9a20370888c0d5d3857c5627e1a878061f5b8332
[mesa.git] / src / mesa / swrast / swrast.h
1 /* $Id: swrast.h,v 1.18 2002/01/28 03:42:28 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 4.1
6 *
7 * Copyright (C) 1999-2002 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 * Keith Whitwell <keithw@valinux.com>
28 */
29
30 #ifndef SWRAST_H
31 #define SWRAST_H
32
33 #include "mtypes.h"
34
35
36 /* The software rasterizer now uses this format for vertices. Thus a
37 * 'RasterSetup' stage or other translation is required between the
38 * tnl module and the swrast rasterization functions. This serves to
39 * isolate the swrast module from the internals of the tnl module, and
40 * improve its usefulness as a fallback mechanism for hardware
41 * drivers.
42 *
43 * Full software drivers:
44 * - Register the rastersetup and triangle functions from
45 * utils/software_helper.
46 * - On statechange, update the rasterization pointers in that module.
47 *
48 * Rasterization hardware drivers:
49 * - Keep native rastersetup.
50 * - Implement native twoside,offset and unfilled triangle setup.
51 * - Implement a translator from native vertices to swrast vertices.
52 * - On partial fallback (mix of accelerated and unaccelerated
53 * prims), call a pass-through function which translates native
54 * vertices to SWvertices and calls the appropriate swrast function.
55 * - On total fallback (vertex format insufficient for state or all
56 * primitives unaccelerated), hook in swrast_setup instead.
57 */
58 typedef struct {
59 GLfloat win[4];
60 GLfloat texcoord[MAX_TEXTURE_UNITS][4];
61 GLchan color[4];
62 GLchan specular[4];
63 GLfloat fog;
64 GLuint index;
65 GLfloat pointSize;
66 } SWvertex;
67
68
69 /*
70 * The sw_span structure is used by the triangle template code in
71 * s_tritemp.h. It describes how colors, Z, texcoords, etc are to be
72 * interpolated across each scanline of triangle.
73 * With this structure it's easy to hand-off span rasterization to a
74 * subroutine instead of doing it all inline like we used to do.
75 * It also cleans up the local variable namespace a great deal.
76 *
77 * It would be interesting to experiment with multiprocessor rasterization
78 * with this structure. The triangle rasterizer could simply emit a
79 * stream of these structures which would be consumed by one or more
80 * span-processing threads which could run in parallel.
81 */
82
83
84 /* When the sw_span struct is initialized, these flags indicates
85 * which values are needed for rendering the triangle.
86 */
87 #define SPAN_RGBA 0x001
88 #define SPAN_SPEC 0x002
89 #define SPAN_INDEX 0x004
90 #define SPAN_Z 0x008
91 #define SPAN_FOG 0x010
92 #define SPAN_TEXTURE 0x020
93 #define SPAN_INT_TEXTURE 0x040
94 #define SPAN_LAMBDA 0x080
95 #define SPAN_COVERAGE 0x100
96 #define SPAN_FLAT 0x200 /* flat shading? */
97
98
99 struct sw_span {
100 GLint x, y;
101
102 /* only need to process pixels between start <= i < end */
103 GLuint start, end;
104
105 /* This flag indicates that only a part of the span is visible */
106 GLboolean writeAll;
107
108 /* This bitmask (bitwise-or of SPAN_* flags) indicates which of the
109 * x/xStep variables are relevant.
110 */
111 GLuint interpMask;
112
113 #if CHAN_TYPE == GL_FLOAT
114 GLfloat red, redStep;
115 GLfloat green, greenStep;
116 GLfloat blue, blueStep;
117 GLfloat alpha, alphaStep;
118 GLfloat specRed, specRedStep;
119 GLfloat specGreen, specGreenStep;
120 GLfloat specBlue, specBlueStep;
121 #else /* CHAN_TYPE == */
122 GLfixed red, redStep;
123 GLfixed green, greenStep;
124 GLfixed blue, blueStep;
125 GLfixed alpha, alphaStep;
126 GLfixed specRed, specRedStep;
127 GLfixed specGreen, specGreenStep;
128 GLfixed specBlue, specBlueStep;
129 #endif
130 GLfixed index, indexStep;
131 GLfixed z, zStep;
132 GLfloat fog, fogStep;
133 GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4];
134 GLfixed intTex[2], intTexStep[2];
135 /* Needed for texture lambda (LOD) computation */
136 GLfloat rho[MAX_TEXTURE_UNITS];
137 GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
138
139 /* This bitmask (bitwise-or of SPAN_* flags) indicates which of the
140 * fragment arrays are relevant.
141 */
142 GLuint arrayMask;
143
144 /**
145 * Arrays of fragment values. These will either be computed from the
146 * x/xStep values above or loadd from glDrawPixels, etc.
147 */
148 union {
149 GLchan rgb[MAX_WIDTH][3];
150 GLchan rgba[MAX_WIDTH][4];
151 GLuint index[MAX_WIDTH];
152 } color;
153 GLchan specArray[MAX_WIDTH][4];
154 GLdepth zArray[MAX_WIDTH];
155 GLfloat fogArray[MAX_WIDTH];
156 /* Texture (s,t,r). 4th component only used for pixel texture */
157 GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4];
158 GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
159 GLfloat coverage[MAX_WIDTH];
160
161 /* This mask indicates if fragment is alive or culled */
162 GLubyte mask[MAX_WIDTH];
163 };
164
165
166 #define INIT_SPAN(S) \
167 do { \
168 S.interpMask = 0; \
169 S.arrayMask = 0; \
170 S.start = S.end = 0; \
171 } while (0)
172
173
174
175 struct swrast_device_driver;
176
177
178 /* These are the public-access functions exported from swrast.
179 */
180 extern void
181 _swrast_alloc_buffers( GLcontext *ctx );
182
183 extern GLboolean
184 _swrast_CreateContext( GLcontext *ctx );
185
186 extern void
187 _swrast_DestroyContext( GLcontext *ctx );
188
189 /* Get a (non-const) reference to the device driver struct for swrast.
190 */
191 extern struct swrast_device_driver *
192 _swrast_GetDeviceDriverReference( GLcontext *ctx );
193
194 extern void
195 _swrast_Bitmap( GLcontext *ctx,
196 GLint px, GLint py,
197 GLsizei width, GLsizei height,
198 const struct gl_pixelstore_attrib *unpack,
199 const GLubyte *bitmap );
200
201 extern void
202 _swrast_CopyPixels( GLcontext *ctx,
203 GLint srcx, GLint srcy,
204 GLint destx, GLint desty,
205 GLsizei width, GLsizei height,
206 GLenum type );
207
208 extern void
209 _swrast_DrawPixels( GLcontext *ctx,
210 GLint x, GLint y,
211 GLsizei width, GLsizei height,
212 GLenum format, GLenum type,
213 const struct gl_pixelstore_attrib *unpack,
214 const GLvoid *pixels );
215
216 extern void
217 _swrast_ReadPixels( GLcontext *ctx,
218 GLint x, GLint y, GLsizei width, GLsizei height,
219 GLenum format, GLenum type,
220 const struct gl_pixelstore_attrib *unpack,
221 GLvoid *pixels );
222
223 extern void
224 _swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
225 GLint x, GLint y, GLint width, GLint height );
226
227 extern void
228 _swrast_Accum( GLcontext *ctx, GLenum op,
229 GLfloat value, GLint xpos, GLint ypos,
230 GLint width, GLint height );
231
232
233 /* Reset the stipple counter
234 */
235 extern void
236 _swrast_ResetLineStipple( GLcontext *ctx );
237
238 /* These will always render the correct point/line/triangle for the
239 * current state.
240 *
241 * For flatshaded primitives, the provoking vertex is the final one.
242 */
243 extern void
244 _swrast_Point( GLcontext *ctx, const SWvertex *v );
245
246 extern void
247 _swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 );
248
249 extern void
250 _swrast_Triangle( GLcontext *ctx, const SWvertex *v0,
251 const SWvertex *v1, const SWvertex *v2 );
252
253 extern void
254 _swrast_Quad( GLcontext *ctx,
255 const SWvertex *v0, const SWvertex *v1,
256 const SWvertex *v2, const SWvertex *v3);
257
258 extern void
259 _swrast_flush( GLcontext *ctx );
260
261
262 /* Tell the software rasterizer about core state changes.
263 */
264 extern void
265 _swrast_InvalidateState( GLcontext *ctx, GLuint new_state );
266
267 /* Configure software rasterizer to match hardware rasterizer characteristics:
268 */
269 extern void
270 _swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value );
271
272 extern void
273 _swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value );
274
275 /* Debug:
276 */
277 extern void
278 _swrast_print_vertex( GLcontext *ctx, const SWvertex *v );
279
280
281 /*
282 * Imaging fallbacks (a better solution should be found, perhaps
283 * moving all the imaging fallback code to a new module)
284 */
285 void
286 _swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target,
287 GLenum internalFormat,
288 GLint x, GLint y, GLsizei width,
289 GLsizei height);
290 void
291 _swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target,
292 GLenum internalFormat,
293 GLint x, GLint y, GLsizei width);
294 void
295 _swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start,
296 GLint x, GLint y, GLsizei width);
297 void
298 _swrast_CopyColorTable( GLcontext *ctx,
299 GLenum target, GLenum internalformat,
300 GLint x, GLint y, GLsizei width);
301
302
303 /*
304 * Texture fallbacks, Brian Paul. Could also live in a new module
305 * with the rest of the texture store fallbacks?
306 */
307 extern void
308 _swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level,
309 GLenum internalFormat,
310 GLint x, GLint y, GLsizei width, GLint border);
311
312 extern void
313 _swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level,
314 GLenum internalFormat,
315 GLint x, GLint y, GLsizei width, GLsizei height,
316 GLint border);
317
318
319 extern void
320 _swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level,
321 GLint xoffset, GLint x, GLint y, GLsizei width);
322
323 extern void
324 _swrast_copy_texsubimage2d(GLcontext *ctx,
325 GLenum target, GLint level,
326 GLint xoffset, GLint yoffset,
327 GLint x, GLint y, GLsizei width, GLsizei height);
328
329 extern void
330 _swrast_copy_texsubimage3d(GLcontext *ctx,
331 GLenum target, GLint level,
332 GLint xoffset, GLint yoffset, GLint zoffset,
333 GLint x, GLint y, GLsizei width, GLsizei height);
334
335
336
337 /* The driver interface for the software rasterizer. Unless otherwise
338 * noted, all functions are mandatory.
339 */
340 struct swrast_device_driver {
341
342 void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer,
343 GLenum buffer );
344 /*
345 * Specifies the current buffer for span/pixel reading.
346 * colorBuffer will be one of:
347 * GL_FRONT_LEFT - this buffer always exists
348 * GL_BACK_LEFT - when double buffering
349 * GL_FRONT_RIGHT - when using stereo
350 * GL_BACK_RIGHT - when using stereo and double buffering
351 */
352
353
354 /***
355 *** Functions for synchronizing access to the framebuffer:
356 ***/
357
358 void (*SpanRenderStart)(GLcontext *ctx);
359 void (*SpanRenderFinish)(GLcontext *ctx);
360 /* OPTIONAL.
361 *
362 * Called before and after all rendering operations, including DrawPixels,
363 * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands.
364 * These are a suitable place for grabbing/releasing hardware locks.
365 *
366 * NOTE: The swrast triangle/line/point routines *DO NOT* call
367 * these functions. Locking in that case must be organized by the
368 * driver by other mechanisms.
369 */
370
371 /***
372 *** Functions for writing pixels to the frame buffer:
373 ***/
374
375 void (*WriteRGBASpan)( const GLcontext *ctx,
376 GLuint n, GLint x, GLint y,
377 CONST GLchan rgba[][4], const GLubyte mask[] );
378 void (*WriteRGBSpan)( const GLcontext *ctx,
379 GLuint n, GLint x, GLint y,
380 CONST GLchan rgb[][3], const GLubyte mask[] );
381 /* Write a horizontal run of RGBA or RGB pixels.
382 * If mask is NULL, draw all pixels.
383 * If mask is not null, only draw pixel [i] when mask [i] is true.
384 */
385
386 void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
387 const GLchan color[4], const GLubyte mask[] );
388 /* Write a horizontal run of RGBA pixels all with the same color.
389 */
390
391 void (*WriteRGBAPixels)( const GLcontext *ctx,
392 GLuint n, const GLint x[], const GLint y[],
393 CONST GLchan rgba[][4], const GLubyte mask[] );
394 /* Write array of RGBA pixels at random locations.
395 */
396
397 void (*WriteMonoRGBAPixels)( const GLcontext *ctx,
398 GLuint n, const GLint x[], const GLint y[],
399 const GLchan color[4], const GLubyte mask[] );
400 /* Write an array of mono-RGBA pixels at random locations.
401 */
402
403 void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
404 const GLuint index[], const GLubyte mask[] );
405 void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
406 const GLubyte index[], const GLubyte mask[] );
407 /* Write a horizontal run of CI pixels. One function is for 32bpp
408 * indexes and the other for 8bpp pixels (the common case). You mus
409 * implement both for color index mode.
410 */
411
412 void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
413 GLuint colorIndex, const GLubyte mask[] );
414 /* Write a horizontal run of color index pixels using the color index
415 * last specified by the Index() function.
416 */
417
418 void (*WriteCI32Pixels)( const GLcontext *ctx,
419 GLuint n, const GLint x[], const GLint y[],
420 const GLuint index[], const GLubyte mask[] );
421 /*
422 * Write a random array of CI pixels.
423 */
424
425 void (*WriteMonoCIPixels)( const GLcontext *ctx,
426 GLuint n, const GLint x[], const GLint y[],
427 GLuint colorIndex, const GLubyte mask[] );
428 /* Write a random array of color index pixels using the color index
429 * last specified by the Index() function.
430 */
431
432
433 /***
434 *** Functions to read pixels from frame buffer:
435 ***/
436
437 void (*ReadCI32Span)( const GLcontext *ctx,
438 GLuint n, GLint x, GLint y, GLuint index[] );
439 /* Read a horizontal run of color index pixels.
440 */
441
442 void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y,
443 GLchan rgba[][4] );
444 /* Read a horizontal run of RGBA pixels.
445 */
446
447 void (*ReadCI32Pixels)( const GLcontext *ctx,
448 GLuint n, const GLint x[], const GLint y[],
449 GLuint indx[], const GLubyte mask[] );
450 /* Read a random array of CI pixels.
451 */
452
453 void (*ReadRGBAPixels)( const GLcontext *ctx,
454 GLuint n, const GLint x[], const GLint y[],
455 GLchan rgba[][4], const GLubyte mask[] );
456 /* Read a random array of RGBA pixels.
457 */
458
459
460
461 /***
462 *** For supporting hardware Z buffers:
463 *** Either ALL or NONE of these functions must be implemented!
464 *** NOTE that Each depth value is a 32-bit GLuint. If the depth
465 *** buffer is less than 32 bits deep then the extra upperbits are zero.
466 ***/
467
468 void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
469 const GLdepth depth[], const GLubyte mask[] );
470 /* Write a horizontal span of values into the depth buffer. Only write
471 * depth[i] value if mask[i] is nonzero.
472 */
473
474 void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
475 GLdepth depth[] );
476 /* Read a horizontal span of values from the depth buffer.
477 */
478
479
480 void (*WriteDepthPixels)( GLcontext *ctx, GLuint n,
481 const GLint x[], const GLint y[],
482 const GLdepth depth[], const GLubyte mask[] );
483 /* Write an array of randomly positioned depth values into the
484 * depth buffer. Only write depth[i] value if mask[i] is nonzero.
485 */
486
487 void (*ReadDepthPixels)( GLcontext *ctx, GLuint n,
488 const GLint x[], const GLint y[],
489 GLdepth depth[] );
490 /* Read an array of randomly positioned depth values from the depth buffer.
491 */
492
493
494
495 /***
496 *** For supporting hardware stencil buffers:
497 *** Either ALL or NONE of these functions must be implemented!
498 ***/
499
500 void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
501 const GLstencil stencil[], const GLubyte mask[] );
502 /* Write a horizontal span of stencil values into the stencil buffer.
503 * If mask is NULL, write all stencil values.
504 * Else, only write stencil[i] if mask[i] is non-zero.
505 */
506
507 void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y,
508 GLstencil stencil[] );
509 /* Read a horizontal span of stencil values from the stencil buffer.
510 */
511
512 void (*WriteStencilPixels)( GLcontext *ctx, GLuint n,
513 const GLint x[], const GLint y[],
514 const GLstencil stencil[],
515 const GLubyte mask[] );
516 /* Write an array of stencil values into the stencil buffer.
517 * If mask is NULL, write all stencil values.
518 * Else, only write stencil[i] if mask[i] is non-zero.
519 */
520
521 void (*ReadStencilPixels)( GLcontext *ctx, GLuint n,
522 const GLint x[], const GLint y[],
523 GLstencil stencil[] );
524 /* Read an array of stencil values from the stencil buffer.
525 */
526 };
527
528
529
530 #endif