029265a4f83885ef29910596761366e3fa436772
[mesa.git] / src / mesa / tnl / t_vb_light.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "c99_math.h"
27 #include "main/glheader.h"
28 #include "main/light.h"
29 #include "main/macros.h"
30 #include "main/imports.h"
31 #include "util/simple_list.h"
32 #include "main/mtypes.h"
33
34 #include "math/m_translate.h"
35
36 #include "t_context.h"
37 #include "t_pipeline.h"
38 #include "tnl.h"
39
40 #define LIGHT_TWOSIDE 0x1
41 #define LIGHT_MATERIAL 0x2
42 #define MAX_LIGHT_FUNC 0x4
43
44 typedef void (*light_func)( struct gl_context *ctx,
45 struct vertex_buffer *VB,
46 struct tnl_pipeline_stage *stage,
47 GLvector4f *input );
48
49 /**
50 * Information for updating current material attributes from vertex color,
51 * for GL_COLOR_MATERIAL.
52 */
53 struct material_cursor {
54 const GLfloat *ptr; /* points to src vertex color (in VB array) */
55 GLuint stride; /* stride to next vertex color (bytes) */
56 GLfloat *current; /* points to material attribute to update */
57 GLuint size; /* vertex/color size: 1, 2, 3 or 4 */
58 };
59
60 /**
61 * Data private to this pipeline stage.
62 */
63 struct light_stage_data {
64 GLvector4f Input;
65 GLvector4f LitColor[2];
66 GLvector4f LitSecondary[2];
67 light_func *light_func_tab;
68
69 struct material_cursor mat[MAT_ATTRIB_MAX];
70 GLuint mat_count;
71 GLuint mat_bitmask;
72 };
73
74
75 #define LIGHT_STAGE_DATA(stage) ((struct light_stage_data *)(stage->privatePtr))
76
77
78
79 /**********************************************************************/
80 /***** Lighting computation *****/
81 /**********************************************************************/
82
83
84 /*
85 * Notes:
86 * When two-sided lighting is enabled we compute the color (or index)
87 * for both the front and back side of the primitive. Then, when the
88 * orientation of the facet is later learned, we can determine which
89 * color (or index) to use for rendering.
90 *
91 * KW: We now know orientation in advance and only shade for
92 * the side or sides which are actually required.
93 *
94 * Variables:
95 * n = normal vector
96 * V = vertex position
97 * P = light source position
98 * Pe = (0,0,0,1)
99 *
100 * Precomputed:
101 * IF P[3]==0 THEN
102 * // light at infinity
103 * IF local_viewer THEN
104 * _VP_inf_norm = unit vector from V to P // Precompute
105 * ELSE
106 * // eye at infinity
107 * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
108 * ENDIF
109 * ENDIF
110 *
111 * Functions:
112 * Normalize( v ) = normalized vector v
113 * Magnitude( v ) = length of vector v
114 */
115
116
117
118 static void
119 validate_shine_table( struct gl_context *ctx, GLuint side, GLfloat shininess )
120 {
121 TNLcontext *tnl = TNL_CONTEXT(ctx);
122 struct tnl_shine_tab *list = tnl->_ShineTabList;
123 struct tnl_shine_tab *s;
124
125 assert(side < 2);
126
127 foreach(s, list)
128 if ( s->shininess == shininess )
129 break;
130
131 if (s == list) {
132 GLint j;
133 GLfloat *m;
134
135 foreach(s, list)
136 if (s->refcount == 0)
137 break;
138
139 m = s->tab;
140 m[0] = 0.0F;
141 if (shininess == 0.0F) {
142 for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
143 m[j] = 1.0F;
144 }
145 else {
146 for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
147 GLfloat t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
148 if (x < 0.005F) /* underflow check */
149 x = 0.005F;
150 t = powf(x, shininess);
151 if (t > 1e-20F)
152 m[j] = t;
153 else
154 m[j] = 0.0F;
155 }
156 m[SHINE_TABLE_SIZE] = 1.0F;
157 }
158
159 s->shininess = shininess;
160 }
161
162 if (tnl->_ShineTable[side])
163 tnl->_ShineTable[side]->refcount--;
164
165 tnl->_ShineTable[side] = s;
166 move_to_tail( list, s );
167 s->refcount++;
168 }
169
170
171 void
172 _tnl_validate_shine_tables( struct gl_context *ctx )
173 {
174 TNLcontext *tnl = TNL_CONTEXT(ctx);
175 GLfloat shininess;
176
177 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
178 if (!tnl->_ShineTable[0] || tnl->_ShineTable[0]->shininess != shininess)
179 validate_shine_table( ctx, 0, shininess );
180
181 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0];
182 if (!tnl->_ShineTable[1] || tnl->_ShineTable[1]->shininess != shininess)
183 validate_shine_table( ctx, 1, shininess );
184 }
185
186
187 /**
188 * In the case of colormaterial, the effected material attributes
189 * should already have been bound to point to the incoming color data,
190 * prior to running the pipeline.
191 * This function copies the vertex's color to the material attributes
192 * which are tracking glColor.
193 * It's called per-vertex in the lighting loop.
194 */
195 static void
196 update_materials(struct gl_context *ctx, struct light_stage_data *store)
197 {
198 GLuint i;
199
200 for (i = 0 ; i < store->mat_count ; i++) {
201 /* update the material */
202 COPY_CLEAN_4V(store->mat[i].current, store->mat[i].size, store->mat[i].ptr);
203 /* increment src vertex color pointer */
204 STRIDE_F(store->mat[i].ptr, store->mat[i].stride);
205 }
206
207 /* recompute derived light/material values */
208 _mesa_update_material( ctx, store->mat_bitmask );
209 /* XXX we should only call this if we're tracking/changing the specular
210 * exponent.
211 */
212 _tnl_validate_shine_tables( ctx );
213 }
214
215
216 /**
217 * Prepare things prior to running the lighting stage.
218 * Return number of material attributes which will track vertex color.
219 */
220 static GLuint
221 prepare_materials(struct gl_context *ctx,
222 struct vertex_buffer *VB, struct light_stage_data *store)
223 {
224 GLuint i;
225
226 store->mat_count = 0;
227 store->mat_bitmask = 0;
228
229 /* Examine the _ColorMaterialBitmask to determine which materials
230 * track vertex color. Override the material attribute's pointer
231 * with the color pointer for each one.
232 */
233 if (ctx->Light.ColorMaterialEnabled) {
234 const GLuint bitmask = ctx->Light._ColorMaterialBitmask;
235 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
236 if (bitmask & (1<<i))
237 VB->AttribPtr[_TNL_ATTRIB_MAT_FRONT_AMBIENT + i] = VB->AttribPtr[_TNL_ATTRIB_COLOR0];
238 }
239
240 /* Now, for each material attribute that's tracking vertex color, save
241 * some values (ptr, stride, size, current) that we'll need in
242 * update_materials(), above, that'll actually copy the vertex color to
243 * the material attribute(s).
244 */
245 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++) {
246 if (VB->AttribPtr[i]->stride) {
247 const GLuint j = store->mat_count++;
248 const GLuint attr = i - _TNL_ATTRIB_MAT_FRONT_AMBIENT;
249 store->mat[j].ptr = VB->AttribPtr[i]->start;
250 store->mat[j].stride = VB->AttribPtr[i]->stride;
251 store->mat[j].size = VB->AttribPtr[i]->size;
252 store->mat[j].current = ctx->Light.Material.Attrib[attr];
253 store->mat_bitmask |= (1<<attr);
254 }
255 }
256
257 /* FIXME: Is this already done?
258 */
259 _mesa_update_material( ctx, ~0 );
260
261 _tnl_validate_shine_tables( ctx );
262
263 return store->mat_count;
264 }
265
266 /*
267 * Compute dp ^ SpecularExponent.
268 * Lerp between adjacent values in the f(x) lookup table, giving a
269 * continuous function, with adequate overall accuracy. (Though still
270 * pretty good compared to a straight lookup).
271 */
272 static inline GLfloat
273 lookup_shininess(const struct gl_context *ctx, GLuint face, GLfloat dp)
274 {
275 TNLcontext *tnl = TNL_CONTEXT(ctx);
276 const struct tnl_shine_tab *tab = tnl->_ShineTable[face];
277 float f = dp * (SHINE_TABLE_SIZE - 1);
278 int k = (int) f;
279 if (k < 0 /* gcc may cast an overflow float value to negative int value */
280 || k > SHINE_TABLE_SIZE - 2)
281 return powf(dp, tab->shininess);
282 else
283 return tab->tab[k] + (f - k) * (tab->tab[k+1] - tab->tab[k]);
284 }
285
286 /* Tables for all the shading functions.
287 */
288 static light_func _tnl_light_tab[MAX_LIGHT_FUNC];
289 static light_func _tnl_light_fast_tab[MAX_LIGHT_FUNC];
290 static light_func _tnl_light_fast_single_tab[MAX_LIGHT_FUNC];
291 static light_func _tnl_light_spec_tab[MAX_LIGHT_FUNC];
292
293 #define TAG(x) x
294 #define IDX (0)
295 #include "t_vb_lighttmp.h"
296
297 #define TAG(x) x##_twoside
298 #define IDX (LIGHT_TWOSIDE)
299 #include "t_vb_lighttmp.h"
300
301 #define TAG(x) x##_material
302 #define IDX (LIGHT_MATERIAL)
303 #include "t_vb_lighttmp.h"
304
305 #define TAG(x) x##_twoside_material
306 #define IDX (LIGHT_TWOSIDE|LIGHT_MATERIAL)
307 #include "t_vb_lighttmp.h"
308
309
310 static void init_lighting_tables( void )
311 {
312 static int done;
313
314 if (!done) {
315 init_light_tab();
316 init_light_tab_twoside();
317 init_light_tab_material();
318 init_light_tab_twoside_material();
319 done = 1;
320 }
321 }
322
323
324 static GLboolean run_lighting( struct gl_context *ctx,
325 struct tnl_pipeline_stage *stage )
326 {
327 struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
328 TNLcontext *tnl = TNL_CONTEXT(ctx);
329 struct vertex_buffer *VB = &tnl->vb;
330 GLvector4f *input = ctx->_NeedEyeCoords ? VB->EyePtr : VB->AttribPtr[_TNL_ATTRIB_POS];
331 GLuint idx;
332
333 if (!ctx->Light.Enabled || ctx->VertexProgram._Current)
334 return GL_TRUE;
335
336 /* Make sure we can talk about position x,y and z:
337 */
338 if (input->size <= 2 && input == VB->AttribPtr[_TNL_ATTRIB_POS]) {
339
340 _math_trans_4f( store->Input.data,
341 VB->AttribPtr[_TNL_ATTRIB_POS]->data,
342 VB->AttribPtr[_TNL_ATTRIB_POS]->stride,
343 GL_FLOAT,
344 VB->AttribPtr[_TNL_ATTRIB_POS]->size,
345 0,
346 VB->Count );
347
348 if (input->size <= 2) {
349 /* Clean z.
350 */
351 _mesa_vector4f_clean_elem(&store->Input, VB->Count, 2);
352 }
353
354 if (input->size <= 1) {
355 /* Clean y.
356 */
357 _mesa_vector4f_clean_elem(&store->Input, VB->Count, 1);
358 }
359
360 input = &store->Input;
361 }
362
363 idx = 0;
364
365 if (prepare_materials( ctx, VB, store ))
366 idx |= LIGHT_MATERIAL;
367
368 if (ctx->Light.Model.TwoSide)
369 idx |= LIGHT_TWOSIDE;
370
371 /* The individual functions know about replaying side-effects
372 * vs. full re-execution.
373 */
374 store->light_func_tab[idx]( ctx, VB, stage, input );
375
376 return GL_TRUE;
377 }
378
379
380 /* Called in place of do_lighting when the light table may have changed.
381 */
382 static void validate_lighting( struct gl_context *ctx,
383 struct tnl_pipeline_stage *stage )
384 {
385 light_func *tab;
386
387 if (!ctx->Light.Enabled || ctx->VertexProgram._Current)
388 return;
389
390 if (ctx->Light._NeedVertices) {
391 if (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
392 tab = _tnl_light_spec_tab;
393 else
394 tab = _tnl_light_tab;
395 }
396 else {
397 if (ctx->Light.EnabledList.next == ctx->Light.EnabledList.prev)
398 tab = _tnl_light_fast_single_tab;
399 else
400 tab = _tnl_light_fast_tab;
401 }
402
403
404 LIGHT_STAGE_DATA(stage)->light_func_tab = tab;
405
406 /* This and the above should only be done on _NEW_LIGHT:
407 */
408 TNL_CONTEXT(ctx)->Driver.NotifyMaterialChange( ctx );
409 }
410
411
412
413 /* Called the first time stage->run is called. In effect, don't
414 * allocate data until the first time the stage is run.
415 */
416 static GLboolean init_lighting( struct gl_context *ctx,
417 struct tnl_pipeline_stage *stage )
418 {
419 TNLcontext *tnl = TNL_CONTEXT(ctx);
420 struct light_stage_data *store;
421 GLuint size = tnl->vb.Size;
422
423 stage->privatePtr = malloc(sizeof(*store));
424 store = LIGHT_STAGE_DATA(stage);
425 if (!store)
426 return GL_FALSE;
427
428 /* Do onetime init.
429 */
430 init_lighting_tables();
431
432 _mesa_vector4f_alloc( &store->Input, 0, size, 32 );
433 _mesa_vector4f_alloc( &store->LitColor[0], 0, size, 32 );
434 _mesa_vector4f_alloc( &store->LitColor[1], 0, size, 32 );
435 _mesa_vector4f_alloc( &store->LitSecondary[0], 0, size, 32 );
436 _mesa_vector4f_alloc( &store->LitSecondary[1], 0, size, 32 );
437
438 store->LitColor[0].size = 4;
439 store->LitColor[1].size = 4;
440 store->LitSecondary[0].size = 3;
441 store->LitSecondary[1].size = 3;
442
443 return GL_TRUE;
444 }
445
446
447
448
449 static void dtr( struct tnl_pipeline_stage *stage )
450 {
451 struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
452
453 if (store) {
454 _mesa_vector4f_free( &store->Input );
455 _mesa_vector4f_free( &store->LitColor[0] );
456 _mesa_vector4f_free( &store->LitColor[1] );
457 _mesa_vector4f_free( &store->LitSecondary[0] );
458 _mesa_vector4f_free( &store->LitSecondary[1] );
459 free( store );
460 stage->privatePtr = NULL;
461 }
462 }
463
464 const struct tnl_pipeline_stage _tnl_lighting_stage =
465 {
466 "lighting", /* name */
467 NULL, /* private_data */
468 init_lighting,
469 dtr, /* destroy */
470 validate_lighting,
471 run_lighting
472 };