5ee58bfcf14e09337048cbe5ff859c993a45411c
[mesa.git] / src / mesa / swrast / swrast.h
1 /* $Id: swrast.h,v 1.15 2002/01/21 18:12:34 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 * Keith Whitwell <keithw@valinux.com>
28 */
29
30 #ifndef SWRAST_H
31 #define SWRAST_H
32
33 #include "mtypes.h"
34
35
36 /* The software rasterizer now uses this format for vertices. Thus a
37 * 'RasterSetup' stage or other translation is required between the
38 * tnl module and the swrast rasterization functions. This serves to
39 * isolate the swrast module from the internals of the tnl module, and
40 * improve its usefulness as a fallback mechanism for hardware
41 * drivers.
42 *
43 * Full software drivers:
44 * - Register the rastersetup and triangle functions from
45 * utils/software_helper.
46 * - On statechange, update the rasterization pointers in that module.
47 *
48 * Rasterization hardware drivers:
49 * - Keep native rastersetup.
50 * - Implement native twoside,offset and unfilled triangle setup.
51 * - Implement a translator from native vertices to swrast vertices.
52 * - On partial fallback (mix of accelerated and unaccelerated
53 * prims), call a pass-through function which translates native
54 * vertices to SWvertices and calls the appropriate swrast function.
55 * - On total fallback (vertex format insufficient for state or all
56 * primitives unaccelerated), hook in swrast_setup instead.
57 */
58 typedef struct {
59 GLfloat win[4];
60 GLfloat texcoord[MAX_TEXTURE_UNITS][4];
61 GLchan color[4];
62 GLchan specular[4];
63 GLfloat fog;
64 GLuint index;
65 GLfloat pointSize;
66 } SWvertex;
67
68
69 /*
70 * The sw_span structure is used by the triangle template code in
71 * s_tritemp.h. It describes how colors, Z, texcoords, etc are to be
72 * interpolated across each scanline of triangle.
73 * With this structure it's easy to hand-off span rasterization to a
74 * subroutine instead of doing it all inline like we used to do.
75 * It also cleans up the local variable namespace a great deal.
76 *
77 * It would be interesting to experiment with multiprocessor rasterization
78 * with this structure. The triangle rasterizer could simply emit a
79 * stream of these structures which would be consumed by one or more
80 * span-processing threads which could run in parallel.
81 */
82
83
84 /* When the sw_span struct is initialized, these flags indicates
85 * which values are needed for rendering the triangle.
86 */
87 #define SPAN_RGBA 0x001
88 #define SPAN_SPEC 0x002
89 #define SPAN_INDEX 0x004
90 #define SPAN_Z 0x008
91 #define SPAN_FOG 0x010
92 #define SPAN_TEXTURE 0x020
93 #define SPAN_INT_TEXTURE 0x040
94 #define SPAN_LAMBDA 0x080
95 #define SPAN_FLAT 0x100 /* flat shading? */
96
97
98 struct sw_span {
99 GLint x, y;
100
101 /* only need to process pixels between start <= i < end */
102 GLuint start, end;
103
104 /* This flag indicates that only a part of the span is visible */
105 GLboolean writeAll;
106
107 GLuint activeMask; /* OR of the SPAN_* flags */
108
109 #if CHAN_TYPE == GL_FLOAT
110 GLfloat red, redStep;
111 GLfloat green, greenStep;
112 GLfloat blue, blueStep;
113 GLfloat alpha, alphaStep;
114 GLfloat specRed, specRedStep;
115 GLfloat specGreen, specGreenStep;
116 GLfloat specBlue, specBlueStep;
117 #else /* CHAN_TYPE == */
118 GLfixed red, redStep;
119 GLfixed green, greenStep;
120 GLfixed blue, blueStep;
121 GLfixed alpha, alphaStep;
122 GLfixed specRed, specRedStep;
123 GLfixed specGreen, specGreenStep;
124 GLfixed specBlue, specBlueStep;
125 #endif
126 GLfixed index, indexStep;
127 GLfixed z, zStep;
128 GLfloat fog, fogStep;
129 GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4];
130 GLfixed intTex[2], intTexStep[2];
131 /* Needed for texture lambda (LOD) computation */
132 GLfloat rho[MAX_TEXTURE_UNITS];
133 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
134
135 /**
136 * Arrays of fragment values. These will either be computed from the
137 * x/xStep values above or loadd from glDrawPixels, etc.
138 */
139 GLdepth depth[MAX_WIDTH];
140 union {
141 GLchan rgb[MAX_WIDTH][3];
142 GLchan rgba[MAX_WIDTH][4];
143 GLuint index[MAX_WIDTH];
144 } color;
145 GLchan specular[MAX_WIDTH][4];
146 GLint itexcoords[MAX_WIDTH][2]; /* Integer texture (s, t) */
147 /* Texture (s,t,r). 4th component only used for pixel texture */
148 GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4];
149 GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
150 GLfloat coverage[MAX_WIDTH];
151 GLubyte mask[MAX_WIDTH];
152
153 #ifdef DEBUG
154 GLboolean filledDepth, filledMask, filledAlpha;
155 GLboolean filledColor, filledSpecular;
156 GLboolean filledLambda[MAX_TEXTURE_UNITS], filledTex[MAX_TEXTURE_UNITS];
157 GLboolean testedDepth, testedAlpha;
158 #endif
159 };
160
161
162 #ifdef DEBUG
163 #define SW_SPAN_SET_FLAG(flag) {ASSERT((flag) == GL_FALSE);(flag) = GL_TRUE;}
164 #define SW_SPAN_RESET(span) { \
165 (span).filledDepth = (span).filledMask = (span).filledAlpha \
166 = (span).filledColor = (span).filledSpecular \
167 = (span).testedDepth = (span).testedAlpha = GL_FALSE; \
168 MEMSET((span).filledTex, GL_FALSE, \
169 MAX_TEXTURE_UNITS*sizeof(GLboolean)); \
170 MEMSET((span).filledLambda, GL_FALSE, \
171 MAX_TEXTURE_UNITS*sizeof(GLboolean)); \
172 (span).start = 0; (span).writeAll = GL_TRUE;}
173 #else
174 #define SW_SPAN_SET_FLAG(flag) ;
175 #define SW_SPAN_RESET(span) {(span).start = 0;(span).writeAll = GL_TRUE;}
176 #endif
177
178 struct swrast_device_driver;
179
180
181 /* These are the public-access functions exported from swrast.
182 */
183 extern void
184 _swrast_alloc_buffers( GLcontext *ctx );
185
186 extern GLboolean
187 _swrast_CreateContext( GLcontext *ctx );
188
189 extern void
190 _swrast_DestroyContext( GLcontext *ctx );
191
192 /* Get a (non-const) reference to the device driver struct for swrast.
193 */
194 extern struct swrast_device_driver *
195 _swrast_GetDeviceDriverReference( GLcontext *ctx );
196
197 extern void
198 _swrast_Bitmap( GLcontext *ctx,
199 GLint px, GLint py,
200 GLsizei width, GLsizei height,
201 const struct gl_pixelstore_attrib *unpack,
202 const GLubyte *bitmap );
203
204 extern void
205 _swrast_CopyPixels( GLcontext *ctx,
206 GLint srcx, GLint srcy,
207 GLint destx, GLint desty,
208 GLsizei width, GLsizei height,
209 GLenum type );
210
211 extern void
212 _swrast_DrawPixels( GLcontext *ctx,
213 GLint x, GLint y,
214 GLsizei width, GLsizei height,
215 GLenum format, GLenum type,
216 const struct gl_pixelstore_attrib *unpack,
217 const GLvoid *pixels );
218
219 extern void
220 _swrast_ReadPixels( GLcontext *ctx,
221 GLint x, GLint y, GLsizei width, GLsizei height,
222 GLenum format, GLenum type,
223 const struct gl_pixelstore_attrib *unpack,
224 GLvoid *pixels );
225
226 extern void
227 _swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
228 GLint x, GLint y, GLint width, GLint height );
229
230 extern void
231 _swrast_Accum( GLcontext *ctx, GLenum op,
232 GLfloat value, GLint xpos, GLint ypos,
233 GLint width, GLint height );
234
235
236 /* Reset the stipple counter
237 */
238 extern void
239 _swrast_ResetLineStipple( GLcontext *ctx );
240
241 /* These will always render the correct point/line/triangle for the
242 * current state.
243 *
244 * For flatshaded primitives, the provoking vertex is the final one.
245 */
246 extern void
247 _swrast_Point( GLcontext *ctx, const SWvertex *v );
248
249 extern void
250 _swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
251
252 extern void
253 _swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
254 const SWvertex *v1, const SWvertex *v2 );
255
256 extern void
257 _swrast_Quad( GLcontext *ctx,
258 const SWvertex *v0, const SWvertex *v1,
259 const SWvertex *v2, const SWvertex *v3);
260
261 extern void
262 _swrast_flush( GLcontext *ctx );
263
264
265 /* Tell the software rasterizer about core state changes.
266 */
267 extern void
268 _swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
269
270 /* Configure software rasterizer to match hardware rasterizer characteristics:
271 */
272 extern void
273 _swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
274
275 extern void
276 _swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
277
278 /* Debug:
279 */
280 extern void
281 _swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
282
283
284 /*
285 * Imaging fallbacks (a better solution should be found, perhaps
286 * moving all the imaging fallback code to a new module)
287 */
288 void
289 _swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
290 GLenum internalFormat,
291 GLint x, GLint y, GLsizei width,
292 GLsizei height);
293 void
294 _swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
295 GLenum internalFormat,
296 GLint x, GLint y, GLsizei width);
297 void
298 _swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
299 GLint x, GLint y, GLsizei width);
300 void
301 _swrast_CopyColorTable( GLcontext *ctx,
302 GLenum target, GLenum internalformat,
303 GLint x, GLint y, GLsizei width);
304
305
306 /*
307 * Texture fallbacks, Brian Paul. Could also live in a new module
308 * with the rest of the texture store fallbacks?
309 */
310 extern void
311 _swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
312 GLenum internalFormat,
313 GLint x, GLint y, GLsizei width, GLint border);
314
315 extern void
316 _swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
317 GLenum internalFormat,
318 GLint x, GLint y, GLsizei width, GLsizei height,
319 GLint border);
320
321
322 extern void
323 _swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
324 GLint xoffset, GLint x, GLint y, GLsizei width);
325
326 extern void
327 _swrast_copy_texsubimage2d(GLcontext *ctx,
328 GLenum target, GLint level,
329 GLint xoffset, GLint yoffset,
330 GLint x, GLint y, GLsizei width, GLsizei height);
331
332 extern void
333 _swrast_copy_texsubimage3d(GLcontext *ctx,
334 GLenum target, GLint level,
335 GLint xoffset, GLint yoffset, GLint zoffset,
336 GLint x, GLint y, GLsizei width, GLsizei height);
337
338
339
340 /* The driver interface for the software rasterizer. Unless otherwise
341 * noted, all functions are mandatory.
342 */
343 struct swrast_device_driver {
344
345 void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
346 GLenum buffer );
347 /*
348 * Specifies the current buffer for span/pixel reading.
349 * colorBuffer will be one of:
350 * GL_FRONT_LEFT - this buffer always exists
351 * GL_BACK_LEFT - when double buffering
352 * GL_FRONT_RIGHT - when using stereo
353 * GL_BACK_RIGHT - when using stereo and double buffering
354 */
355
356
357 /***
358 *** Functions for synchronizing access to the framebuffer:
359 ***/
360
361 void (*SpanRenderStart)(GLcontext *ctx);
362 void (*SpanRenderFinish)(GLcontext *ctx);
363 /* OPTIONAL.
364 *
365 * Called before and after all rendering operations, including DrawPixels,
366 * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
367 * These are a suitable place for grabbing/releasing hardware locks.
368 *
369 * NOTE: The swrast triangle/line/point routines *DO NOT* call
370 * these functions. Locking in that case must be organized by the
371 * driver by other mechanisms.
372 */
373
374 /***
375 *** Functions for writing pixels to the frame buffer:
376 ***/
377
378 void (*WriteRGBASpan)( const GLcontext *ctx,
379 GLuint n, GLint x, GLint y,
380 CONST GLchan rgba[][4], const GLubyte mask[] );
381 void (*WriteRGBSpan)( const GLcontext *ctx,
382 GLuint n, GLint x, GLint y,
383 CONST GLchan rgb[][3], const GLubyte mask[] );
384 /* Write a horizontal run of RGBA or RGB pixels.
385 * If mask is NULL, draw all pixels.
386 * If mask is not null, only draw pixel [i] when mask [i] is true.
387 */
388
389 void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
390 const GLchan color[4], const GLubyte mask[] );
391 /* Write a horizontal run of RGBA pixels all with the same color.
392 */
393
394 void (*WriteRGBAPixels)( const GLcontext *ctx,
395 GLuint n, const GLint x[], const GLint y[],
396 CONST GLchan rgba[][4], const GLubyte mask[] );
397 /* Write array of RGBA pixels at random locations.
398 */
399
400 void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
401 GLuint n, const GLint x[], const GLint y[],
402 const GLchan color[4], const GLubyte mask[] );
403 /* Write an array of mono-RGBA pixels at random locations.
404 */
405
406 void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
407 const GLuint index[], const GLubyte mask[] );
408 void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
409 const GLubyte index[], const GLubyte mask[] );
410 /* Write a horizontal run of CI pixels. One function is for 32bpp
411 * indexes and the other for 8bpp pixels (the common case). You mus
412 * implement both for color index mode.
413 */
414
415 void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
416 GLuint colorIndex, const GLubyte mask[] );
417 /* Write a horizontal run of color index pixels using the color index
418 * last specified by the Index() function.
419 */
420
421 void (*WriteCI32Pixels)( const GLcontext *ctx,
422 GLuint n, const GLint x[], const GLint y[],
423 const GLuint index[], const GLubyte mask[] );
424 /*
425 * Write a random array of CI pixels.
426 */
427
428 void (*WriteMonoCIPixels)( const GLcontext *ctx,
429 GLuint n, const GLint x[], const GLint y[],
430 GLuint colorIndex, const GLubyte mask[] );
431 /* Write a random array of color index pixels using the color index
432 * last specified by the Index() function.
433 */
434
435
436 /***
437 *** Functions to read pixels from frame buffer:
438 ***/
439
440 void (*ReadCI32Span)( const GLcontext *ctx,
441 GLuint n, GLint x, GLint y, GLuint index[] );
442 /* Read a horizontal run of color index pixels.
443 */
444
445 void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
446 GLchan rgba[][4] );
447 /* Read a horizontal run of RGBA pixels.
448 */
449
450 void (*ReadCI32Pixels)( const GLcontext *ctx,
451 GLuint n, const GLint x[], const GLint y[],
452 GLuint indx[], const GLubyte mask[] );
453 /* Read a random array of CI pixels.
454 */
455
456 void (*ReadRGBAPixels)( const GLcontext *ctx,
457 GLuint n, const GLint x[], const GLint y[],
458 GLchan rgba[][4], const GLubyte mask[] );
459 /* Read a random array of RGBA pixels.
460 */
461
462
463
464 /***
465 *** For supporting hardware Z buffers:
466 *** Either ALL or NONE of these functions must be implemented!
467 *** NOTE that Each depth value is a 32-bit GLuint. If the depth
468 *** buffer is less than 32 bits deep then the extra upperbits are zero.
469 ***/
470
471 void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
472 const GLdepth depth[], const GLubyte mask[] );
473 /* Write a horizontal span of values into the depth buffer. Only write
474 * depth[i] value if mask[i] is nonzero.
475 */
476
477 void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
478 GLdepth depth[] );
479 /* Read a horizontal span of values from the depth buffer.
480 */
481
482
483 void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
484 const GLint x[], const GLint y[],
485 const GLdepth depth[], const GLubyte mask[] );
486 /* Write an array of randomly positioned depth values into the
487 * depth buffer. Only write depth[i] value if mask[i] is nonzero.
488 */
489
490 void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
491 const GLint x[], const GLint y[],
492 GLdepth depth[] );
493 /* Read an array of randomly positioned depth values from the depth buffer.
494 */
495
496
497
498 /***
499 *** For supporting hardware stencil buffers:
500 *** Either ALL or NONE of these functions must be implemented!
501 ***/
502
503 void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
504 const GLstencil stencil[], const GLubyte mask[] );
505 /* Write a horizontal span of stencil values into the stencil buffer.
506 * If mask is NULL, write all stencil values.
507 * Else, only write stencil[i] if mask[i] is non-zero.
508 */
509
510 void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
511 GLstencil stencil[] );
512 /* Read a horizontal span of stencil values from the stencil buffer.
513 */
514
515 void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
516 const GLint x[], const GLint y[],
517 const GLstencil stencil[],
518 const GLubyte mask[] );
519 /* Write an array of stencil values into the stencil buffer.
520 * If mask is NULL, write all stencil values.
521 * Else, only write stencil[i] if mask[i] is non-zero.
522 */
523
524 void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
525 const GLint x[], const GLint y[],
526 GLstencil stencil[] );
527 /* Read an array of stencil values from the stencil buffer.
528 */
529 };
530
531
532
533 #endif