Merge branch 'gallium-noconstbuf'
[mesa.git] / src / mesa / tnl / t_rasterpos.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "main/glheader.h"
27 #include "main/colormac.h"
28 #include "main/context.h"
29 #include "main/feedback.h"
30 #include "main/light.h"
31 #include "main/macros.h"
32 #include "main/simple_list.h"
33 #include "main/mtypes.h"
34
35 #include "math/m_matrix.h"
36 #include "tnl/tnl.h"
37
38
39
40 /**
41 * Clip a point against the view volume.
42 *
43 * \param v vertex vector describing the point to clip.
44 *
45 * \return zero if outside view volume, or one if inside.
46 */
47 static GLuint
48 viewclip_point_xy( const GLfloat v[] )
49 {
50 if ( v[0] > v[3] || v[0] < -v[3]
51 || v[1] > v[3] || v[1] < -v[3] ) {
52 return 0;
53 }
54 else {
55 return 1;
56 }
57 }
58
59
60 /**
61 * Clip a point against the far/near Z clipping planes.
62 *
63 * \param v vertex vector describing the point to clip.
64 *
65 * \return zero if outside view volume, or one if inside.
66 */
67 static GLuint
68 viewclip_point_z( const GLfloat v[] )
69 {
70 if (v[2] > v[3] || v[2] < -v[3] ) {
71 return 0;
72 }
73 else {
74 return 1;
75 }
76 }
77
78
79 /**
80 * Clip a point against the user clipping planes.
81 *
82 * \param ctx GL context.
83 * \param v vertex vector describing the point to clip.
84 *
85 * \return zero if the point was clipped, or one otherwise.
86 */
87 static GLuint
88 userclip_point( GLcontext *ctx, const GLfloat v[] )
89 {
90 GLuint p;
91
92 for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
93 if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
94 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
95 + v[1] * ctx->Transform._ClipUserPlane[p][1]
96 + v[2] * ctx->Transform._ClipUserPlane[p][2]
97 + v[3] * ctx->Transform._ClipUserPlane[p][3];
98 if (dot < 0.0F) {
99 return 0;
100 }
101 }
102 }
103
104 return 1;
105 }
106
107
108 /**
109 * Compute lighting for the raster position. Both RGB and CI modes computed.
110 * \param ctx the context
111 * \param vertex vertex location
112 * \param normal normal vector
113 * \param Rcolor returned color
114 * \param Rspec returned specular color (if separate specular enabled)
115 * \param Rindex returned color index
116 */
117 static void
118 shade_rastpos(GLcontext *ctx,
119 const GLfloat vertex[4],
120 const GLfloat normal[3],
121 GLfloat Rcolor[4],
122 GLfloat Rspec[4],
123 GLfloat *Rindex)
124 {
125 /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
126 const struct gl_light *light;
127 GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */
128 GLfloat diffuseCI = 0.0, specularCI = 0.0; /* for CI mode only */
129
130 _mesa_validate_all_lighting_tables( ctx );
131
132 COPY_3V(diffuseColor, base[0]);
133 diffuseColor[3] = CLAMP(
134 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
135 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
136
137 foreach (light, &ctx->Light.EnabledList) {
138 GLfloat attenuation = 1.0;
139 GLfloat VP[3]; /* vector from vertex to light pos */
140 GLfloat n_dot_VP;
141 GLfloat diffuseContrib[3], specularContrib[3];
142
143 if (!(light->_Flags & LIGHT_POSITIONAL)) {
144 /* light at infinity */
145 COPY_3V(VP, light->_VP_inf_norm);
146 attenuation = light->_VP_inf_spot_attenuation;
147 }
148 else {
149 /* local/positional light */
150 GLfloat d;
151
152 /* VP = vector from vertex pos to light[i].pos */
153 SUB_3V(VP, light->_Position, vertex);
154 /* d = length(VP) */
155 d = (GLfloat) LEN_3FV( VP );
156 if (d > 1.0e-6) {
157 /* normalize VP */
158 GLfloat invd = 1.0F / d;
159 SELF_SCALE_SCALAR_3V(VP, invd);
160 }
161
162 /* atti */
163 attenuation = 1.0F / (light->ConstantAttenuation + d *
164 (light->LinearAttenuation + d *
165 light->QuadraticAttenuation));
166
167 if (light->_Flags & LIGHT_SPOT) {
168 GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
169
170 if (PV_dot_dir<light->_CosCutoff) {
171 continue;
172 }
173 else {
174 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
175 int k = (int) x;
176 GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
177 + (x-k)*light->_SpotExpTable[k][1]);
178 attenuation *= spot;
179 }
180 }
181 }
182
183 if (attenuation < 1e-3)
184 continue;
185
186 n_dot_VP = DOT3( normal, VP );
187
188 if (n_dot_VP < 0.0F) {
189 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
190 continue;
191 }
192
193 /* Ambient + diffuse */
194 COPY_3V(diffuseContrib, light->_MatAmbient[0]);
195 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
196 diffuseCI += n_dot_VP * light->_dli * attenuation;
197
198 /* Specular */
199 {
200 const GLfloat *h;
201 GLfloat n_dot_h;
202
203 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
204
205 if (ctx->Light.Model.LocalViewer) {
206 GLfloat v[3];
207 COPY_3V(v, vertex);
208 NORMALIZE_3FV(v);
209 SUB_3V(VP, VP, v);
210 NORMALIZE_3FV(VP);
211 h = VP;
212 }
213 else if (light->_Flags & LIGHT_POSITIONAL) {
214 ACC_3V(VP, ctx->_EyeZDir);
215 NORMALIZE_3FV(VP);
216 h = VP;
217 }
218 else {
219 h = light->_h_inf_norm;
220 }
221
222 n_dot_h = DOT3(normal, h);
223
224 if (n_dot_h > 0.0F) {
225 GLfloat spec_coef;
226 GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef );
227
228 if (spec_coef > 1.0e-10) {
229 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
230 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
231 light->_MatSpecular[0]);
232 }
233 else {
234 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
235 light->_MatSpecular[0]);
236 }
237 /*assert(light->_sli > 0.0);*/
238 specularCI += spec_coef * light->_sli * attenuation;
239 }
240 }
241 }
242
243 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
244 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
245 }
246
247 if (ctx->Visual.rgbMode) {
248 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
249 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
250 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
251 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
252 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
253 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
254 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
255 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
256 }
257 else {
258 GLfloat *ind = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_INDEXES];
259 GLfloat d_a = ind[MAT_INDEX_DIFFUSE] - ind[MAT_INDEX_AMBIENT];
260 GLfloat s_a = ind[MAT_INDEX_SPECULAR] - ind[MAT_INDEX_AMBIENT];
261 GLfloat i = (ind[MAT_INDEX_AMBIENT]
262 + diffuseCI * (1.0F-specularCI) * d_a
263 + specularCI * s_a);
264 if (i > ind[MAT_INDEX_SPECULAR]) {
265 i = ind[MAT_INDEX_SPECULAR];
266 }
267 *Rindex = i;
268 }
269 }
270
271
272 /**
273 * Do texgen needed for glRasterPos.
274 * \param ctx rendering context
275 * \param vObj object-space vertex coordinate
276 * \param vEye eye-space vertex coordinate
277 * \param normal vertex normal
278 * \param unit texture unit number
279 * \param texcoord incoming texcoord and resulting texcoord
280 */
281 static void
282 compute_texgen(GLcontext *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
283 const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
284 {
285 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
286
287 /* always compute sphere map terms, just in case */
288 GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
289 COPY_3V(u, vEye);
290 NORMALIZE_3FV(u);
291 two_nu = 2.0F * DOT3(normal, u);
292 rx = u[0] - normal[0] * two_nu;
293 ry = u[1] - normal[1] * two_nu;
294 rz = u[2] - normal[2] * two_nu;
295 m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
296 if (m > 0.0F)
297 mInv = 0.5F * _mesa_inv_sqrtf(m);
298 else
299 mInv = 0.0F;
300
301 if (texUnit->TexGenEnabled & S_BIT) {
302 switch (texUnit->GenS.Mode) {
303 case GL_OBJECT_LINEAR:
304 texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
305 break;
306 case GL_EYE_LINEAR:
307 texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
308 break;
309 case GL_SPHERE_MAP:
310 texcoord[0] = rx * mInv + 0.5F;
311 break;
312 case GL_REFLECTION_MAP:
313 texcoord[0] = rx;
314 break;
315 case GL_NORMAL_MAP:
316 texcoord[0] = normal[0];
317 break;
318 default:
319 _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
320 return;
321 }
322 }
323
324 if (texUnit->TexGenEnabled & T_BIT) {
325 switch (texUnit->GenT.Mode) {
326 case GL_OBJECT_LINEAR:
327 texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
328 break;
329 case GL_EYE_LINEAR:
330 texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
331 break;
332 case GL_SPHERE_MAP:
333 texcoord[1] = ry * mInv + 0.5F;
334 break;
335 case GL_REFLECTION_MAP:
336 texcoord[1] = ry;
337 break;
338 case GL_NORMAL_MAP:
339 texcoord[1] = normal[1];
340 break;
341 default:
342 _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
343 return;
344 }
345 }
346
347 if (texUnit->TexGenEnabled & R_BIT) {
348 switch (texUnit->GenR.Mode) {
349 case GL_OBJECT_LINEAR:
350 texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
351 break;
352 case GL_EYE_LINEAR:
353 texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
354 break;
355 case GL_REFLECTION_MAP:
356 texcoord[2] = rz;
357 break;
358 case GL_NORMAL_MAP:
359 texcoord[2] = normal[2];
360 break;
361 default:
362 _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
363 return;
364 }
365 }
366
367 if (texUnit->TexGenEnabled & Q_BIT) {
368 switch (texUnit->GenQ.Mode) {
369 case GL_OBJECT_LINEAR:
370 texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
371 break;
372 case GL_EYE_LINEAR:
373 texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
374 break;
375 default:
376 _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
377 return;
378 }
379 }
380 }
381
382
383 /**
384 * glRasterPos transformation. Typically called via ctx->Driver.RasterPos().
385 * XXX some of this code (such as viewport xform, clip testing and setting
386 * of ctx->Current.Raster* fields) could get lifted up into the
387 * main/rasterpos.c code.
388 *
389 * \param vObj vertex position in object space
390 */
391 void
392 _tnl_RasterPos(GLcontext *ctx, const GLfloat vObj[4])
393 {
394 if (ctx->VertexProgram._Enabled) {
395 /* XXX implement this */
396 _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
397 return;
398 }
399 else {
400 GLfloat eye[4], clip[4], ndc[3], d;
401 GLfloat *norm, eyenorm[3];
402 GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
403
404 /* apply modelview matrix: eye = MV * obj */
405 TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
406 /* apply projection matrix: clip = Proj * eye */
407 TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
408
409 /* clip to view volume. */
410 if (!ctx->Transform.DepthClamp) {
411 if (viewclip_point_z(clip) == 0) {
412 ctx->Current.RasterPosValid = GL_FALSE;
413 return;
414 }
415 }
416 if (!ctx->Transform.RasterPositionUnclipped) {
417 if (viewclip_point_xy(clip) == 0) {
418 ctx->Current.RasterPosValid = GL_FALSE;
419 return;
420 }
421 }
422
423 /* clip to user clipping planes */
424 if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
425 ctx->Current.RasterPosValid = GL_FALSE;
426 return;
427 }
428
429 /* ndc = clip / W */
430 d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
431 ndc[0] = clip[0] * d;
432 ndc[1] = clip[1] * d;
433 ndc[2] = clip[2] * d;
434 /* wincoord = viewport_mapping(ndc) */
435 ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
436 + ctx->Viewport._WindowMap.m[MAT_TX]);
437 ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
438 + ctx->Viewport._WindowMap.m[MAT_TY]);
439 ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
440 + ctx->Viewport._WindowMap.m[MAT_TZ])
441 / ctx->DrawBuffer->_DepthMaxF;
442 ctx->Current.RasterPos[3] = clip[3];
443
444 if (ctx->Transform.DepthClamp) {
445 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
446 ctx->Viewport.Near,
447 ctx->Viewport.Far);
448 }
449
450 /* compute raster distance */
451 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
452 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
453 else
454 ctx->Current.RasterDistance =
455 SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
456
457 /* compute transformed normal vector (for lighting or texgen) */
458 if (ctx->_NeedEyeCoords) {
459 const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
460 TRANSFORM_NORMAL( eyenorm, objnorm, inv );
461 norm = eyenorm;
462 }
463 else {
464 norm = objnorm;
465 }
466
467 /* update raster color */
468 if (ctx->Light.Enabled) {
469 /* lighting */
470 shade_rastpos( ctx, vObj, norm,
471 ctx->Current.RasterColor,
472 ctx->Current.RasterSecondaryColor,
473 &ctx->Current.RasterIndex );
474 }
475 else {
476 /* use current color or index */
477 if (ctx->Visual.rgbMode) {
478 COPY_4FV(ctx->Current.RasterColor,
479 ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
480 COPY_4FV(ctx->Current.RasterSecondaryColor,
481 ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
482 }
483 else {
484 ctx->Current.RasterIndex
485 = ctx->Current.Attrib[VERT_ATTRIB_COLOR_INDEX][0];
486 }
487 }
488
489 /* texture coords */
490 {
491 GLuint u;
492 for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
493 GLfloat tc[4];
494 COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
495 if (ctx->Texture.Unit[u].TexGenEnabled) {
496 compute_texgen(ctx, vObj, eye, norm, u, tc);
497 }
498 TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
499 ctx->TextureMatrixStack[u].Top->m, tc);
500 }
501 }
502
503 ctx->Current.RasterPosValid = GL_TRUE;
504 }
505
506 if (ctx->RenderMode == GL_SELECT) {
507 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
508 }
509 }