mesa: s/MALLOC/malloc/
[mesa.git] / src / mesa / tnl / t_draw.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Keith Whitwell <keith@tungstengraphics.com>
26 */
27
28 #include "main/glheader.h"
29 #include "main/bufferobj.h"
30 #include "main/condrender.h"
31 #include "main/context.h"
32 #include "main/imports.h"
33 #include "main/mtypes.h"
34 #include "main/macros.h"
35 #include "main/enums.h"
36
37 #include "t_context.h"
38 #include "tnl.h"
39
40
41
42 static GLubyte *get_space(struct gl_context *ctx, GLuint bytes)
43 {
44 TNLcontext *tnl = TNL_CONTEXT(ctx);
45 GLubyte *space = malloc(bytes);
46
47 tnl->block[tnl->nr_blocks++] = space;
48 return space;
49 }
50
51
52 static void free_space(struct gl_context *ctx)
53 {
54 TNLcontext *tnl = TNL_CONTEXT(ctx);
55 GLuint i;
56 for (i = 0; i < tnl->nr_blocks; i++)
57 free(tnl->block[i]);
58 tnl->nr_blocks = 0;
59 }
60
61
62 /* Convert the incoming array to GLfloats. Understands the
63 * array->Normalized flag and selects the correct conversion method.
64 */
65 #define CONVERT( TYPE, MACRO ) do { \
66 GLuint i, j; \
67 if (input->Normalized) { \
68 for (i = 0; i < count; i++) { \
69 const TYPE *in = (TYPE *)ptr; \
70 for (j = 0; j < sz; j++) { \
71 *fptr++ = MACRO(*in); \
72 in++; \
73 } \
74 ptr += input->StrideB; \
75 } \
76 } else { \
77 for (i = 0; i < count; i++) { \
78 const TYPE *in = (TYPE *)ptr; \
79 for (j = 0; j < sz; j++) { \
80 *fptr++ = (GLfloat)(*in); \
81 in++; \
82 } \
83 ptr += input->StrideB; \
84 } \
85 } \
86 } while (0)
87
88
89 /**
90 * Convert array of BGRA/GLubyte[4] values to RGBA/float[4]
91 * \param ptr input/ubyte array
92 * \param fptr output/float array
93 */
94 static void
95 convert_bgra_to_float(const struct gl_client_array *input,
96 const GLubyte *ptr, GLfloat *fptr,
97 GLuint count )
98 {
99 GLuint i;
100 assert(input->Normalized);
101 assert(input->Size == 4);
102 for (i = 0; i < count; i++) {
103 const GLubyte *in = (GLubyte *) ptr; /* in is in BGRA order */
104 *fptr++ = UBYTE_TO_FLOAT(in[2]); /* red */
105 *fptr++ = UBYTE_TO_FLOAT(in[1]); /* green */
106 *fptr++ = UBYTE_TO_FLOAT(in[0]); /* blue */
107 *fptr++ = UBYTE_TO_FLOAT(in[3]); /* alpha */
108 ptr += input->StrideB;
109 }
110 }
111
112 static void
113 convert_half_to_float(const struct gl_client_array *input,
114 const GLubyte *ptr, GLfloat *fptr,
115 GLuint count, GLuint sz)
116 {
117 GLuint i, j;
118
119 for (i = 0; i < count; i++) {
120 GLhalfARB *in = (GLhalfARB *)ptr;
121
122 for (j = 0; j < sz; j++) {
123 *fptr++ = _mesa_half_to_float(in[j]);
124 }
125 ptr += input->StrideB;
126 }
127 }
128
129 /**
130 * \brief Convert fixed-point to floating-point.
131 *
132 * In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled
133 * integer" (Table 2.2 of the OpenGL ES 2.0 spec).
134 *
135 * If the buffer has the \c normalized flag set, the formula
136 * \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode
137 * is used to map the fixed-point numbers into the range [-1, 1].
138 */
139 static void
140 convert_fixed_to_float(const struct gl_client_array *input,
141 const GLubyte *ptr, GLfloat *fptr,
142 GLuint count)
143 {
144 GLuint i, j;
145 const GLint size = input->Size;
146
147 if (input->Normalized) {
148 for (i = 0; i < count; ++i) {
149 const GLfixed *in = (GLfixed *) ptr;
150 for (j = 0; j < size; ++j) {
151 *fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1);
152 }
153 ptr += input->StrideB;
154 }
155 } else {
156 for (i = 0; i < count; ++i) {
157 const GLfixed *in = (GLfixed *) ptr;
158 for (j = 0; j < size; ++j) {
159 *fptr++ = in[j] / (GLfloat) (1 << 16);
160 }
161 ptr += input->StrideB;
162 }
163 }
164 }
165
166 /* Adjust pointer to point at first requested element, convert to
167 * floating point, populate VB->AttribPtr[].
168 */
169 static void _tnl_import_array( struct gl_context *ctx,
170 GLuint attrib,
171 GLuint count,
172 const struct gl_client_array *input,
173 const GLubyte *ptr )
174 {
175 TNLcontext *tnl = TNL_CONTEXT(ctx);
176 struct vertex_buffer *VB = &tnl->vb;
177 GLuint stride = input->StrideB;
178
179 if (input->Type != GL_FLOAT) {
180 const GLuint sz = input->Size;
181 GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat));
182 GLfloat *fptr = (GLfloat *)buf;
183
184 switch (input->Type) {
185 case GL_BYTE:
186 CONVERT(GLbyte, BYTE_TO_FLOAT);
187 break;
188 case GL_UNSIGNED_BYTE:
189 if (input->Format == GL_BGRA) {
190 /* See GL_EXT_vertex_array_bgra */
191 convert_bgra_to_float(input, ptr, fptr, count);
192 }
193 else {
194 CONVERT(GLubyte, UBYTE_TO_FLOAT);
195 }
196 break;
197 case GL_SHORT:
198 CONVERT(GLshort, SHORT_TO_FLOAT);
199 break;
200 case GL_UNSIGNED_SHORT:
201 CONVERT(GLushort, USHORT_TO_FLOAT);
202 break;
203 case GL_INT:
204 CONVERT(GLint, INT_TO_FLOAT);
205 break;
206 case GL_UNSIGNED_INT:
207 CONVERT(GLuint, UINT_TO_FLOAT);
208 break;
209 case GL_DOUBLE:
210 CONVERT(GLdouble, (GLfloat));
211 break;
212 case GL_HALF_FLOAT:
213 convert_half_to_float(input, ptr, fptr, count, sz);
214 break;
215 case GL_FIXED:
216 convert_fixed_to_float(input, ptr, fptr, count);
217 break;
218 default:
219 assert(0);
220 break;
221 }
222
223 ptr = buf;
224 stride = sz * sizeof(GLfloat);
225 }
226
227 VB->AttribPtr[attrib] = &tnl->tmp_inputs[attrib];
228 VB->AttribPtr[attrib]->data = (GLfloat (*)[4])ptr;
229 VB->AttribPtr[attrib]->start = (GLfloat *)ptr;
230 VB->AttribPtr[attrib]->count = count;
231 VB->AttribPtr[attrib]->stride = stride;
232 VB->AttribPtr[attrib]->size = input->Size;
233
234 /* This should die, but so should the whole GLvector4f concept:
235 */
236 VB->AttribPtr[attrib]->flags = (((1<<input->Size)-1) |
237 VEC_NOT_WRITEABLE |
238 (stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE));
239
240 VB->AttribPtr[attrib]->storage = NULL;
241 }
242
243 #define CLIPVERTS ((6 + MAX_CLIP_PLANES) * 2)
244
245
246 static GLboolean *_tnl_import_edgeflag( struct gl_context *ctx,
247 const GLvector4f *input,
248 GLuint count)
249 {
250 const GLubyte *ptr = (const GLubyte *)input->data;
251 const GLuint stride = input->stride;
252 GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS);
253 GLboolean *bptr = space;
254 GLuint i;
255
256 for (i = 0; i < count; i++) {
257 *bptr++ = ((GLfloat *)ptr)[0] == 1.0;
258 ptr += stride;
259 }
260
261 return space;
262 }
263
264
265 static void bind_inputs( struct gl_context *ctx,
266 const struct gl_client_array *inputs[],
267 GLint count,
268 struct gl_buffer_object **bo,
269 GLuint *nr_bo )
270 {
271 TNLcontext *tnl = TNL_CONTEXT(ctx);
272 struct vertex_buffer *VB = &tnl->vb;
273 GLuint i;
274
275 /* Map all the VBOs
276 */
277 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
278 const void *ptr;
279
280 if (inputs[i]->BufferObj->Name) {
281 if (!inputs[i]->BufferObj->Pointer) {
282 bo[*nr_bo] = inputs[i]->BufferObj;
283 (*nr_bo)++;
284 ctx->Driver.MapBufferRange(ctx, 0, inputs[i]->BufferObj->Size,
285 GL_MAP_READ_BIT,
286 inputs[i]->BufferObj);
287
288 assert(inputs[i]->BufferObj->Pointer);
289 }
290
291 ptr = ADD_POINTERS(inputs[i]->BufferObj->Pointer,
292 inputs[i]->Ptr);
293 }
294 else
295 ptr = inputs[i]->Ptr;
296
297 /* Just make sure the array is floating point, otherwise convert to
298 * temporary storage.
299 *
300 * XXX: remove the GLvector4f type at some stage and just use
301 * client arrays.
302 */
303 _tnl_import_array(ctx, i, count, inputs[i], ptr);
304 }
305
306 /* We process only the vertices between min & max index:
307 */
308 VB->Count = count;
309
310 /* These should perhaps be part of _TNL_ATTRIB_* */
311 VB->BackfaceColorPtr = NULL;
312 VB->BackfaceIndexPtr = NULL;
313 VB->BackfaceSecondaryColorPtr = NULL;
314
315 /* Clipping and drawing code still requires this to be a packed
316 * array of ubytes which can be written into. TODO: Fix and
317 * remove.
318 */
319 if (ctx->Polygon.FrontMode != GL_FILL ||
320 ctx->Polygon.BackMode != GL_FILL)
321 {
322 VB->EdgeFlag = _tnl_import_edgeflag( ctx,
323 VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG],
324 VB->Count );
325 }
326 else {
327 /* the data previously pointed to by EdgeFlag may have been freed */
328 VB->EdgeFlag = NULL;
329 }
330 }
331
332
333 /* Translate indices to GLuints and store in VB->Elts.
334 */
335 static void bind_indices( struct gl_context *ctx,
336 const struct _mesa_index_buffer *ib,
337 struct gl_buffer_object **bo,
338 GLuint *nr_bo)
339 {
340 TNLcontext *tnl = TNL_CONTEXT(ctx);
341 struct vertex_buffer *VB = &tnl->vb;
342 GLuint i;
343 const void *ptr;
344
345 if (!ib) {
346 VB->Elts = NULL;
347 return;
348 }
349
350 if (_mesa_is_bufferobj(ib->obj) && !_mesa_bufferobj_mapped(ib->obj)) {
351 /* if the buffer object isn't mapped yet, map it now */
352 bo[*nr_bo] = ib->obj;
353 (*nr_bo)++;
354 ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr,
355 ib->count * vbo_sizeof_ib_type(ib->type),
356 GL_MAP_READ_BIT, ib->obj);
357 assert(ib->obj->Pointer);
358 } else {
359 /* user-space elements, or buffer already mapped */
360 ptr = ADD_POINTERS(ib->obj->Pointer, ib->ptr);
361 }
362
363 if (ib->type == GL_UNSIGNED_INT && VB->Primitive[0].basevertex == 0) {
364 VB->Elts = (GLuint *) ptr;
365 }
366 else {
367 GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint));
368 VB->Elts = elts;
369
370 if (ib->type == GL_UNSIGNED_INT) {
371 const GLuint *in = (GLuint *)ptr;
372 for (i = 0; i < ib->count; i++)
373 *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
374 }
375 else if (ib->type == GL_UNSIGNED_SHORT) {
376 const GLushort *in = (GLushort *)ptr;
377 for (i = 0; i < ib->count; i++)
378 *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
379 }
380 else {
381 const GLubyte *in = (GLubyte *)ptr;
382 for (i = 0; i < ib->count; i++)
383 *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
384 }
385 }
386 }
387
388 static void bind_prims( struct gl_context *ctx,
389 const struct _mesa_prim *prim,
390 GLuint nr_prims )
391 {
392 TNLcontext *tnl = TNL_CONTEXT(ctx);
393 struct vertex_buffer *VB = &tnl->vb;
394
395 VB->Primitive = prim;
396 VB->PrimitiveCount = nr_prims;
397 }
398
399 static void unmap_vbos( struct gl_context *ctx,
400 struct gl_buffer_object **bo,
401 GLuint nr_bo )
402 {
403 GLuint i;
404 for (i = 0; i < nr_bo; i++) {
405 ctx->Driver.UnmapBuffer(ctx, bo[i]);
406 }
407 }
408
409
410 void _tnl_vbo_draw_prims(struct gl_context *ctx,
411 const struct _mesa_prim *prim,
412 GLuint nr_prims,
413 const struct _mesa_index_buffer *ib,
414 GLboolean index_bounds_valid,
415 GLuint min_index,
416 GLuint max_index,
417 struct gl_transform_feedback_object *tfb_vertcount)
418 {
419 const struct gl_client_array **arrays = ctx->Array._DrawArrays;
420
421 if (!index_bounds_valid)
422 vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
423
424 _tnl_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index);
425 }
426
427 /* This is the main entrypoint into the slimmed-down software tnl
428 * module. In a regular swtnl driver, this can be plugged straight
429 * into the vbo->Driver.DrawPrims() callback.
430 */
431 void _tnl_draw_prims( struct gl_context *ctx,
432 const struct gl_client_array *arrays[],
433 const struct _mesa_prim *prim,
434 GLuint nr_prims,
435 const struct _mesa_index_buffer *ib,
436 GLuint min_index,
437 GLuint max_index)
438 {
439 TNLcontext *tnl = TNL_CONTEXT(ctx);
440 const GLuint TEST_SPLIT = 0;
441 const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES;
442 GLint max_basevertex = prim->basevertex;
443 GLuint i;
444
445 /* Mesa core state should have been validated already */
446 assert(ctx->NewState == 0x0);
447
448 if (!_mesa_check_conditional_render(ctx))
449 return; /* don't draw */
450
451 for (i = 1; i < nr_prims; i++)
452 max_basevertex = MAX2(max_basevertex, prim[i].basevertex);
453
454 if (0)
455 {
456 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
457 for (i = 0; i < nr_prims; i++)
458 printf("prim %d: %s start %d count %d\n", i,
459 _mesa_lookup_enum_by_nr(prim[i].mode),
460 prim[i].start,
461 prim[i].count);
462 }
463
464 if (min_index) {
465 /* We always translate away calls with min_index != 0.
466 */
467 vbo_rebase_prims( ctx, arrays, prim, nr_prims, ib,
468 min_index, max_index,
469 _tnl_vbo_draw_prims );
470 return;
471 }
472 else if ((GLint)max_index + max_basevertex > max) {
473 /* The software TNL pipeline has a fixed amount of storage for
474 * vertices and it is necessary to split incoming drawing commands
475 * if they exceed that limit.
476 */
477 struct split_limits limits;
478 limits.max_verts = max;
479 limits.max_vb_size = ~0;
480 limits.max_indices = ~0;
481
482 /* This will split the buffers one way or another and
483 * recursively call back into this function.
484 */
485 vbo_split_prims( ctx, arrays, prim, nr_prims, ib,
486 0, max_index + prim->basevertex,
487 _tnl_vbo_draw_prims,
488 &limits );
489 }
490 else {
491 /* May need to map a vertex buffer object for every attribute plus
492 * one for the index buffer.
493 */
494 struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1];
495 GLuint nr_bo = 0;
496 GLuint inst;
497
498 for (i = 0; i < nr_prims;) {
499 GLuint this_nr_prims;
500
501 /* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices
502 * will rebase the elements to the basevertex, and we'll only
503 * emit strings of prims with the same basevertex in one draw call.
504 */
505 for (this_nr_prims = 1; i + this_nr_prims < nr_prims;
506 this_nr_prims++) {
507 if (prim[i].basevertex != prim[i + this_nr_prims].basevertex)
508 break;
509 }
510
511 assert(prim[i].num_instances > 0);
512
513 /* Binding inputs may imply mapping some vertex buffer objects.
514 * They will need to be unmapped below.
515 */
516 for (inst = 0; inst < prim[i].num_instances; inst++) {
517
518 bind_prims(ctx, &prim[i], this_nr_prims);
519 bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1,
520 bo, &nr_bo);
521 bind_indices(ctx, ib, bo, &nr_bo);
522
523 tnl->CurInstance = inst;
524 TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx);
525
526 unmap_vbos(ctx, bo, nr_bo);
527 free_space(ctx);
528 }
529
530 i += this_nr_prims;
531 }
532 }
533 }
534