1004 }
1005 #endif
1006 #ifdef INTERP_TEX
1007 {
1008 GLfloat invW = vLower->win[3];
1009 GLfloat s0, t0, u0, v0;
1010 s0 = vLower->texcoord[0][0] * invW;
1011 sLeft = s0 + (span.texStep[0][0] * adjx + dsdy * adjy)
1012 * (1.0F/FIXED_SCALE);
1013 dsOuter = dsdy + dxOuter * span.texStep[0][0];
1014 t0 = vLower->texcoord[0][1] * invW;
1015 tLeft = t0 + (span.texStep[0][1] * adjx + dtdy * adjy)
1016 * (1.0F/FIXED_SCALE);
1017 dtOuter = dtdy + dxOuter * span.texStep[0][1];
1018 u0 = vLower->texcoord[0][2] * invW;
1019 uLeft = u0 + (span.texStep[0][2] * adjx + dudy * adjy)
1020 * (1.0F/FIXED_SCALE);
1021 duOuter = dudy + dxOuter * span.texStep[0][2];
1022 v0 = vLower->texcoord[0][3] * invW;
1023 vLeft = v0 + (span.texStep[0][3] * adjx + dvdy * adjy)
1024 * (1.0F/FIXED_SCALE);
1025 dvOuter = dvdy + dxOuter * span.texStep[0][3];
1026 }
1027 #endif
1028 #ifdef INTERP_MULTITEX
1029 {
1030 GLuint u;
1031 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1032 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1033 GLfloat invW = vLower->win[3];
1034 GLfloat s0, t0, u0, v0;
1035 s0 = vLower->texcoord[u][0] * invW;
1036 sLeft[u] = s0 + (span.texStep[u][0] * adjx + dsdy[u]
1037 * adjy) * (1.0F/FIXED_SCALE);
1038 dsOuter[u] = dsdy[u] + dxOuter * span.texStep[u][0];
1039 t0 = vLower->texcoord[u][1] * invW;
1040 tLeft[u] = t0 + (span.texStep[u][1] * adjx + dtdy[u]
1041 * adjy) * (1.0F/FIXED_SCALE);
1042 dtOuter[u] = dtdy[u] + dxOuter * span.texStep[u][1];
1043 u0 = vLower->texcoord[u][2] * invW;
1044 uLeft[u] = u0 + (span.texStep[u][2] * adjx + dudy[u]
1045 * adjy) * (1.0F/FIXED_SCALE);
1046 duOuter[u] = dudy[u] + dxOuter * span.texStep[u][2];
1047 v0 = vLower->texcoord[u][3] * invW;
1048 vLeft[u] = v0 + (span.texStep[u][3] * adjx + dvdy[u]
1049 * adjy) * (1.0F/FIXED_SCALE);
1050 dvOuter[u] = dvdy[u] + dxOuter * span.texStep[u][3];
1051 }
1052 }
1053 }
1054 #endif
1055
1056 } /*if setupLeft*/
1057
1058
1059 if (setupRight && eRight->lines>0) {
1060 fxRightEdge = eRight->fsx - FIXED_EPSILON;
1061 fdxRightEdge = eRight->fdxdy;
1062 }
1063
1064 if (lines==0) {
1065 continue;
1066 }
1067
1068
1069 /* Rasterize setup */
1070 #ifdef PIXEL_ADDRESS
1071 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
1072 #endif
1073 #ifdef INTERP_Z
1074 # ifdef DEPTH_TYPE
1075 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
1076 # endif
1077 fdzInner = fdzOuter + span.zStep;
1078 #endif
1079 #ifdef INTERP_FOG
1080 dfogInner = dfogOuter + span.fogStep;
1081 #endif
1082 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1083 fdrInner = fdrOuter + span.redStep;
1084 fdgInner = fdgOuter + span.greenStep;
1085 fdbInner = fdbOuter + span.blueStep;
1086 #endif
1087 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1088 fdaInner = fdaOuter + span.alphaStep;
1089 #endif
1090 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1091 fdsrInner = fdsrOuter + span.specRedStep;
1092 fdsgInner = fdsgOuter + span.specGreenStep;
1093 fdsbInner = fdsbOuter + span.specBlueStep;
1094 #endif
1095 #ifdef INTERP_INDEX
1096 fdiInner = fdiOuter + span.indexStep;
1097 #endif
1098 #ifdef INTERP_INT_TEX
1099 fdsInner = fdsOuter + span.intTexStep[0];
1100 fdtInner = fdtOuter + span.intTexStep[1];
1101 #endif
1102 #ifdef INTERP_TEX
1103 dsInner = dsOuter + span.texStep[0][0];
1104 dtInner = dtOuter + span.texStep[0][1];
1105 duInner = duOuter + span.texStep[0][2];
1106 dvInner = dvOuter + span.texStep[0][3];
1107 #endif
1108 #ifdef INTERP_MULTITEX
1109 {
1110 GLuint u;
1111 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1112 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1113 dsInner[u] = dsOuter[u] + span.texStep[u][0];
1114 dtInner[u] = dtOuter[u] + span.texStep[u][1];
1115 duInner[u] = duOuter[u] + span.texStep[u][2];
1116 dvInner[u] = dvOuter[u] + span.texStep[u][3];
1117 }
1118 }
1119 }
1120 #endif
1121
1122 while (lines > 0) {
1123 /* initialize the span interpolants to the leftmost value */
1124 /* ff = fixed-pt fragment */
1125 const GLint right = FixedToInt(fxRightEdge);
1126 span.x = FixedToInt(fxLeftEdge);
1127 if (right <= span.x)
1128 span.count = 0;
1129 else
1130 span.count = right - span.x;
1131
1132 #ifdef INTERP_Z
1133 span.z = fz;
1134 #endif
1135 #ifdef INTERP_FOG
1136 span.fog = fogLeft;
1137 #endif
1138 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1139 span.red = fr;
1140 span.green = fg;
1141 span.blue = fb;
1142 #endif
1143 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1144 span.alpha = fa;
1145 #endif
1146 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1147 span.specRed = fsr;
1148 span.specGreen = fsg;
1149 span.specBlue = fsb;
1150 #endif
1151 #ifdef INTERP_INDEX
1152 span.index = fi;
1153 #endif
1154 #ifdef INTERP_INT_TEX
1155 span.intTex[0] = fs;
1156 span.intTex[1] = ft;
1157 #endif
1158
1159 #ifdef INTERP_TEX
1160 span.tex[0][0] = sLeft;
1161 span.tex[0][1] = tLeft;
1162 span.tex[0][2] = uLeft;
1163 span.tex[0][3] = vLeft;
1164 #endif
1165
1166 #ifdef INTERP_MULTITEX
1167 {
1168 GLuint u;
1169 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1170 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1171 span.tex[u][0] = sLeft[u];
1172 span.tex[u][1] = tLeft[u];
1173 span.tex[u][2] = uLeft[u];
1174 span.tex[u][3] = vLeft[u];
1175 }
1176 }
1177 }
1178 #endif
1179
1180 #ifdef INTERP_RGB
1181 {
1182 /* need this to accomodate round-off errors */
1183 const GLint len = right - span.x - 1;
1184 GLfixed ffrend = span.red + len * span.redStep;
1185 GLfixed ffgend = span.green + len * span.greenStep;
1186 GLfixed ffbend = span.blue + len * span.blueStep;
1187 if (ffrend < 0) {
1188 span.red -= ffrend;
1189 if (span.red < 0)
1190 span.red = 0;
1191 }
1192 if (ffgend < 0) {
1193 span.green -= ffgend;
1194 if (span.green < 0)
1195 span.green = 0;
1196 }
1197 if (ffbend < 0) {
1198 span.blue -= ffbend;
1199 if (span.blue < 0)
1200 span.blue = 0;
1201 }
1202 }
1203 #endif
1204 #ifdef INTERP_ALPHA
1205 {
1206 const GLint len = right - span.x - 1;
1207 GLfixed ffaend = span.alpha + len * span.alphaStep;
1208 if (ffaend < 0) {
1209 span.alpha -= ffaend;
1210 if (span.alpha < 0)
1211 span.alpha = 0;
1212 }
1213 }
1214 #endif
1215 #ifdef INTERP_SPEC
1216 {
1217 /* need this to accomodate round-off errors */
1218 const GLint len = right - span.x - 1;
1219 GLfixed ffsrend = span.specRed + len * span.specRedStep;
1220 GLfixed ffsgend = span.specGreen + len * span.specGreenStep;
1221 GLfixed ffsbend = span.specBlue + len * span.specBlueStep;
1222 if (ffsrend < 0) {
1223 span.specRed -= ffsrend;
1224 if (span.specRed < 0)
1225 span.specRed = 0;
1226 }
1227 if (ffsgend < 0) {
1228 span.specGreen -= ffsgend;
1229 if (span.specGreen < 0)
1230 span.specGreen = 0;
1231 }
1232 if (ffsbend < 0) {
1233 span.specBlue -= ffsbend;
1234 if (span.specBlue < 0)
1235 span.specBlue = 0;
1236 }
1237 }
1238 #endif
1239 #ifdef INTERP_INDEX
1240 if (span.index < 0) span.index = 0;
1241 #endif
1242
1243 /* This is where we actually generate fragments */
1244 if (span.count > 0) {
1245 RENDER_SPAN( span );
1246 }
1247
1248 /*
1249 * Advance to the next scan line. Compute the
1250 * new edge coordinates, and adjust the
1251 * pixel-center x coordinate so that it stays
1252 * on or inside the major edge.
1253 */
1254 span.y++;
1255 lines--;
1256
1257 fxLeftEdge += fdxLeftEdge;
1258 fxRightEdge += fdxRightEdge;
1259
1260
1261 fError += fdError;
1262 if (fError >= 0) {
1263 fError -= FIXED_ONE;
1264 #ifdef PIXEL_ADDRESS
1265 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
1266 #endif
1267 #ifdef INTERP_Z
1268 # ifdef DEPTH_TYPE
1269 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
1270 # endif
1271 fz += fdzOuter;
1272 #endif
1273 #ifdef INTERP_FOG
1274 fogLeft += dfogOuter;
1275 #endif
1276 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1277 fr += fdrOuter;
1278 fg += fdgOuter;
1279 fb += fdbOuter;
1280 #endif
1281 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1282 fa += fdaOuter;
1283 #endif
1284 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1285 fsr += fdsrOuter;
1286 fsg += fdsgOuter;
1287 fsb += fdsbOuter;
1288 #endif
1289 #ifdef INTERP_INDEX
1290 fi += fdiOuter;
1291 #endif
1292 #ifdef INTERP_INT_TEX
1293 fs += fdsOuter;
1294 ft += fdtOuter;
1295 #endif
1296 #ifdef INTERP_TEX
1297 sLeft += dsOuter;
1298 tLeft += dtOuter;
1299 uLeft += duOuter;
1300 vLeft += dvOuter;
1301 #endif
1302 #ifdef INTERP_MULTITEX
1303 {
1304 GLuint u;
1305 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1306 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1307 sLeft[u] += dsOuter[u];
1308 tLeft[u] += dtOuter[u];
1309 uLeft[u] += duOuter[u];
1310 vLeft[u] += dvOuter[u];
1311 }
1312 }
1313 }
1314 #endif
1315 }
1316 else {
1317 #ifdef PIXEL_ADDRESS
1318 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
1319 #endif
1320 #ifdef INTERP_Z
1321 # ifdef DEPTH_TYPE
1322 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
1323 # endif
1324 fz += fdzInner;
1325 #endif
1326 #ifdef INTERP_FOG
1327 fogLeft += dfogInner;
1328 #endif
1329 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1330 fr += fdrInner;
1331 fg += fdgInner;
1332 fb += fdbInner;
1333 #endif
1334 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1335 fa += fdaInner;
1336 #endif
1337 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1338 fsr += fdsrInner;
1339 fsg += fdsgInner;
1340 fsb += fdsbInner;
1341 #endif
1342 #ifdef INTERP_INDEX
1343 fi += fdiInner;
1344 #endif
1345 #ifdef INTERP_INT_TEX
1346 fs += fdsInner;
1347 ft += fdtInner;
1348 #endif
1349 #ifdef INTERP_TEX
1350 sLeft += dsInner;
1351 tLeft += dtInner;
1352 uLeft += duInner;
1353 vLeft += dvInner;
1354 #endif
1355 #ifdef INTERP_MULTITEX
1356 {
1357 GLuint u;
1358 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1359 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1360 sLeft[u] += dsInner[u];
1361 tLeft[u] += dtInner[u];
1362 uLeft[u] += duInner[u];
1363 vLeft[u] += dvInner[u];
1364 }
1365 }
1366 }
1367 #endif
1368 }
1369 } /*while lines>0*/
1370
1371 } /* for subTriangle */
1372
1373 }
1374 #ifdef CLEANUP_CODE
1375 CLEANUP_CODE
1376 #endif
1377 }
1378 }
1379
1380 #undef SETUP_CODE
1381 #undef CLEANUP_CODE
1382 #undef RENDER_SPAN
1383
1384 #undef PIXEL_TYPE
1385 #undef BYTES_PER_ROW
1386 #undef PIXEL_ADDRESS
1387
1388 #undef INTERP_Z
1389 #undef INTERP_FOG
1390 #undef INTERP_RGB
1391 #undef INTERP_ALPHA
1392 #undef INTERP_SPEC
1393 #undef INTERP_INDEX
1394 #undef INTERP_INT_TEX
1395 #undef INTERP_TEX
1396 #undef INTERP_MULTITEX
1397 #undef INTERP_LAMBDA
1398 #undef INTERP_FLOAT_RGBA
1399 #undef INTERP_FLOAT_SPEC
1400
1401 #undef S_SCALE
1402 #undef T_SCALE
1403
1404 #undef FixedToDepth
1405
1406 #undef DO_OCCLUSION_TEST