minor optimizations for flat shading (Klaus Niederkrueger)
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /* $Id: s_tritemp.h,v 1.26 2001/09/13 22:12:54 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom triangle rasterizers.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be interplated across the triangle:
35 * INTERP_Z - if defined, interpolate Z values
36 * INTERP_FOG - if defined, interpolate fog values
37 * INTERP_RGB - if defined, interpolate RGB values
38 * INTERP_ALPHA - if defined, interpolate Alpha values (req's INTERP_RGB)
39 * INTERP_SPEC - if defined, interpolate specular RGB values
40 * INTERP_INDEX - if defined, interpolate color index values
41 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
42 * (fast, simple 2-D texture mapping)
43 * INTERP_TEX - if defined, interpolate set 0 float STRQ texcoords
44 * NOTE: OpenGL STRQ = Mesa STUV (R was taken for red)
45 * INTERP_MULTITEX - if defined, interpolate N units of STRQ texcoords
46 * INTERP_LAMBDA - if defined, compute lambda value (for mipmapping)
47 * a lambda value for every texture unit
48 * INTERP_FLOAT_RGBA - if defined, interpolate RGBA with floating point
49 * INTERP_FLOAT_SPEC - if defined, interpolate specular with floating point
50 *
51 * When one can directly address pixels in the color buffer the following
52 * macros can be defined and used to compute pixel addresses during
53 * rasterization (see pRow):
54 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
55 * BYTES_PER_ROW - number of bytes per row in the color buffer
56 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
57 * Y==0 at bottom of screen and increases upward.
58 *
59 * Similarly, for direct depth buffer access, this type is used for depth
60 * buffer addressing:
61 * DEPTH_TYPE - either GLushort or GLuint
62 *
63 * Optionally, one may provide one-time setup code per triangle:
64 * SETUP_CODE - code which is to be executed once per triangle
65 * CLEANUP_CODE - code to execute at end of triangle
66 *
67 * The following macro MUST be defined:
68 * RENDER_SPAN(span) - code to write a span of pixels.
69 *
70 * This code was designed for the origin to be in the lower-left corner.
71 *
72 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
73 */
74
75
76 /*
77 * This is a bit of a hack, but it's a centralized place to enable floating-
78 * point color interpolation when GLchan is actually floating point.
79 */
80 #if CHAN_TYPE == GL_FLOAT
81
82 #if defined(INTERP_RGB)
83 #undef INTERP_RGB
84 #undef INTERP_ALPHA
85 #define INTERP_FLOAT_RGBA
86 #endif
87
88 #if defined(INTERP_SPEC)
89 #undef INTERP_SPEC
90 #define INTERP_FLOAT_SPEC
91 #endif
92
93 #endif
94
95
96 /*void triangle( GLcontext *ctx, SWvertex *v0, SWvertex *v1, SWvertex *v2 )*/
97 {
98 typedef struct {
99 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
100 GLfloat dx; /* X(v1) - X(v0) */
101 GLfloat dy; /* Y(v1) - Y(v0) */
102 GLfixed fdxdy; /* dx/dy in fixed-point */
103 GLfixed fsx; /* first sample point x coord */
104 GLfixed fsy;
105 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
106 GLint lines; /* number of lines to be sampled on this edge */
107 GLfixed fx0; /* fixed pt X of lower endpoint */
108 } EdgeT;
109
110 #ifdef INTERP_Z
111 const GLint depthBits = ctx->Visual.depthBits;
112 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
113 const GLfloat maxDepth = ctx->DepthMaxF;
114 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
115 #endif
116 EdgeT eMaj, eTop, eBot;
117 GLfloat oneOverArea;
118 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
119 float bf = SWRAST_CONTEXT(ctx)->_backface_sign;
120 const GLint snapMask = ~((FIXED_ONE / 16) - 1); /* for x/y coord snapping */
121 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
122
123 struct triangle_span span;
124
125 #ifdef INTERP_Z
126 (void) fixedToDepthShift;
127 #endif
128
129 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
130 * And find the order of the 3 vertices along the Y axis.
131 */
132 {
133 const GLfixed fy0 = FloatToFixed(v0->win[1] - 0.5F) & snapMask;
134 const GLfixed fy1 = FloatToFixed(v1->win[1] - 0.5F) & snapMask;
135 const GLfixed fy2 = FloatToFixed(v2->win[1] - 0.5F) & snapMask;
136
137 if (fy0 <= fy1) {
138 if (fy1 <= fy2) {
139 /* y0 <= y1 <= y2 */
140 vMin = v0; vMid = v1; vMax = v2;
141 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
142 }
143 else if (fy2 <= fy0) {
144 /* y2 <= y0 <= y1 */
145 vMin = v2; vMid = v0; vMax = v1;
146 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
147 }
148 else {
149 /* y0 <= y2 <= y1 */
150 vMin = v0; vMid = v2; vMax = v1;
151 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
152 bf = -bf;
153 }
154 }
155 else {
156 if (fy0 <= fy2) {
157 /* y1 <= y0 <= y2 */
158 vMin = v1; vMid = v0; vMax = v2;
159 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
160 bf = -bf;
161 }
162 else if (fy2 <= fy1) {
163 /* y2 <= y1 <= y0 */
164 vMin = v2; vMid = v1; vMax = v0;
165 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
166 bf = -bf;
167 }
168 else {
169 /* y1 <= y2 <= y0 */
170 vMin = v1; vMid = v2; vMax = v0;
171 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
172 }
173 }
174
175 /* fixed point X coords */
176 vMin_fx = FloatToFixed(vMin->win[0] + 0.5F) & snapMask;
177 vMid_fx = FloatToFixed(vMid->win[0] + 0.5F) & snapMask;
178 vMax_fx = FloatToFixed(vMax->win[0] + 0.5F) & snapMask;
179 }
180
181 /* vertex/edge relationship */
182 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
183 eTop.v0 = vMid; eTop.v1 = vMax;
184 eBot.v0 = vMin; eBot.v1 = vMid;
185
186 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
187 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
188 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
189 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
190 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
191 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
192 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
193
194 /* compute area, oneOverArea and perform backface culling */
195 {
196 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
197
198 /* Do backface culling */
199 if (area * bf < 0.0)
200 return;
201
202 if (area == 0.0F)
203 return;
204
205 oneOverArea = 1.0F / area;
206 }
207
208 #ifndef DO_OCCLUSION_TEST
209 ctx->OcclusionResult = GL_TRUE;
210 #endif
211
212 /* Edge setup. For a triangle strip these could be reused... */
213 {
214 eMaj.fsy = FixedCeil(vMin_fy);
215 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
216 if (eMaj.lines > 0) {
217 GLfloat dxdy = eMaj.dx / eMaj.dy;
218 eMaj.fdxdy = SignedFloatToFixed(dxdy);
219 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
220 eMaj.fx0 = vMin_fx;
221 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * dxdy);
222 }
223 else {
224 return; /*CULLED*/
225 }
226
227 eTop.fsy = FixedCeil(vMid_fy);
228 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
229 if (eTop.lines > 0) {
230 GLfloat dxdy = eTop.dx / eTop.dy;
231 eTop.fdxdy = SignedFloatToFixed(dxdy);
232 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
233 eTop.fx0 = vMid_fx;
234 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * dxdy);
235 }
236
237 eBot.fsy = FixedCeil(vMin_fy);
238 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
239 if (eBot.lines > 0) {
240 GLfloat dxdy = eBot.dx / eBot.dy;
241 eBot.fdxdy = SignedFloatToFixed(dxdy);
242 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
243 eBot.fx0 = vMin_fx;
244 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * dxdy);
245 }
246 }
247
248 /*
249 * Conceptually, we view a triangle as two subtriangles
250 * separated by a perfectly horizontal line. The edge that is
251 * intersected by this line is one with maximal absolute dy; we
252 * call it a ``major'' edge. The other two edges are the
253 * ``top'' edge (for the upper subtriangle) and the ``bottom''
254 * edge (for the lower subtriangle). If either of these two
255 * edges is horizontal or very close to horizontal, the
256 * corresponding subtriangle might cover zero sample points;
257 * we take care to handle such cases, for performance as well
258 * as correctness.
259 *
260 * By stepping rasterization parameters along the major edge,
261 * we can avoid recomputing them at the discontinuity where
262 * the top and bottom edges meet. However, this forces us to
263 * be able to scan both left-to-right and right-to-left.
264 * Also, we must determine whether the major edge is at the
265 * left or right side of the triangle. We do this by
266 * computing the magnitude of the cross-product of the major
267 * and top edges. Since this magnitude depends on the sine of
268 * the angle between the two edges, its sign tells us whether
269 * we turn to the left or to the right when travelling along
270 * the major edge to the top edge, and from this we infer
271 * whether the major edge is on the left or the right.
272 *
273 * Serendipitously, this cross-product magnitude is also a
274 * value we need to compute the iteration parameter
275 * derivatives for the triangle, and it can be used to perform
276 * backface culling because its sign tells us whether the
277 * triangle is clockwise or counterclockwise. In this code we
278 * refer to it as ``area'' because it's also proportional to
279 * the pixel area of the triangle.
280 */
281
282 {
283 GLint scan_from_left_to_right; /* true if scanning left-to-right */
284 #ifdef INTERP_Z
285 GLfloat dzdx, dzdy;
286 #endif
287 #ifdef INTERP_FOG
288 GLfloat dfogdy;
289 #endif
290 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
291 GLfloat drdx, drdy;
292 GLfloat dgdx, dgdy;
293 GLfloat dbdx, dbdy;
294 #endif
295 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
296 GLfloat dadx, dady;
297 #endif
298 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
299 GLfloat dsrdx, dsrdy;
300 GLfloat dsgdx, dsgdy;
301 GLfloat dsbdx, dsbdy;
302 #endif
303 #ifdef INTERP_INDEX
304 GLfloat didx, didy;
305 #endif
306 #ifdef INTERP_INT_TEX
307 GLfloat dsdx, dsdy;
308 GLfloat dtdx, dtdy;
309 #endif
310 #ifdef INTERP_TEX
311 GLfloat dsdy;
312 GLfloat dtdy;
313 GLfloat dudy;
314 GLfloat dvdy;
315 #endif
316 #ifdef INTERP_MULTITEX
317 GLfloat dsdy[MAX_TEXTURE_UNITS];
318 GLfloat dtdy[MAX_TEXTURE_UNITS];
319 GLfloat dudy[MAX_TEXTURE_UNITS];
320 GLfloat dvdy[MAX_TEXTURE_UNITS];
321 #endif
322
323 #if defined(INTERP_LAMBDA) && !defined(INTERP_TEX) && !defined(INTERP_MULTITEX)
324 #error "Mipmapping without texturing doesn't make sense."
325 #endif
326
327 /*
328 * Execute user-supplied setup code
329 */
330 #ifdef SETUP_CODE
331 SETUP_CODE
332 #endif
333
334 scan_from_left_to_right = (oneOverArea < 0.0F);
335
336 span.activeMask = 0;
337
338 /* compute d?/dx and d?/dy derivatives */
339 #ifdef INTERP_Z
340 span.activeMask |= SPAN_Z;
341 {
342 GLfloat eMaj_dz, eBot_dz;
343 eMaj_dz = vMax->win[2] - vMin->win[2];
344 eBot_dz = vMid->win[2] - vMin->win[2];
345 dzdx = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
346 if (dzdx > maxDepth || dzdx < -maxDepth) {
347 /* probably a sliver triangle */
348 dzdx = 0.0;
349 dzdy = 0.0;
350 }
351 else {
352 dzdy = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
353 }
354 if (depthBits <= 16)
355 span.zStep = SignedFloatToFixed(dzdx);
356 else
357 span.zStep = (GLint) dzdx;
358 }
359 #endif
360 #ifdef INTERP_FOG
361 span.activeMask |= SPAN_FOG;
362 {
363 const GLfloat eMaj_dfog = vMax->fog - vMin->fog;
364 const GLfloat eBot_dfog = vMid->fog - vMin->fog;
365 span.fogStep = oneOverArea * (eMaj_dfog * eBot.dy - eMaj.dy * eBot_dfog);
366 dfogdy = oneOverArea * (eMaj.dx * eBot_dfog - eMaj_dfog * eBot.dx);
367 }
368 #endif
369 #ifdef INTERP_RGB
370 span.activeMask |= SPAN_RGBA;
371 if (ctx->Light.ShadeModel == GL_SMOOTH) {
372 GLfloat eMaj_dr, eBot_dr;
373 GLfloat eMaj_dg, eBot_dg;
374 GLfloat eMaj_db, eBot_db;
375 # ifdef INTERP_ALPHA
376 GLfloat eMaj_da, eBot_da;
377 # endif
378 eMaj_dr = (GLint) vMax->color[RCOMP] - (GLint) vMin->color[RCOMP];
379 eBot_dr = (GLint) vMid->color[RCOMP] - (GLint) vMin->color[RCOMP];
380 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
381 span.redStep = SignedFloatToFixed(drdx);
382 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
383 eMaj_dg = (GLint) vMax->color[GCOMP] - (GLint) vMin->color[GCOMP];
384 eBot_dg = (GLint) vMid->color[GCOMP] - (GLint) vMin->color[GCOMP];
385 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
386 span.greenStep = SignedFloatToFixed(dgdx);
387 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
388 eMaj_db = (GLint) vMax->color[BCOMP] - (GLint) vMin->color[BCOMP];
389 eBot_db = (GLint) vMid->color[BCOMP] - (GLint) vMin->color[BCOMP];
390 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
391 span.blueStep = SignedFloatToFixed(dbdx);
392 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
393 # ifdef INTERP_ALPHA
394 eMaj_da = (GLint) vMax->color[ACOMP] - (GLint) vMin->color[ACOMP];
395 eBot_da = (GLint) vMid->color[ACOMP] - (GLint) vMin->color[ACOMP];
396 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
397 span.alphaStep = SignedFloatToFixed(dadx);
398 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
399 # endif
400 }
401 else {
402 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
403 span.activeMask |= SPAN_FLAT;
404 drdx = drdy = 0.0F;
405 dgdx = dgdy = 0.0F;
406 dbdx = dbdy = 0.0F;
407 span.redStep = 0;
408 span.greenStep = 0;
409 span.blueStep = 0;
410 # ifdef INTERP_ALPHA
411 dadx = dady = 0.0F;
412 span.alphaStep = 0;
413 # endif
414 }
415 #endif
416 #ifdef INTERP_FLOAT_RGBA
417 span.activeMask |= SPAN_RGBA;
418 if (ctx->Light.ShadeModel == GL_SMOOTH) {
419 GLfloat eMaj_dr, eBot_dr;
420 GLfloat eMaj_dg, eBot_dg;
421 GLfloat eMaj_db, eBot_db;
422 GLfloat eMaj_da, eBot_da;
423 eMaj_dr = vMax->color[RCOMP] - vMin->color[RCOMP];
424 eBot_dr = vMid->color[RCOMP] - vMin->color[RCOMP];
425 drdx = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
426 span.redStep = drdx;
427 drdy = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
428 eMaj_dg = vMax->color[GCOMP] - vMin->color[GCOMP];
429 eBot_dg = vMid->color[GCOMP] - vMin->color[GCOMP];
430 dgdx = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
431 span.greenStep = dgdx;
432 dgdy = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
433 eMaj_db = vMax->color[BCOMP] - vMin->color[BCOMP];
434 eBot_db = vMid->color[BCOMP] - vMin->color[BCOMP];
435 dbdx = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
436 span.blueStep = dbdx;
437 dbdy = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
438 eMaj_da = vMax->color[ACOMP] - vMin->color[ACOMP];
439 eBot_da = vMid->color[ACOMP] - vMin->color[ACOMP];
440 dadx = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
441 span.alphaStep = dadx;
442 dady = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
443 }
444 else {
445 drdx = drdy = span.redStep = 0.0F;
446 dgdx = dgdy = span.greenStep = 0.0F;
447 dbdx = dbdy = span.blueStep = 0.0F;
448 dadx = dady = span.alphaStep = 0.0F;
449 }
450 #endif
451 #ifdef INTERP_SPEC
452 span.activeMask |= SPAN_SPEC;
453 if (ctx->Light.ShadeModel == GL_SMOOTH) {
454 GLfloat eMaj_dsr, eBot_dsr;
455 GLfloat eMaj_dsg, eBot_dsg;
456 GLfloat eMaj_dsb, eBot_dsb;
457 eMaj_dsr = (GLint) vMax->specular[RCOMP] - (GLint) vMin->specular[RCOMP];
458 eBot_dsr = (GLint) vMid->specular[RCOMP] - (GLint) vMin->specular[RCOMP];
459 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
460 span.specRedStep = SignedFloatToFixed(dsrdx);
461 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
462 eMaj_dsg = (GLint) vMax->specular[GCOMP] - (GLint) vMin->specular[GCOMP];
463 eBot_dsg = (GLint) vMid->specular[GCOMP] - (GLint) vMin->specular[GCOMP];
464 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
465 span.specGreenStep = SignedFloatToFixed(dsgdx);
466 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
467 eMaj_dsb = (GLint) vMax->specular[BCOMP] - (GLint) vMin->specular[BCOMP];
468 eBot_dsb = (GLint) vMid->specular[BCOMP] - (GLint) vMin->specular[BCOMP];
469 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
470 span.specBlueStep = SignedFloatToFixed(dsbdx);
471 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
472 }
473 else {
474 dsrdx = dsrdy = 0.0F;
475 dsgdx = dsgdy = 0.0F;
476 dsbdx = dsbdy = 0.0F;
477 span.specRedStep = 0;
478 span.specGreenStep = 0;
479 span.specBlueStep = 0;
480 }
481 #endif
482 #ifdef INTERP_FLOAT_SPEC
483 span.activeMask |= SPAN_SPEC;
484 if (ctx->Light.ShadeModel == GL_SMOOTH) {
485 GLfloat eMaj_dsr, eBot_dsr;
486 GLfloat eMaj_dsg, eBot_dsg;
487 GLfloat eMaj_dsb, eBot_dsb;
488 eMaj_dsr = vMax->specular[RCOMP] - vMin->specular[RCOMP];
489 eBot_dsr = vMid->specular[RCOMP] - vMin->specular[RCOMP];
490 dsrdx = oneOverArea * (eMaj_dsr * eBot.dy - eMaj.dy * eBot_dsr);
491 span.specRedStep = dsrdx;
492 dsrdy = oneOverArea * (eMaj.dx * eBot_dsr - eMaj_dsr * eBot.dx);
493 eMaj_dsg = vMax->specular[GCOMP] - vMin->specular[GCOMP];
494 eBot_dsg = vMid->specular[GCOMP] - vMin->specular[GCOMP];
495 dsgdx = oneOverArea * (eMaj_dsg * eBot.dy - eMaj.dy * eBot_dsg);
496 span.specGreenStep = dsgdx;
497 dsgdy = oneOverArea * (eMaj.dx * eBot_dsg - eMaj_dsg * eBot.dx);
498 eMaj_dsb = vMax->specular[BCOMP] - vMin->specular[BCOMP];
499 eBot_dsb = vMid->specular[BCOMP] - vMin->specular[BCOMP];
500 dsbdx = oneOverArea * (eMaj_dsb * eBot.dy - eMaj.dy * eBot_dsb);
501 span.specBlueStep = dsbdx;
502 dsbdy = oneOverArea * (eMaj.dx * eBot_dsb - eMaj_dsb * eBot.dx);
503 }
504 else {
505 dsrdx = dsrdy = span.specRedStep = 0;
506 dsgdx = dsgdy = span.specGreenStep = 0;
507 dsbdx = dsbdy = span.specBlueStep = 0;
508 }
509 #endif
510 #ifdef INTERP_INDEX
511 span.activeMask |= SPAN_INDEX;
512 if (ctx->Light.ShadeModel == GL_SMOOTH) {
513 GLfloat eMaj_di, eBot_di;
514 eMaj_di = (GLint) vMax->index - (GLint) vMin->index;
515 eBot_di = (GLint) vMid->index - (GLint) vMin->index;
516 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
517 span.indexStep = SignedFloatToFixed(didx);
518 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
519 }
520 else {
521 span.activeMask |= SPAN_FLAT;
522 didx = didy = 0.0F;
523 span.indexStep = 0;
524 }
525 #endif
526 #ifdef INTERP_INT_TEX
527 span.activeMask |= SPAN_INT_TEXTURE;
528 {
529 GLfloat eMaj_ds, eBot_ds;
530 eMaj_ds = (vMax->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
531 eBot_ds = (vMid->texcoord[0][0] - vMin->texcoord[0][0]) * S_SCALE;
532 dsdx = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
533 span.intTexStep[0] = SignedFloatToFixed(dsdx);
534 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
535 }
536 {
537 GLfloat eMaj_dt, eBot_dt;
538 eMaj_dt = (vMax->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
539 eBot_dt = (vMid->texcoord[0][1] - vMin->texcoord[0][1]) * T_SCALE;
540 dtdx = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
541 span.intTexStep[1] = SignedFloatToFixed(dtdx);
542 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
543 }
544
545 #endif
546 #ifdef INTERP_TEX
547 span.activeMask |= SPAN_TEXTURE;
548 {
549 GLfloat wMax = vMax->win[3];
550 GLfloat wMin = vMin->win[3];
551 GLfloat wMid = vMid->win[3];
552 GLfloat eMaj_ds, eBot_ds;
553 GLfloat eMaj_dt, eBot_dt;
554 GLfloat eMaj_du, eBot_du;
555 GLfloat eMaj_dv, eBot_dv;
556
557 eMaj_ds = vMax->texcoord[0][0] * wMax - vMin->texcoord[0][0] * wMin;
558 eBot_ds = vMid->texcoord[0][0] * wMid - vMin->texcoord[0][0] * wMin;
559 span.texStep[0][0] = oneOverArea * (eMaj_ds * eBot.dy
560 - eMaj.dy * eBot_ds);
561 dsdy = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
562
563 eMaj_dt = vMax->texcoord[0][1] * wMax - vMin->texcoord[0][1] * wMin;
564 eBot_dt = vMid->texcoord[0][1] * wMid - vMin->texcoord[0][1] * wMin;
565 span.texStep[0][1] = oneOverArea * (eMaj_dt * eBot.dy
566 - eMaj.dy * eBot_dt);
567 dtdy = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
568
569 eMaj_du = vMax->texcoord[0][2] * wMax - vMin->texcoord[0][2] * wMin;
570 eBot_du = vMid->texcoord[0][2] * wMid - vMin->texcoord[0][2] * wMin;
571 span.texStep[0][2] = oneOverArea * (eMaj_du * eBot.dy
572 - eMaj.dy * eBot_du);
573 dudy = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
574
575 eMaj_dv = vMax->texcoord[0][3] * wMax - vMin->texcoord[0][3] * wMin;
576 eBot_dv = vMid->texcoord[0][3] * wMid - vMin->texcoord[0][3] * wMin;
577 span.texStep[0][3] = oneOverArea * (eMaj_dv * eBot.dy
578 - eMaj.dy * eBot_dv);
579 dvdy = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
580 }
581 # ifdef INTERP_LAMBDA
582 {
583 GLfloat dudx = span.texStep[0][0] * span.texWidth[0];
584 GLfloat dudy = dsdy * span.texWidth[0];
585 GLfloat dvdx = span.texStep[0][1] * span.texHeight[0];
586 GLfloat dvdy = dtdy * span.texHeight[0];
587 GLfloat r1 = dudx * dudx + dudy * dudy;
588 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
589 span.rho[0] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
590 span.activeMask |= SPAN_LAMBDA;
591 }
592 # endif
593 #endif
594 #ifdef INTERP_MULTITEX
595 span.activeMask |= SPAN_TEXTURE;
596 # ifdef INTERP_LAMBDA
597 span.activeMask |= SPAN_LAMBDA;
598 # endif
599 {
600 GLfloat wMax = vMax->win[3];
601 GLfloat wMin = vMin->win[3];
602 GLfloat wMid = vMid->win[3];
603 GLuint u;
604 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
605 if (ctx->Texture.Unit[u]._ReallyEnabled) {
606 GLfloat eMaj_ds, eBot_ds;
607 GLfloat eMaj_dt, eBot_dt;
608 GLfloat eMaj_du, eBot_du;
609 GLfloat eMaj_dv, eBot_dv;
610 eMaj_ds = vMax->texcoord[u][0] * wMax
611 - vMin->texcoord[u][0] * wMin;
612 eBot_ds = vMid->texcoord[u][0] * wMid
613 - vMin->texcoord[u][0] * wMin;
614 span.texStep[u][0] = oneOverArea * (eMaj_ds * eBot.dy
615 - eMaj.dy * eBot_ds);
616 dsdy[u] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
617
618 eMaj_dt = vMax->texcoord[u][1] * wMax
619 - vMin->texcoord[u][1] * wMin;
620 eBot_dt = vMid->texcoord[u][1] * wMid
621 - vMin->texcoord[u][1] * wMin;
622 span.texStep[u][1] = oneOverArea * (eMaj_dt * eBot.dy
623 - eMaj.dy * eBot_dt);
624 dtdy[u] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
625
626 eMaj_du = vMax->texcoord[u][2] * wMax
627 - vMin->texcoord[u][2] * wMin;
628 eBot_du = vMid->texcoord[u][2] * wMid
629 - vMin->texcoord[u][2] * wMin;
630 span.texStep[u][2] = oneOverArea * (eMaj_du * eBot.dy
631 - eMaj.dy * eBot_du);
632 dudy[u] = oneOverArea * (eMaj.dx * eBot_du - eMaj_du * eBot.dx);
633
634 eMaj_dv = vMax->texcoord[u][3] * wMax
635 - vMin->texcoord[u][3] * wMin;
636 eBot_dv = vMid->texcoord[u][3] * wMid
637 - vMin->texcoord[u][3] * wMin;
638 span.texStep[u][3] = oneOverArea * (eMaj_dv * eBot.dy
639 - eMaj.dy * eBot_dv);
640 dvdy[u] = oneOverArea * (eMaj.dx * eBot_dv - eMaj_dv * eBot.dx);
641 # ifdef INTERP_LAMBDA
642 {
643 GLfloat dudx = span.texStep[u][0] * span.texWidth[u];
644 GLfloat dudy = dsdy[u] * span.texWidth[u];
645 GLfloat dvdx = span.texStep[u][1] * span.texHeight[u];
646 GLfloat dvdy = dtdy[u] * span.texHeight[u];
647 GLfloat r1 = dudx * dudx + dudy * dudy;
648 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
649 span.rho[u] = r1 + r2; /* was rho2 = MAX2(r1,r2) */
650 }
651 # endif
652 }
653 }
654 }
655 #endif
656
657 /*
658 * We always sample at pixel centers. However, we avoid
659 * explicit half-pixel offsets in this code by incorporating
660 * the proper offset in each of x and y during the
661 * transformation to window coordinates.
662 *
663 * We also apply the usual rasterization rules to prevent
664 * cracks and overlaps. A pixel is considered inside a
665 * subtriangle if it meets all of four conditions: it is on or
666 * to the right of the left edge, strictly to the left of the
667 * right edge, on or below the top edge, and strictly above
668 * the bottom edge. (Some edges may be degenerate.)
669 *
670 * The following discussion assumes left-to-right scanning
671 * (that is, the major edge is on the left); the right-to-left
672 * case is a straightforward variation.
673 *
674 * We start by finding the half-integral y coordinate that is
675 * at or below the top of the triangle. This gives us the
676 * first scan line that could possibly contain pixels that are
677 * inside the triangle.
678 *
679 * Next we creep down the major edge until we reach that y,
680 * and compute the corresponding x coordinate on the edge.
681 * Then we find the half-integral x that lies on or just
682 * inside the edge. This is the first pixel that might lie in
683 * the interior of the triangle. (We won't know for sure
684 * until we check the other edges.)
685 *
686 * As we rasterize the triangle, we'll step down the major
687 * edge. For each step in y, we'll move an integer number
688 * of steps in x. There are two possible x step sizes, which
689 * we'll call the ``inner'' step (guaranteed to land on the
690 * edge or inside it) and the ``outer'' step (guaranteed to
691 * land on the edge or outside it). The inner and outer steps
692 * differ by one. During rasterization we maintain an error
693 * term that indicates our distance from the true edge, and
694 * select either the inner step or the outer step, whichever
695 * gets us to the first pixel that falls inside the triangle.
696 *
697 * All parameters (z, red, etc.) as well as the buffer
698 * addresses for color and z have inner and outer step values,
699 * so that we can increment them appropriately. This method
700 * eliminates the need to adjust parameters by creeping a
701 * sub-pixel amount into the triangle at each scanline.
702 */
703
704 {
705 int subTriangle;
706 GLfixed fx;
707 GLfixed fxLeftEdge, fxRightEdge, fdxLeftEdge, fdxRightEdge;
708 GLfixed fdxOuter;
709 int idxOuter;
710 float dxOuter;
711 GLfixed fError, fdError;
712 float adjx, adjy;
713 GLfixed fy;
714 #ifdef PIXEL_ADDRESS
715 PIXEL_TYPE *pRow;
716 int dPRowOuter, dPRowInner; /* offset in bytes */
717 #endif
718 #ifdef INTERP_Z
719 # ifdef DEPTH_TYPE
720 DEPTH_TYPE *zRow;
721 int dZRowOuter, dZRowInner; /* offset in bytes */
722 # endif
723 GLfixed fz, fdzOuter, fdzInner;
724 #endif
725 #ifdef INTERP_FOG
726 GLfloat fogLeft, dfogOuter, dfogInner;
727 #endif
728 #ifdef INTERP_RGB
729 GLfixed fr, fdrOuter, fdrInner;
730 GLfixed fg, fdgOuter, fdgInner;
731 GLfixed fb, fdbOuter, fdbInner;
732 #endif
733 #ifdef INTERP_ALPHA
734 GLfixed fa, fdaOuter, fdaInner;
735 #endif
736 #ifdef INTERP_FLOAT_RGBA
737 GLfloat fr, fdrOuter, fdrInner;
738 GLfloat fg, fdgOuter, fdgInner;
739 GLfloat fb, fdbOuter, fdbInner;
740 GLfloat fa, fdaOuter, fdaInner;
741 #endif
742 #ifdef INTERP_SPEC
743 GLfixed fsr=0, fdsrOuter=0, fdsrInner;
744 GLfixed fsg=0, fdsgOuter=0, fdsgInner;
745 GLfixed fsb=0, fdsbOuter=0, fdsbInner;
746 #endif
747 #ifdef INTERP_FLOAT_SPEC
748 GLfloat fsr=0, fdsrOuter=0, fdsrInner;
749 GLfloat fsg=0, fdsgOuter=0, fdsgInner;
750 GLfloat fsb=0, fdsbOuter=0, fdsbInner;
751 #endif
752 #ifdef INTERP_INDEX
753 GLfixed fi=0, fdiOuter=0, fdiInner;
754 #endif
755 #ifdef INTERP_INT_TEX
756 GLfixed fs=0, fdsOuter=0, fdsInner;
757 GLfixed ft=0, fdtOuter=0, fdtInner;
758 #endif
759 #ifdef INTERP_TEX
760 GLfloat sLeft=0, dsOuter=0, dsInner;
761 GLfloat tLeft=0, dtOuter=0, dtInner;
762 GLfloat uLeft=0, duOuter=0, duInner;
763 GLfloat vLeft=0, dvOuter=0, dvInner;
764 #endif
765 #ifdef INTERP_MULTITEX
766 GLfloat sLeft[MAX_TEXTURE_UNITS];
767 GLfloat tLeft[MAX_TEXTURE_UNITS];
768 GLfloat uLeft[MAX_TEXTURE_UNITS];
769 GLfloat vLeft[MAX_TEXTURE_UNITS];
770 GLfloat dsOuter[MAX_TEXTURE_UNITS], dsInner[MAX_TEXTURE_UNITS];
771 GLfloat dtOuter[MAX_TEXTURE_UNITS], dtInner[MAX_TEXTURE_UNITS];
772 GLfloat duOuter[MAX_TEXTURE_UNITS], duInner[MAX_TEXTURE_UNITS];
773 GLfloat dvOuter[MAX_TEXTURE_UNITS], dvInner[MAX_TEXTURE_UNITS];
774 #endif
775
776 for (subTriangle=0; subTriangle<=1; subTriangle++) {
777 EdgeT *eLeft, *eRight;
778 int setupLeft, setupRight;
779 int lines;
780
781 if (subTriangle==0) {
782 /* bottom half */
783 if (scan_from_left_to_right) {
784 eLeft = &eMaj;
785 eRight = &eBot;
786 lines = eRight->lines;
787 setupLeft = 1;
788 setupRight = 1;
789 }
790 else {
791 eLeft = &eBot;
792 eRight = &eMaj;
793 lines = eLeft->lines;
794 setupLeft = 1;
795 setupRight = 1;
796 }
797 }
798 else {
799 /* top half */
800 if (scan_from_left_to_right) {
801 eLeft = &eMaj;
802 eRight = &eTop;
803 lines = eRight->lines;
804 setupLeft = 0;
805 setupRight = 1;
806 }
807 else {
808 eLeft = &eTop;
809 eRight = &eMaj;
810 lines = eLeft->lines;
811 setupLeft = 1;
812 setupRight = 0;
813 }
814 if (lines == 0)
815 return;
816 }
817
818 if (setupLeft && eLeft->lines > 0) {
819 const SWvertex *vLower;
820 GLfixed fsx = eLeft->fsx;
821 fx = FixedCeil(fsx);
822 fError = fx - fsx - FIXED_ONE;
823 fxLeftEdge = fsx - FIXED_EPSILON;
824 fdxLeftEdge = eLeft->fdxdy;
825 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
826 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
827 idxOuter = FixedToInt(fdxOuter);
828 dxOuter = (float) idxOuter;
829 (void) dxOuter;
830
831 fy = eLeft->fsy;
832 span.y = FixedToInt(fy);
833
834 adjx = (float)(fx - eLeft->fx0); /* SCALED! */
835 adjy = eLeft->adjy; /* SCALED! */
836 (void) adjx; /* silence compiler warnings */
837 (void) adjy; /* silence compiler warnings */
838
839 vLower = eLeft->v0;
840 (void) vLower; /* silence compiler warnings */
841
842 #ifdef PIXEL_ADDRESS
843 {
844 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
845 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
846 /* negative because Y=0 at bottom and increases upward */
847 }
848 #endif
849 /*
850 * Now we need the set of parameter (z, color, etc.) values at
851 * the point (fx, fy). This gives us properly-sampled parameter
852 * values that we can step from pixel to pixel. Furthermore,
853 * although we might have intermediate results that overflow
854 * the normal parameter range when we step temporarily outside
855 * the triangle, we shouldn't overflow or underflow for any
856 * pixel that's actually inside the triangle.
857 */
858
859 #ifdef INTERP_Z
860 {
861 GLfloat z0 = vLower->win[2];
862 if (depthBits <= 16) {
863 /* interpolate fixed-pt values */
864 GLfloat tmp = (z0 * FIXED_SCALE +
865 dzdx * adjx + dzdy * adjy) + FIXED_HALF;
866 if (tmp < MAX_GLUINT / 2)
867 fz = (GLfixed) tmp;
868 else
869 fz = MAX_GLUINT / 2;
870 fdzOuter = SignedFloatToFixed(dzdy + dxOuter * dzdx);
871 }
872 else {
873 /* interpolate depth values exactly */
874 fz = (GLint) (z0 + dzdx * FixedToFloat(adjx)
875 + dzdy * FixedToFloat(adjy));
876 fdzOuter = (GLint) (dzdy + dxOuter * dzdx);
877 }
878 # ifdef DEPTH_TYPE
879 zRow = (DEPTH_TYPE *)
880 _mesa_zbuffer_address(ctx, FixedToInt(fxLeftEdge), span.y);
881 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
882 # endif
883 }
884 #endif
885 #ifdef INTERP_FOG
886 fogLeft = vLower->fog + (span.fogStep * adjx + dfogdy * adjy)
887 * (1.0F/FIXED_SCALE);
888 dfogOuter = dfogdy + dxOuter * span.fogStep;
889 #endif
890 #ifdef INTERP_RGB
891 if (ctx->Light.ShadeModel == GL_SMOOTH) {
892 fr = (GLfixed) (ChanToFixed(vLower->color[RCOMP])
893 + drdx * adjx + drdy * adjy) + FIXED_HALF;
894 fdrOuter = SignedFloatToFixed(drdy + dxOuter * drdx);
895 fg = (GLfixed) (ChanToFixed(vLower->color[GCOMP])
896 + dgdx * adjx + dgdy * adjy) + FIXED_HALF;
897 fdgOuter = SignedFloatToFixed(dgdy + dxOuter * dgdx);
898 fb = (GLfixed) (ChanToFixed(vLower->color[BCOMP])
899 + dbdx * adjx + dbdy * adjy) + FIXED_HALF;
900 fdbOuter = SignedFloatToFixed(dbdy + dxOuter * dbdx);
901 # ifdef INTERP_ALPHA
902 fa = (GLfixed) (ChanToFixed(vLower->color[ACOMP])
903 + dadx * adjx + dady * adjy) + FIXED_HALF;
904 fdaOuter = SignedFloatToFixed(dady + dxOuter * dadx);
905 # endif
906 }
907 else {
908 ASSERT (ctx->Light.ShadeModel == GL_FLAT);
909 fr = ChanToFixed(v2->color[RCOMP]);
910 fg = ChanToFixed(v2->color[GCOMP]);
911 fb = ChanToFixed(v2->color[BCOMP]);
912 fdrOuter = fdgOuter = fdbOuter = 0;
913 # ifdef INTERP_ALPHA
914 fa = ChanToFixed(v2->color[ACOMP]);
915 fdaOuter = 0;
916 # endif
917 }
918 #endif
919 #ifdef INTERP_FLOAT_RGBA
920 if (ctx->Light.ShadeModel == GL_SMOOTH) {
921 fr = vLower->color[RCOMP]
922 + (drdx * adjx + drdy * adjy) * (1.0F / FIXED_SCALE);
923 fdrOuter = drdy + dxOuter * drdx;
924 fg = vLower->color[GCOMP]
925 + (dgdx * adjx + dgdy * adjy) * (1.0F / FIXED_SCALE);
926 fdgOuter = dgdy + dxOuter * dgdx;
927 fb = vLower->color[BCOMP]
928 + (dbdx * adjx + dbdy * adjy) * (1.0F / FIXED_SCALE);
929 fdbOuter = dbdy + dxOuter * dbdx;
930 fa = vLower->color[ACOMP]
931 + (dadx * adjx + dady * adjy) * (1.0F / FIXED_SCALE);
932 fdaOuter = dady + dxOuter * dadx;
933 }
934 else {
935 fr = v2->color[RCOMP];
936 fg = v2->color[GCOMP];
937 fb = v2->color[BCOMP];
938 fa = v2->color[ACOMP];
939 fdrOuter = fdgOuter = fdbOuter = fdaOuter = 0.0F;
940 }
941 #endif
942 #ifdef INTERP_SPEC
943 if (ctx->Light.ShadeModel == GL_SMOOTH) {
944 fsr = (GLfixed) (ChanToFixed(vLower->specular[RCOMP])
945 + dsrdx * adjx + dsrdy * adjy) + FIXED_HALF;
946 fdsrOuter = SignedFloatToFixed(dsrdy + dxOuter * dsrdx);
947 fsg = (GLfixed) (ChanToFixed(vLower->specular[GCOMP])
948 + dsgdx * adjx + dsgdy * adjy) + FIXED_HALF;
949 fdsgOuter = SignedFloatToFixed(dsgdy + dxOuter * dsgdx);
950 fsb = (GLfixed) (ChanToFixed(vLower->specular[BCOMP])
951 + dsbdx * adjx + dsbdy * adjy) + FIXED_HALF;
952 fdsbOuter = SignedFloatToFixed(dsbdy + dxOuter * dsbdx);
953 }
954 else {
955 fsr = ChanToFixed(v2->specular[RCOMP]);
956 fsg = ChanToFixed(v2->specular[GCOMP]);
957 fsb = ChanToFixed(v2->specular[BCOMP]);
958 fdsrOuter = fdsgOuter = fdsbOuter = 0;
959 }
960 #endif
961 #ifdef INTERP_FLOAT_SPEC
962 if (ctx->Light.ShadeModel == GL_SMOOTH) {
963 fsr = vLower->specular[RCOMP]
964 + (dsrdx * adjx + dsrdy * adjy) * (1.0F / FIXED_SCALE);
965 fdsrOuter = dsrdy + dxOuter * dsrdx;
966 fsg = vLower->specular[GCOMP]
967 + (dsgdx * adjx + dsgdy * adjy) * (1.0F / FIXED_SCALE);
968 fdsgOuter = dsgdy + dxOuter * dsgdx;
969 fsb = vLower->specular[BCOMP]
970 + (dsbdx * adjx + dsbdy * adjy) * (1.0F / FIXED_SCALE);
971 fdsbOuter = dsbdy + dxOuter * dsbdx;
972 }
973 else {
974 fsr = v2->specular[RCOMP];
975 fsg = v2->specular[GCOMP];
976 fsb = v2->specular[BCOMP];
977 fdsrOuter = fdsgOuter = fdsbOuter = 0.0F;
978 }
979 #endif
980 #ifdef INTERP_INDEX
981 if (ctx->Light.ShadeModel == GL_SMOOTH) {
982 fi = (GLfixed)(vLower->index * FIXED_SCALE
983 + didx * adjx + didy * adjy) + FIXED_HALF;
984 fdiOuter = SignedFloatToFixed(didy + dxOuter * didx);
985 }
986 else {
987 fi = (GLfixed) (v2->index * FIXED_SCALE);
988 fdiOuter = 0;
989 }
990 #endif
991 #ifdef INTERP_INT_TEX
992 {
993 GLfloat s0, t0;
994 s0 = vLower->texcoord[0][0] * S_SCALE;
995 fs = (GLfixed)(s0 * FIXED_SCALE + dsdx * adjx
996 + dsdy * adjy) + FIXED_HALF;
997 fdsOuter = SignedFloatToFixed(dsdy + dxOuter * dsdx);
998
999 t0 = vLower->texcoord[0][1] * T_SCALE;
1000 ft = (GLfixed)(t0 * FIXED_SCALE + dtdx * adjx
1001 + dtdy * adjy) + FIXED_HALF;
1002 fdtOuter = SignedFloatToFixed(dtdy + dxOuter * dtdx);
1003 }
1004 #endif
1005 #ifdef INTERP_TEX
1006 {
1007 GLfloat invW = vLower->win[3];
1008 GLfloat s0, t0, u0, v0;
1009 s0 = vLower->texcoord[0][0] * invW;
1010 sLeft = s0 + (span.texStep[0][0] * adjx + dsdy * adjy)
1011 * (1.0F/FIXED_SCALE);
1012 dsOuter = dsdy + dxOuter * span.texStep[0][0];
1013 t0 = vLower->texcoord[0][1] * invW;
1014 tLeft = t0 + (span.texStep[0][1] * adjx + dtdy * adjy)
1015 * (1.0F/FIXED_SCALE);
1016 dtOuter = dtdy + dxOuter * span.texStep[0][1];
1017 u0 = vLower->texcoord[0][2] * invW;
1018 uLeft = u0 + (span.texStep[0][2] * adjx + dudy * adjy)
1019 * (1.0F/FIXED_SCALE);
1020 duOuter = dudy + dxOuter * span.texStep[0][2];
1021 v0 = vLower->texcoord[0][3] * invW;
1022 vLeft = v0 + (span.texStep[0][3] * adjx + dvdy * adjy)
1023 * (1.0F/FIXED_SCALE);
1024 dvOuter = dvdy + dxOuter * span.texStep[0][3];
1025 }
1026 #endif
1027 #ifdef INTERP_MULTITEX
1028 {
1029 GLuint u;
1030 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1031 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1032 GLfloat invW = vLower->win[3];
1033 GLfloat s0, t0, u0, v0;
1034 s0 = vLower->texcoord[u][0] * invW;
1035 sLeft[u] = s0 + (span.texStep[u][0] * adjx + dsdy[u]
1036 * adjy) * (1.0F/FIXED_SCALE);
1037 dsOuter[u] = dsdy[u] + dxOuter * span.texStep[u][0];
1038 t0 = vLower->texcoord[u][1] * invW;
1039 tLeft[u] = t0 + (span.texStep[u][1] * adjx + dtdy[u]
1040 * adjy) * (1.0F/FIXED_SCALE);
1041 dtOuter[u] = dtdy[u] + dxOuter * span.texStep[u][1];
1042 u0 = vLower->texcoord[u][2] * invW;
1043 uLeft[u] = u0 + (span.texStep[u][2] * adjx + dudy[u]
1044 * adjy) * (1.0F/FIXED_SCALE);
1045 duOuter[u] = dudy[u] + dxOuter * span.texStep[u][2];
1046 v0 = vLower->texcoord[u][3] * invW;
1047 vLeft[u] = v0 + (span.texStep[u][3] * adjx + dvdy[u]
1048 * adjy) * (1.0F/FIXED_SCALE);
1049 dvOuter[u] = dvdy[u] + dxOuter * span.texStep[u][3];
1050 }
1051 }
1052 }
1053 #endif
1054
1055 } /*if setupLeft*/
1056
1057
1058 if (setupRight && eRight->lines>0) {
1059 fxRightEdge = eRight->fsx - FIXED_EPSILON;
1060 fdxRightEdge = eRight->fdxdy;
1061 }
1062
1063 if (lines==0) {
1064 continue;
1065 }
1066
1067
1068 /* Rasterize setup */
1069 #ifdef PIXEL_ADDRESS
1070 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
1071 #endif
1072 #ifdef INTERP_Z
1073 # ifdef DEPTH_TYPE
1074 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
1075 # endif
1076 fdzInner = fdzOuter + span.zStep;
1077 #endif
1078 #ifdef INTERP_FOG
1079 dfogInner = dfogOuter + span.fogStep;
1080 #endif
1081 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1082 fdrInner = fdrOuter + span.redStep;
1083 fdgInner = fdgOuter + span.greenStep;
1084 fdbInner = fdbOuter + span.blueStep;
1085 #endif
1086 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1087 fdaInner = fdaOuter + span.alphaStep;
1088 #endif
1089 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1090 fdsrInner = fdsrOuter + span.specRedStep;
1091 fdsgInner = fdsgOuter + span.specGreenStep;
1092 fdsbInner = fdsbOuter + span.specBlueStep;
1093 #endif
1094 #ifdef INTERP_INDEX
1095 fdiInner = fdiOuter + span.indexStep;
1096 #endif
1097 #ifdef INTERP_INT_TEX
1098 fdsInner = fdsOuter + span.intTexStep[0];
1099 fdtInner = fdtOuter + span.intTexStep[1];
1100 #endif
1101 #ifdef INTERP_TEX
1102 dsInner = dsOuter + span.texStep[0][0];
1103 dtInner = dtOuter + span.texStep[0][1];
1104 duInner = duOuter + span.texStep[0][2];
1105 dvInner = dvOuter + span.texStep[0][3];
1106 #endif
1107 #ifdef INTERP_MULTITEX
1108 {
1109 GLuint u;
1110 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1111 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1112 dsInner[u] = dsOuter[u] + span.texStep[u][0];
1113 dtInner[u] = dtOuter[u] + span.texStep[u][1];
1114 duInner[u] = duOuter[u] + span.texStep[u][2];
1115 dvInner[u] = dvOuter[u] + span.texStep[u][3];
1116 }
1117 }
1118 }
1119 #endif
1120
1121 while (lines > 0) {
1122 /* initialize the span interpolants to the leftmost value */
1123 /* ff = fixed-pt fragment */
1124 const GLint right = FixedToInt(fxRightEdge);
1125 span.x = FixedToInt(fxLeftEdge);
1126 if (right <= span.x)
1127 span.count = 0;
1128 else
1129 span.count = right - span.x;
1130
1131 #ifdef INTERP_Z
1132 span.z = fz;
1133 #endif
1134 #ifdef INTERP_FOG
1135 span.fog = fogLeft;
1136 #endif
1137 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1138 span.red = fr;
1139 span.green = fg;
1140 span.blue = fb;
1141 #endif
1142 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1143 span.alpha = fa;
1144 #endif
1145 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1146 span.specRed = fsr;
1147 span.specGreen = fsg;
1148 span.specBlue = fsb;
1149 #endif
1150 #ifdef INTERP_INDEX
1151 span.index = fi;
1152 #endif
1153 #ifdef INTERP_INT_TEX
1154 span.intTex[0] = fs;
1155 span.intTex[1] = ft;
1156 #endif
1157
1158 #ifdef INTERP_TEX
1159 span.tex[0][0] = sLeft;
1160 span.tex[0][1] = tLeft;
1161 span.tex[0][2] = uLeft;
1162 span.tex[0][3] = vLeft;
1163 #endif
1164
1165 #ifdef INTERP_MULTITEX
1166 {
1167 GLuint u;
1168 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1169 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1170 span.tex[u][0] = sLeft[u];
1171 span.tex[u][1] = tLeft[u];
1172 span.tex[u][2] = uLeft[u];
1173 span.tex[u][3] = vLeft[u];
1174 }
1175 }
1176 }
1177 #endif
1178
1179 #ifdef INTERP_RGB
1180 {
1181 /* need this to accomodate round-off errors */
1182 const GLint len = right - span.x - 1;
1183 GLfixed ffrend = span.red + len * span.redStep;
1184 GLfixed ffgend = span.green + len * span.greenStep;
1185 GLfixed ffbend = span.blue + len * span.blueStep;
1186 if (ffrend < 0) {
1187 span.red -= ffrend;
1188 if (span.red < 0)
1189 span.red = 0;
1190 }
1191 if (ffgend < 0) {
1192 span.green -= ffgend;
1193 if (span.green < 0)
1194 span.green = 0;
1195 }
1196 if (ffbend < 0) {
1197 span.blue -= ffbend;
1198 if (span.blue < 0)
1199 span.blue = 0;
1200 }
1201 }
1202 #endif
1203 #ifdef INTERP_ALPHA
1204 {
1205 const GLint len = right - span.x - 1;
1206 GLfixed ffaend = span.alpha + len * span.alphaStep;
1207 if (ffaend < 0) {
1208 span.alpha -= ffaend;
1209 if (span.alpha < 0)
1210 span.alpha = 0;
1211 }
1212 }
1213 #endif
1214 #ifdef INTERP_SPEC
1215 {
1216 /* need this to accomodate round-off errors */
1217 const GLint len = right - span.x - 1;
1218 GLfixed ffsrend = span.specRed + len * span.specRedStep;
1219 GLfixed ffsgend = span.specGreen + len * span.specGreenStep;
1220 GLfixed ffsbend = span.specBlue + len * span.specBlueStep;
1221 if (ffsrend < 0) {
1222 span.specRed -= ffsrend;
1223 if (span.specRed < 0)
1224 span.specRed = 0;
1225 }
1226 if (ffsgend < 0) {
1227 span.specGreen -= ffsgend;
1228 if (span.specGreen < 0)
1229 span.specGreen = 0;
1230 }
1231 if (ffsbend < 0) {
1232 span.specBlue -= ffsbend;
1233 if (span.specBlue < 0)
1234 span.specBlue = 0;
1235 }
1236 }
1237 #endif
1238 #ifdef INTERP_INDEX
1239 if (span.index < 0) span.index = 0;
1240 #endif
1241
1242 /* This is where we actually generate fragments */
1243 if (span.count > 0) {
1244 RENDER_SPAN( span );
1245 }
1246
1247 /*
1248 * Advance to the next scan line. Compute the
1249 * new edge coordinates, and adjust the
1250 * pixel-center x coordinate so that it stays
1251 * on or inside the major edge.
1252 */
1253 span.y++;
1254 lines--;
1255
1256 fxLeftEdge += fdxLeftEdge;
1257 fxRightEdge += fdxRightEdge;
1258
1259
1260 fError += fdError;
1261 if (fError >= 0) {
1262 fError -= FIXED_ONE;
1263 #ifdef PIXEL_ADDRESS
1264 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
1265 #endif
1266 #ifdef INTERP_Z
1267 # ifdef DEPTH_TYPE
1268 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
1269 # endif
1270 fz += fdzOuter;
1271 #endif
1272 #ifdef INTERP_FOG
1273 fogLeft += dfogOuter;
1274 #endif
1275 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1276 fr += fdrOuter;
1277 fg += fdgOuter;
1278 fb += fdbOuter;
1279 #endif
1280 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1281 fa += fdaOuter;
1282 #endif
1283 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1284 fsr += fdsrOuter;
1285 fsg += fdsgOuter;
1286 fsb += fdsbOuter;
1287 #endif
1288 #ifdef INTERP_INDEX
1289 fi += fdiOuter;
1290 #endif
1291 #ifdef INTERP_INT_TEX
1292 fs += fdsOuter;
1293 ft += fdtOuter;
1294 #endif
1295 #ifdef INTERP_TEX
1296 sLeft += dsOuter;
1297 tLeft += dtOuter;
1298 uLeft += duOuter;
1299 vLeft += dvOuter;
1300 #endif
1301 #ifdef INTERP_MULTITEX
1302 {
1303 GLuint u;
1304 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1305 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1306 sLeft[u] += dsOuter[u];
1307 tLeft[u] += dtOuter[u];
1308 uLeft[u] += duOuter[u];
1309 vLeft[u] += dvOuter[u];
1310 }
1311 }
1312 }
1313 #endif
1314 }
1315 else {
1316 #ifdef PIXEL_ADDRESS
1317 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
1318 #endif
1319 #ifdef INTERP_Z
1320 # ifdef DEPTH_TYPE
1321 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
1322 # endif
1323 fz += fdzInner;
1324 #endif
1325 #ifdef INTERP_FOG
1326 fogLeft += dfogInner;
1327 #endif
1328 #if defined(INTERP_RGB) || defined(INTERP_FLOAT_RGBA)
1329 fr += fdrInner;
1330 fg += fdgInner;
1331 fb += fdbInner;
1332 #endif
1333 #if defined(INTERP_ALPHA) || defined(INTERP_FLOAT_RGBA)
1334 fa += fdaInner;
1335 #endif
1336 #if defined(INTERP_SPEC) || defined(INTERP_FLOAT_SPEC)
1337 fsr += fdsrInner;
1338 fsg += fdsgInner;
1339 fsb += fdsbInner;
1340 #endif
1341 #ifdef INTERP_INDEX
1342 fi += fdiInner;
1343 #endif
1344 #ifdef INTERP_INT_TEX
1345 fs += fdsInner;
1346 ft += fdtInner;
1347 #endif
1348 #ifdef INTERP_TEX
1349 sLeft += dsInner;
1350 tLeft += dtInner;
1351 uLeft += duInner;
1352 vLeft += dvInner;
1353 #endif
1354 #ifdef INTERP_MULTITEX
1355 {
1356 GLuint u;
1357 for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
1358 if (ctx->Texture.Unit[u]._ReallyEnabled) {
1359 sLeft[u] += dsInner[u];
1360 tLeft[u] += dtInner[u];
1361 uLeft[u] += duInner[u];
1362 vLeft[u] += dvInner[u];
1363 }
1364 }
1365 }
1366 #endif
1367 }
1368 } /*while lines>0*/
1369
1370 } /* for subTriangle */
1371
1372 }
1373 #ifdef CLEANUP_CODE
1374 CLEANUP_CODE
1375 #endif
1376 }
1377 }
1378
1379 #undef SETUP_CODE
1380 #undef CLEANUP_CODE
1381 #undef RENDER_SPAN
1382
1383 #undef PIXEL_TYPE
1384 #undef BYTES_PER_ROW
1385 #undef PIXEL_ADDRESS
1386
1387 #undef INTERP_Z
1388 #undef INTERP_FOG
1389 #undef INTERP_RGB
1390 #undef INTERP_ALPHA
1391 #undef INTERP_SPEC
1392 #undef INTERP_INDEX
1393 #undef INTERP_INT_TEX
1394 #undef INTERP_TEX
1395 #undef INTERP_MULTITEX
1396 #undef INTERP_LAMBDA
1397 #undef INTERP_FLOAT_RGBA
1398 #undef INTERP_FLOAT_SPEC
1399
1400 #undef S_SCALE
1401 #undef T_SCALE
1402
1403 #undef FixedToDepth
1404
1405 #undef DO_OCCLUSION_TEST