More GLSL code:
[mesa.git] / src / mesa / tnl / t_vp_build.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 2005 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "t_context.h"
37 #include "t_vp_build.h"
38
39 #include "shader/program.h"
40 #include "shader/program_instruction.h"
41
42 struct state_key {
43 unsigned light_global_enabled:1;
44 unsigned light_local_viewer:1;
45 unsigned light_twoside:1;
46 unsigned light_color_material:1;
47 unsigned light_color_material_mask:12;
48 unsigned light_material_mask:12;
49
50 unsigned normalize:1;
51 unsigned rescale_normals:1;
52 unsigned fog_source_is_depth:1;
53 unsigned tnl_do_vertex_fog:1;
54 unsigned separate_specular:1;
55 unsigned fog_mode:2;
56 unsigned point_attenuated:1;
57 unsigned texture_enabled_global:1;
58 unsigned fragprog_inputs_read:12;
59
60 struct {
61 unsigned light_enabled:1;
62 unsigned light_eyepos3_is_zero:1;
63 unsigned light_spotcutoff_is_180:1;
64 unsigned light_attenuated:1;
65 unsigned texunit_really_enabled:1;
66 unsigned texmat_enabled:1;
67 unsigned texgen_enabled:4;
68 unsigned texgen_mode0:4;
69 unsigned texgen_mode1:4;
70 unsigned texgen_mode2:4;
71 unsigned texgen_mode3:4;
72 } unit[8];
73 };
74
75
76
77 #define FOG_NONE 0
78 #define FOG_LINEAR 1
79 #define FOG_EXP 2
80 #define FOG_EXP2 3
81
82 static GLuint translate_fog_mode( GLenum mode )
83 {
84 switch (mode) {
85 case GL_LINEAR: return FOG_LINEAR;
86 case GL_EXP: return FOG_EXP;
87 case GL_EXP2: return FOG_EXP2;
88 default: return FOG_NONE;
89 }
90 }
91
92 #define TXG_NONE 0
93 #define TXG_OBJ_LINEAR 1
94 #define TXG_EYE_LINEAR 2
95 #define TXG_SPHERE_MAP 3
96 #define TXG_REFLECTION_MAP 4
97 #define TXG_NORMAL_MAP 5
98
99 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
100 {
101 if (!enabled)
102 return TXG_NONE;
103
104 switch (mode) {
105 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
106 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
107 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
108 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
109 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
110 default: return TXG_NONE;
111 }
112 }
113
114 static struct state_key *make_state_key( GLcontext *ctx )
115 {
116 TNLcontext *tnl = TNL_CONTEXT(ctx);
117 struct vertex_buffer *VB = &tnl->vb;
118 struct fragment_program *fp = ctx->FragmentProgram._Current;
119 struct state_key *key = CALLOC_STRUCT(state_key);
120 GLuint i;
121
122 /* This now relies on texenvprogram.c being active:
123 */
124 assert(fp);
125
126 key->fragprog_inputs_read = fp->Base.InputsRead;
127
128 key->separate_specular = (ctx->Light.Model.ColorControl ==
129 GL_SEPARATE_SPECULAR_COLOR);
130
131 if (ctx->Light.Enabled) {
132 key->light_global_enabled = 1;
133
134 if (ctx->Light.Model.LocalViewer)
135 key->light_local_viewer = 1;
136
137 if (ctx->Light.Model.TwoSide)
138 key->light_twoside = 1;
139
140 if (ctx->Light.ColorMaterialEnabled) {
141 key->light_color_material = 1;
142 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
143 }
144
145 for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
146 if (VB->AttribPtr[i]->stride)
147 key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
148
149 for (i = 0; i < MAX_LIGHTS; i++) {
150 struct gl_light *light = &ctx->Light.Light[i];
151
152 if (light->Enabled) {
153 key->unit[i].light_enabled = 1;
154
155 if (light->EyePosition[3] == 0.0)
156 key->unit[i].light_eyepos3_is_zero = 1;
157
158 if (light->SpotCutoff == 180.0)
159 key->unit[i].light_spotcutoff_is_180 = 1;
160
161 if (light->ConstantAttenuation != 1.0 ||
162 light->LinearAttenuation != 0.0 ||
163 light->QuadraticAttenuation != 0.0)
164 key->unit[i].light_attenuated = 1;
165 }
166 }
167 }
168
169 if (ctx->Transform.Normalize)
170 key->normalize = 1;
171
172 if (ctx->Transform.RescaleNormals)
173 key->rescale_normals = 1;
174
175 key->fog_mode = translate_fog_mode(fp->FogOption);
176
177 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
178 key->fog_source_is_depth = 1;
179
180 if (tnl->_DoVertexFog)
181 key->tnl_do_vertex_fog = 1;
182
183 if (ctx->Point._Attenuated)
184 key->point_attenuated = 1;
185
186 if (ctx->Texture._TexGenEnabled ||
187 ctx->Texture._TexMatEnabled ||
188 ctx->Texture._EnabledUnits)
189 key->texture_enabled_global = 1;
190
191 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
192 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
193
194 if (texUnit->_ReallyEnabled)
195 key->unit[i].texunit_really_enabled = 1;
196
197 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
198 key->unit[i].texmat_enabled = 1;
199
200 if (texUnit->TexGenEnabled) {
201 key->unit[i].texgen_enabled = 1;
202
203 key->unit[i].texgen_mode0 =
204 translate_texgen( texUnit->TexGenEnabled & (1<<0),
205 texUnit->GenModeS );
206 key->unit[i].texgen_mode1 =
207 translate_texgen( texUnit->TexGenEnabled & (1<<1),
208 texUnit->GenModeT );
209 key->unit[i].texgen_mode2 =
210 translate_texgen( texUnit->TexGenEnabled & (1<<2),
211 texUnit->GenModeR );
212 key->unit[i].texgen_mode3 =
213 translate_texgen( texUnit->TexGenEnabled & (1<<3),
214 texUnit->GenModeQ );
215 }
216 }
217
218 return key;
219 }
220
221
222
223 /* Very useful debugging tool - produces annotated listing of
224 * generated program with line/function references for each
225 * instruction back into this file:
226 */
227 #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
228
229 /* Should be tunable by the driver - do we want to do matrix
230 * multiplications with DP4's or with MUL/MAD's? SSE works better
231 * with the latter, drivers may differ.
232 */
233 #define PREFER_DP4 0
234
235 #define MAX_INSN 256
236
237 /* Use uregs to represent registers internally, translate to Mesa's
238 * expected formats on emit.
239 *
240 * NOTE: These are passed by value extensively in this file rather
241 * than as usual by pointer reference. If this disturbs you, try
242 * remembering they are just 32bits in size.
243 *
244 * GCC is smart enough to deal with these dword-sized structures in
245 * much the same way as if I had defined them as dwords and was using
246 * macros to access and set the fields. This is much nicer and easier
247 * to evolve.
248 */
249 struct ureg {
250 GLuint file:4;
251 GLint idx:8; /* relative addressing may be negative */
252 GLuint negate:1;
253 GLuint swz:12;
254 GLuint pad:7;
255 };
256
257
258 struct tnl_program {
259 const struct state_key *state;
260 struct vertex_program *program;
261
262 GLuint temp_in_use;
263 GLuint temp_reserved;
264
265 struct ureg eye_position;
266 struct ureg eye_position_normalized;
267 struct ureg eye_normal;
268 struct ureg identity;
269
270 GLuint materials;
271 GLuint color_materials;
272 };
273
274
275 const static struct ureg undef = {
276 ~0,
277 ~0,
278 0,
279 0,
280 0
281 };
282
283 /* Local shorthand:
284 */
285 #define X SWIZZLE_X
286 #define Y SWIZZLE_Y
287 #define Z SWIZZLE_Z
288 #define W SWIZZLE_W
289
290
291 /* Construct a ureg:
292 */
293 static struct ureg make_ureg(GLuint file, GLint idx)
294 {
295 struct ureg reg;
296 reg.file = file;
297 reg.idx = idx;
298 reg.negate = 0;
299 reg.swz = SWIZZLE_NOOP;
300 reg.pad = 0;
301 return reg;
302 }
303
304
305
306 static struct ureg negate( struct ureg reg )
307 {
308 reg.negate ^= 1;
309 return reg;
310 }
311
312
313 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
314 {
315 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
316 GET_SWZ(reg.swz, y),
317 GET_SWZ(reg.swz, z),
318 GET_SWZ(reg.swz, w));
319
320 return reg;
321 }
322
323 static struct ureg swizzle1( struct ureg reg, int x )
324 {
325 return swizzle(reg, x, x, x, x);
326 }
327
328 static struct ureg get_temp( struct tnl_program *p )
329 {
330 int bit = _mesa_ffs( ~p->temp_in_use );
331 if (!bit) {
332 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
333 _mesa_exit(1);
334 }
335
336 if (bit > p->program->Base.NumTemporaries)
337 p->program->Base.NumTemporaries = bit;
338
339 p->temp_in_use |= 1<<(bit-1);
340 return make_ureg(PROGRAM_TEMPORARY, bit-1);
341 }
342
343 static struct ureg reserve_temp( struct tnl_program *p )
344 {
345 struct ureg temp = get_temp( p );
346 p->temp_reserved |= 1<<temp.idx;
347 return temp;
348 }
349
350 static void release_temp( struct tnl_program *p, struct ureg reg )
351 {
352 if (reg.file == PROGRAM_TEMPORARY) {
353 p->temp_in_use &= ~(1<<reg.idx);
354 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
355 }
356 }
357
358 static void release_temps( struct tnl_program *p )
359 {
360 p->temp_in_use = p->temp_reserved;
361 }
362
363
364
365 static struct ureg register_input( struct tnl_program *p, GLuint input )
366 {
367 p->program->Base.InputsRead |= (1<<input);
368 return make_ureg(PROGRAM_INPUT, input);
369 }
370
371 static struct ureg register_output( struct tnl_program *p, GLuint output )
372 {
373 p->program->Base.OutputsWritten |= (1<<output);
374 return make_ureg(PROGRAM_OUTPUT, output);
375 }
376
377 static struct ureg register_const4f( struct tnl_program *p,
378 GLfloat s0,
379 GLfloat s1,
380 GLfloat s2,
381 GLfloat s3)
382 {
383 GLfloat values[4];
384 GLint idx;
385 values[0] = s0;
386 values[1] = s1;
387 values[2] = s2;
388 values[3] = s3;
389 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values );
390 return make_ureg(PROGRAM_STATE_VAR, idx);
391 }
392
393 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
394 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
395 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
396 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
397
398 static GLboolean is_undef( struct ureg reg )
399 {
400 return reg.file == 0xf;
401 }
402
403 static struct ureg get_identity_param( struct tnl_program *p )
404 {
405 if (is_undef(p->identity))
406 p->identity = register_const4f(p, 0,0,0,1);
407
408 return p->identity;
409 }
410
411 static struct ureg register_param6( struct tnl_program *p,
412 GLint s0,
413 GLint s1,
414 GLint s2,
415 GLint s3,
416 GLint s4,
417 GLint s5)
418 {
419 GLint tokens[6];
420 GLint idx;
421 tokens[0] = s0;
422 tokens[1] = s1;
423 tokens[2] = s2;
424 tokens[3] = s3;
425 tokens[4] = s4;
426 tokens[5] = s5;
427 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
428 return make_ureg(PROGRAM_STATE_VAR, idx);
429 }
430
431
432 #define register_param1(p,s0) register_param6(p,s0,0,0,0,0,0)
433 #define register_param2(p,s0,s1) register_param6(p,s0,s1,0,0,0,0)
434 #define register_param3(p,s0,s1,s2) register_param6(p,s0,s1,s2,0,0,0)
435 #define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
436
437
438 static void register_matrix_param6( struct tnl_program *p,
439 GLint s0,
440 GLint s1,
441 GLint s2,
442 GLint s3,
443 GLint s4,
444 GLint s5,
445 struct ureg *matrix )
446 {
447 GLuint i;
448
449 /* This is a bit sad as the support is there to pull the whole
450 * matrix out in one go:
451 */
452 for (i = 0; i <= s4 - s3; i++)
453 matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
454 }
455
456
457 static void emit_arg( struct prog_src_register *src,
458 struct ureg reg )
459 {
460 src->File = reg.file;
461 src->Index = reg.idx;
462 src->Swizzle = reg.swz;
463 src->NegateBase = reg.negate;
464 src->Abs = 0;
465 src->NegateAbs = 0;
466 src->RelAddr = 0;
467 }
468
469 static void emit_dst( struct prog_dst_register *dst,
470 struct ureg reg, GLuint mask )
471 {
472 dst->File = reg.file;
473 dst->Index = reg.idx;
474 /* allow zero as a shorthand for xyzw */
475 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
476 dst->CondMask = COND_TR;
477 dst->CondSwizzle = 0;
478 dst->CondSrc = 0;
479 dst->pad = 0;
480 }
481
482 static void debug_insn( struct prog_instruction *inst, const char *fn,
483 GLuint line )
484 {
485 if (DISASSEM) {
486 static const char *last_fn;
487
488 if (fn != last_fn) {
489 last_fn = fn;
490 _mesa_printf("%s:\n", fn);
491 }
492
493 _mesa_printf("%d:\t", line);
494 _mesa_print_instruction(inst);
495 }
496 }
497
498
499 static void emit_op3fn(struct tnl_program *p,
500 GLuint op,
501 struct ureg dest,
502 GLuint mask,
503 struct ureg src0,
504 struct ureg src1,
505 struct ureg src2,
506 const char *fn,
507 GLuint line)
508 {
509 GLuint nr = p->program->Base.NumInstructions++;
510 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
511
512 if (p->program->Base.NumInstructions > MAX_INSN) {
513 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
514 return;
515 }
516
517 inst->Opcode = (enum prog_opcode) op;
518 inst->StringPos = 0;
519 inst->Data = 0;
520
521 emit_arg( &inst->SrcReg[0], src0 );
522 emit_arg( &inst->SrcReg[1], src1 );
523 emit_arg( &inst->SrcReg[2], src2 );
524
525 emit_dst( &inst->DstReg, dest, mask );
526
527 debug_insn(inst, fn, line);
528 }
529
530
531 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
532 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
533
534 #define emit_op2(p, op, dst, mask, src0, src1) \
535 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
536
537 #define emit_op1(p, op, dst, mask, src0) \
538 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
539
540
541 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
542 {
543 if (reg.file == PROGRAM_TEMPORARY &&
544 !(p->temp_reserved & (1<<reg.idx)))
545 return reg;
546 else {
547 struct ureg temp = get_temp(p);
548 emit_op1(p, OPCODE_MOV, temp, 0, reg);
549 return temp;
550 }
551 }
552
553
554 /* Currently no tracking performed of input/output/register size or
555 * active elements. Could be used to reduce these operations, as
556 * could the matrix type.
557 */
558 static void emit_matrix_transform_vec4( struct tnl_program *p,
559 struct ureg dest,
560 const struct ureg *mat,
561 struct ureg src)
562 {
563 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
564 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
565 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
566 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
567 }
568
569 /* This version is much easier to implement if writemasks are not
570 * supported natively on the target or (like SSE), the target doesn't
571 * have a clean/obvious dotproduct implementation.
572 */
573 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
574 struct ureg dest,
575 const struct ureg *mat,
576 struct ureg src)
577 {
578 struct ureg tmp;
579
580 if (dest.file != PROGRAM_TEMPORARY)
581 tmp = get_temp(p);
582 else
583 tmp = dest;
584
585 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
586 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
587 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
588 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
589
590 if (dest.file != PROGRAM_TEMPORARY)
591 release_temp(p, tmp);
592 }
593
594 static void emit_matrix_transform_vec3( struct tnl_program *p,
595 struct ureg dest,
596 const struct ureg *mat,
597 struct ureg src)
598 {
599 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
600 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
601 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
602 }
603
604
605 static void emit_normalize_vec3( struct tnl_program *p,
606 struct ureg dest,
607 struct ureg src )
608 {
609 struct ureg tmp = get_temp(p);
610 emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
611 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
612 emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
613 release_temp(p, tmp);
614 }
615
616 static void emit_passthrough( struct tnl_program *p,
617 GLuint input,
618 GLuint output )
619 {
620 struct ureg out = register_output(p, output);
621 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
622 }
623
624 static struct ureg get_eye_position( struct tnl_program *p )
625 {
626 if (is_undef(p->eye_position)) {
627 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
628 struct ureg modelview[4];
629
630 p->eye_position = reserve_temp(p);
631
632 if (PREFER_DP4) {
633 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
634 STATE_MATRIX, modelview );
635
636 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
637 }
638 else {
639 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
640 STATE_MATRIX_TRANSPOSE, modelview );
641
642 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
643 }
644 }
645
646 return p->eye_position;
647 }
648
649
650 static struct ureg get_eye_position_normalized( struct tnl_program *p )
651 {
652 if (is_undef(p->eye_position_normalized)) {
653 struct ureg eye = get_eye_position(p);
654 p->eye_position_normalized = reserve_temp(p);
655 emit_normalize_vec3(p, p->eye_position_normalized, eye);
656 }
657
658 return p->eye_position_normalized;
659 }
660
661
662 static struct ureg get_eye_normal( struct tnl_program *p )
663 {
664 if (is_undef(p->eye_normal)) {
665 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
666 struct ureg mvinv[3];
667
668 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
669 STATE_MATRIX_INVTRANS, mvinv );
670
671 p->eye_normal = reserve_temp(p);
672
673 /* Transform to eye space:
674 */
675 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
676
677 /* Normalize/Rescale:
678 */
679 if (p->state->normalize) {
680 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
681 }
682 else if (p->state->rescale_normals) {
683 struct ureg rescale = register_param2(p, STATE_INTERNAL,
684 STATE_NORMAL_SCALE);
685
686 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, normal,
687 swizzle1(rescale, X));
688 }
689 }
690
691 return p->eye_normal;
692 }
693
694
695
696 static void build_hpos( struct tnl_program *p )
697 {
698 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
699 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
700 struct ureg mvp[4];
701
702 if (PREFER_DP4) {
703 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
704 STATE_MATRIX, mvp );
705 emit_matrix_transform_vec4( p, hpos, mvp, pos );
706 }
707 else {
708 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
709 STATE_MATRIX_TRANSPOSE, mvp );
710 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
711 }
712 }
713
714
715 static GLuint material_attrib( GLuint side, GLuint property )
716 {
717 return ((property - STATE_AMBIENT) * 2 +
718 side);
719 }
720
721 /* Get a bitmask of which material values vary on a per-vertex basis.
722 */
723 static void set_material_flags( struct tnl_program *p )
724 {
725 p->color_materials = 0;
726 p->materials = 0;
727
728 if (p->state->light_color_material) {
729 p->materials =
730 p->color_materials = p->state->light_color_material_mask;
731 }
732
733 p->materials |= p->state->light_material_mask;
734 }
735
736
737 static struct ureg get_material( struct tnl_program *p, GLuint side,
738 GLuint property )
739 {
740 GLuint attrib = material_attrib(side, property);
741
742 if (p->color_materials & (1<<attrib))
743 return register_input(p, VERT_ATTRIB_COLOR0);
744 else if (p->materials & (1<<attrib))
745 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
746 else
747 return register_param3( p, STATE_MATERIAL, side, property );
748 }
749
750 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
751 MAT_BIT_FRONT_AMBIENT | \
752 MAT_BIT_FRONT_DIFFUSE) << (side))
753
754 /* Either return a precalculated constant value or emit code to
755 * calculate these values dynamically in the case where material calls
756 * are present between begin/end pairs.
757 *
758 * Probably want to shift this to the program compilation phase - if
759 * we always emitted the calculation here, a smart compiler could
760 * detect that it was constant (given a certain set of inputs), and
761 * lift it out of the main loop. That way the programs created here
762 * would be independent of the vertex_buffer details.
763 */
764 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
765 {
766 if (p->materials & SCENE_COLOR_BITS(side)) {
767 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
768 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
769 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
770 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
771 struct ureg tmp = make_temp(p, material_diffuse);
772 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
773 material_ambient, material_emission);
774 return tmp;
775 }
776 else
777 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
778 }
779
780
781 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
782 GLuint side, GLuint property )
783 {
784 GLuint attrib = material_attrib(side, property);
785 if (p->materials & (1<<attrib)) {
786 struct ureg light_value =
787 register_param3(p, STATE_LIGHT, light, property);
788 struct ureg material_value = get_material(p, side, property);
789 struct ureg tmp = get_temp(p);
790 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
791 return tmp;
792 }
793 else
794 return register_param4(p, STATE_LIGHTPROD, light, side, property);
795 }
796
797 static struct ureg calculate_light_attenuation( struct tnl_program *p,
798 GLuint i,
799 struct ureg VPpli,
800 struct ureg dist )
801 {
802 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
803 STATE_ATTENUATION);
804 struct ureg att = get_temp(p);
805
806 /* Calculate spot attenuation:
807 */
808 if (!p->state->unit[i].light_spotcutoff_is_180) {
809 struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
810 STATE_SPOT_DIRECTION);
811 struct ureg spot = get_temp(p);
812 struct ureg slt = get_temp(p);
813
814 emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
815 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot);
816 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
817 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
818 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
819
820 release_temp(p, spot);
821 release_temp(p, slt);
822 }
823
824 /* Calculate distance attenuation:
825 */
826 if (p->state->unit[i].light_attenuated) {
827
828 /* 1/d,d,d,1/d */
829 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
830 /* 1,d,d*d,1/d */
831 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
832 /* 1/dist-atten */
833 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
834
835 if (!p->state->unit[i].light_spotcutoff_is_180) {
836 /* dist-atten */
837 emit_op1(p, OPCODE_RCP, dist, 0, dist);
838 /* spot-atten * dist-atten */
839 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
840 } else {
841 /* dist-atten */
842 emit_op1(p, OPCODE_RCP, att, 0, dist);
843 }
844 }
845
846 return att;
847 }
848
849
850
851
852
853 /* Need to add some addtional parameters to allow lighting in object
854 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
855 * space lighting.
856 */
857 static void build_lighting( struct tnl_program *p )
858 {
859 const GLboolean twoside = p->state->light_twoside;
860 const GLboolean separate = p->state->separate_specular;
861 GLuint nr_lights = 0, count = 0;
862 struct ureg normal = get_eye_normal(p);
863 struct ureg lit = get_temp(p);
864 struct ureg dots = get_temp(p);
865 struct ureg _col0 = undef, _col1 = undef;
866 struct ureg _bfc0 = undef, _bfc1 = undef;
867 GLuint i;
868
869 for (i = 0; i < MAX_LIGHTS; i++)
870 if (p->state->unit[i].light_enabled)
871 nr_lights++;
872
873 set_material_flags(p);
874
875 {
876 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
877 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
878 release_temp(p, shininess);
879
880 _col0 = make_temp(p, get_scenecolor(p, 0));
881 if (separate)
882 _col1 = make_temp(p, get_identity_param(p));
883 else
884 _col1 = _col0;
885
886 }
887
888 if (twoside) {
889 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
890 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
891 negate(swizzle1(shininess,X)));
892 release_temp(p, shininess);
893
894 _bfc0 = make_temp(p, get_scenecolor(p, 1));
895 if (separate)
896 _bfc1 = make_temp(p, get_identity_param(p));
897 else
898 _bfc1 = _bfc0;
899 }
900
901
902 /* If no lights, still need to emit the scenecolor.
903 */
904 {
905 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
906 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
907 }
908
909 if (separate) {
910 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
911 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
912 }
913
914 if (twoside) {
915 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
916 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
917 }
918
919 if (twoside && separate) {
920 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
921 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
922 }
923
924 if (nr_lights == 0) {
925 release_temps(p);
926 return;
927 }
928
929
930 for (i = 0; i < MAX_LIGHTS; i++) {
931 if (p->state->unit[i].light_enabled) {
932 struct ureg half = undef;
933 struct ureg att = undef, VPpli = undef;
934
935 count++;
936
937 if (p->state->unit[i].light_eyepos3_is_zero) {
938 /* Can used precomputed constants in this case.
939 * Attenuation never applies to infinite lights.
940 */
941 VPpli = register_param3(p, STATE_LIGHT, i,
942 STATE_POSITION_NORMALIZED);
943 half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
944 }
945 else {
946 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
947 STATE_POSITION);
948 struct ureg V = get_eye_position(p);
949 struct ureg dist = get_temp(p);
950
951 VPpli = get_temp(p);
952 half = get_temp(p);
953
954 /* Calulate VPpli vector
955 */
956 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
957
958 /* Normalize VPpli. The dist value also used in
959 * attenuation below.
960 */
961 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
962 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
963 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
964
965
966 /* Calculate attenuation:
967 */
968 if (!p->state->unit[i].light_spotcutoff_is_180 ||
969 p->state->unit[i].light_attenuated) {
970 att = calculate_light_attenuation(p, i, VPpli, dist);
971 }
972
973
974 /* Calculate viewer direction, or use infinite viewer:
975 */
976 if (p->state->light_local_viewer) {
977 struct ureg eye_hat = get_eye_position_normalized(p);
978 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
979 }
980 else {
981 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
982 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
983 }
984
985 emit_normalize_vec3(p, half, half);
986
987 release_temp(p, dist);
988 }
989
990 /* Calculate dot products:
991 */
992 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
993 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
994
995
996 /* Front face lighting:
997 */
998 {
999 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1000 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1001 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1002 struct ureg res0, res1;
1003 GLuint mask0, mask1;
1004
1005 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1006
1007 if (!is_undef(att))
1008 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1009
1010
1011 if (count == nr_lights) {
1012 if (separate) {
1013 mask0 = WRITEMASK_XYZ;
1014 mask1 = WRITEMASK_XYZ;
1015 res0 = register_output( p, VERT_RESULT_COL0 );
1016 res1 = register_output( p, VERT_RESULT_COL1 );
1017 }
1018 else {
1019 mask0 = 0;
1020 mask1 = WRITEMASK_XYZ;
1021 res0 = _col0;
1022 res1 = register_output( p, VERT_RESULT_COL0 );
1023 }
1024 } else {
1025 mask0 = 0;
1026 mask1 = 0;
1027 res0 = _col0;
1028 res1 = _col1;
1029 }
1030
1031 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1032 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1033 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1034
1035 release_temp(p, ambient);
1036 release_temp(p, diffuse);
1037 release_temp(p, specular);
1038 }
1039
1040 /* Back face lighting:
1041 */
1042 if (twoside) {
1043 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1044 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1045 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1046 struct ureg res0, res1;
1047 GLuint mask0, mask1;
1048
1049 emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1050
1051 if (!is_undef(att))
1052 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1053
1054 if (count == nr_lights) {
1055 if (separate) {
1056 mask0 = WRITEMASK_XYZ;
1057 mask1 = WRITEMASK_XYZ;
1058 res0 = register_output( p, VERT_RESULT_BFC0 );
1059 res1 = register_output( p, VERT_RESULT_BFC1 );
1060 }
1061 else {
1062 mask0 = 0;
1063 mask1 = WRITEMASK_XYZ;
1064 res0 = _bfc0;
1065 res1 = register_output( p, VERT_RESULT_BFC0 );
1066 }
1067 } else {
1068 res0 = _bfc0;
1069 res1 = _bfc1;
1070 mask0 = 0;
1071 mask1 = 0;
1072 }
1073
1074 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1075 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1076 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1077
1078 release_temp(p, ambient);
1079 release_temp(p, diffuse);
1080 release_temp(p, specular);
1081 }
1082
1083 release_temp(p, half);
1084 release_temp(p, VPpli);
1085 release_temp(p, att);
1086 }
1087 }
1088
1089 release_temps( p );
1090 }
1091
1092
1093 static void build_fog( struct tnl_program *p )
1094 {
1095 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1096 struct ureg input;
1097
1098 if (p->state->fog_source_is_depth) {
1099 input = swizzle1(get_eye_position(p), Z);
1100 }
1101 else {
1102 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1103 }
1104
1105 if (p->state->tnl_do_vertex_fog) {
1106 struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1107 struct ureg tmp = get_temp(p);
1108
1109 switch (p->state->fog_mode) {
1110 case FOG_LINEAR: {
1111 struct ureg id = get_identity_param(p);
1112 emit_op2(p, OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1113 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1114 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1115 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1116 break;
1117 }
1118 case FOG_EXP:
1119 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1120 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1121 emit_op2(p, OPCODE_POW, fog, WRITEMASK_X,
1122 register_const1f(p, M_E), negate(tmp));
1123 break;
1124 case FOG_EXP2:
1125 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1126 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1127 emit_op2(p, OPCODE_POW, fog, WRITEMASK_X,
1128 register_const1f(p, M_E), negate(tmp));
1129 break;
1130 }
1131
1132 release_temp(p, tmp);
1133 }
1134 else {
1135 /* results = incoming fog coords (compute fog per-fragment later)
1136 *
1137 * KW: Is it really necessary to do anything in this case?
1138 */
1139 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1140 }
1141 }
1142
1143 static void build_reflect_texgen( struct tnl_program *p,
1144 struct ureg dest,
1145 GLuint writemask )
1146 {
1147 struct ureg normal = get_eye_normal(p);
1148 struct ureg eye_hat = get_eye_position_normalized(p);
1149 struct ureg tmp = get_temp(p);
1150
1151 /* n.u */
1152 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1153 /* 2n.u */
1154 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1155 /* (-2n.u)n + u */
1156 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1157 }
1158
1159 static void build_sphere_texgen( struct tnl_program *p,
1160 struct ureg dest,
1161 GLuint writemask )
1162 {
1163 struct ureg normal = get_eye_normal(p);
1164 struct ureg eye_hat = get_eye_position_normalized(p);
1165 struct ureg tmp = get_temp(p);
1166 struct ureg half = register_scalar_const(p, .5);
1167 struct ureg r = get_temp(p);
1168 struct ureg inv_m = get_temp(p);
1169 struct ureg id = get_identity_param(p);
1170
1171 /* Could share the above calculations, but it would be
1172 * a fairly odd state for someone to set (both sphere and
1173 * reflection active for different texture coordinate
1174 * components. Of course - if two texture units enable
1175 * reflect and/or sphere, things start to tilt in favour
1176 * of seperating this out:
1177 */
1178
1179 /* n.u */
1180 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1181 /* 2n.u */
1182 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1183 /* (-2n.u)n + u */
1184 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1185 /* r + 0,0,1 */
1186 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1187 /* rx^2 + ry^2 + (rz+1)^2 */
1188 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1189 /* 2/m */
1190 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1191 /* 1/m */
1192 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1193 /* r/m + 1/2 */
1194 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1195
1196 release_temp(p, tmp);
1197 release_temp(p, r);
1198 release_temp(p, inv_m);
1199 }
1200
1201
1202 static void build_texture_transform( struct tnl_program *p )
1203 {
1204 GLuint i, j;
1205
1206 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1207
1208 if (!(p->state->fragprog_inputs_read & (FRAG_BIT_TEX0<<i)))
1209 continue;
1210
1211 if (p->state->unit[i].texgen_enabled ||
1212 p->state->unit[i].texmat_enabled) {
1213
1214 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1215 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1216 struct ureg out_texgen = undef;
1217
1218 if (p->state->unit[i].texgen_enabled) {
1219 GLuint copy_mask = 0;
1220 GLuint sphere_mask = 0;
1221 GLuint reflect_mask = 0;
1222 GLuint normal_mask = 0;
1223 GLuint modes[4];
1224
1225 if (texmat_enabled)
1226 out_texgen = get_temp(p);
1227 else
1228 out_texgen = out;
1229
1230 modes[0] = p->state->unit[i].texgen_mode0;
1231 modes[1] = p->state->unit[i].texgen_mode1;
1232 modes[2] = p->state->unit[i].texgen_mode2;
1233 modes[3] = p->state->unit[i].texgen_mode3;
1234
1235 for (j = 0; j < 4; j++) {
1236 switch (modes[j]) {
1237 case TXG_OBJ_LINEAR: {
1238 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1239 struct ureg plane =
1240 register_param3(p, STATE_TEXGEN, i,
1241 STATE_TEXGEN_OBJECT_S + j);
1242
1243 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1244 obj, plane );
1245 break;
1246 }
1247 case TXG_EYE_LINEAR: {
1248 struct ureg eye = get_eye_position(p);
1249 struct ureg plane =
1250 register_param3(p, STATE_TEXGEN, i,
1251 STATE_TEXGEN_EYE_S + j);
1252
1253 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1254 eye, plane );
1255 break;
1256 }
1257 case TXG_SPHERE_MAP:
1258 sphere_mask |= WRITEMASK_X << j;
1259 break;
1260 case TXG_REFLECTION_MAP:
1261 reflect_mask |= WRITEMASK_X << j;
1262 break;
1263 case TXG_NORMAL_MAP:
1264 normal_mask |= WRITEMASK_X << j;
1265 break;
1266 case TXG_NONE:
1267 copy_mask |= WRITEMASK_X << j;
1268 }
1269
1270 }
1271
1272
1273 if (sphere_mask) {
1274 build_sphere_texgen(p, out_texgen, sphere_mask);
1275 }
1276
1277 if (reflect_mask) {
1278 build_reflect_texgen(p, out_texgen, reflect_mask);
1279 }
1280
1281 if (normal_mask) {
1282 struct ureg normal = get_eye_normal(p);
1283 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1284 }
1285
1286 if (copy_mask) {
1287 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1288 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1289 }
1290 }
1291
1292 if (texmat_enabled) {
1293 struct ureg texmat[4];
1294 struct ureg in = (!is_undef(out_texgen) ?
1295 out_texgen :
1296 register_input(p, VERT_ATTRIB_TEX0+i));
1297 if (PREFER_DP4) {
1298 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1299 0, 3, STATE_MATRIX, texmat );
1300 emit_matrix_transform_vec4( p, out, texmat, in );
1301 }
1302 else {
1303 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1304 0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1305 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1306 }
1307 }
1308
1309 release_temps(p);
1310 }
1311 else {
1312 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1313 }
1314 }
1315 }
1316
1317
1318 /* Seems like it could be tighter:
1319 */
1320 static void build_pointsize( struct tnl_program *p )
1321 {
1322 struct ureg eye = get_eye_position(p);
1323 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1324 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1325 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1326 struct ureg ut = get_temp(p);
1327
1328 /* 1, -Z, Z * Z, 1 */
1329 emit_op1(p, OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1330 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1331 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1332
1333
1334 /* p1 + p2 * dist + p3 * dist * dist, 0 */
1335 emit_op2(p, OPCODE_DP3, ut, 0, ut, state_attenuation);
1336
1337 /* 1 / factor */
1338 emit_op1(p, OPCODE_RCP, ut, 0, ut );
1339
1340 /* out = pointSize / factor */
1341 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1342
1343 release_temp(p, ut);
1344 }
1345
1346 static void build_tnl_program( struct tnl_program *p )
1347 { /* Emit the program, starting with modelviewproject:
1348 */
1349 build_hpos(p);
1350
1351 /* Lighting calculations:
1352 */
1353 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1354 if (p->state->light_global_enabled)
1355 build_lighting(p);
1356 else {
1357 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1358 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1359
1360 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1361 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1362 }
1363 }
1364
1365 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1366 p->state->fog_mode != FOG_NONE)
1367 build_fog(p);
1368
1369 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1370 build_texture_transform(p);
1371
1372 if (p->state->point_attenuated)
1373 build_pointsize(p);
1374
1375 /* Finish up:
1376 */
1377 emit_op1(p, OPCODE_END, undef, 0, undef);
1378
1379 /* Disassemble:
1380 */
1381 if (DISASSEM) {
1382 _mesa_printf ("\n");
1383 }
1384 }
1385
1386
1387 static void
1388 create_new_program( const struct state_key *key,
1389 struct vertex_program *program,
1390 GLuint max_temps)
1391 {
1392 struct tnl_program p;
1393
1394 _mesa_memset(&p, 0, sizeof(p));
1395 p.state = key;
1396 p.program = program;
1397 p.eye_position = undef;
1398 p.eye_position_normalized = undef;
1399 p.eye_normal = undef;
1400 p.identity = undef;
1401 p.temp_in_use = 0;
1402
1403 if (max_temps >= sizeof(int) * 8)
1404 p.temp_reserved = 0;
1405 else
1406 p.temp_reserved = ~((1<<max_temps)-1);
1407
1408 p.program->Base.Instructions
1409 = (struct prog_instruction*) MALLOC(sizeof(struct prog_instruction) * MAX_INSN);
1410 p.program->Base.String = 0;
1411 p.program->Base.NumInstructions =
1412 p.program->Base.NumTemporaries =
1413 p.program->Base.NumParameters =
1414 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1415 p.program->Base.Parameters = _mesa_new_parameter_list();
1416 p.program->Base.InputsRead = 0;
1417 p.program->Base.OutputsWritten = 0;
1418
1419 build_tnl_program( &p );
1420 }
1421
1422 static void *search_cache( struct tnl_cache *cache,
1423 GLuint hash,
1424 const void *key,
1425 GLuint keysize)
1426 {
1427 struct tnl_cache_item *c;
1428
1429 for (c = cache->items[hash % cache->size]; c; c = c->next) {
1430 if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1431 return c->data;
1432 }
1433
1434 return NULL;
1435 }
1436
1437 static void rehash( struct tnl_cache *cache )
1438 {
1439 struct tnl_cache_item **items;
1440 struct tnl_cache_item *c, *next;
1441 GLuint size, i;
1442
1443 size = cache->size * 3;
1444 items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1445 _mesa_memset(items, 0, size * sizeof(*items));
1446
1447 for (i = 0; i < cache->size; i++)
1448 for (c = cache->items[i]; c; c = next) {
1449 next = c->next;
1450 c->next = items[c->hash % size];
1451 items[c->hash % size] = c;
1452 }
1453
1454 FREE(cache->items);
1455 cache->items = items;
1456 cache->size = size;
1457 }
1458
1459 static void cache_item( struct tnl_cache *cache,
1460 GLuint hash,
1461 void *key,
1462 void *data )
1463 {
1464 struct tnl_cache_item *c = (struct tnl_cache_item*) _mesa_malloc(sizeof(*c));
1465 c->hash = hash;
1466 c->key = key;
1467 c->data = data;
1468
1469 if (++cache->n_items > cache->size * 1.5)
1470 rehash(cache);
1471
1472 c->next = cache->items[hash % cache->size];
1473 cache->items[hash % cache->size] = c;
1474 }
1475
1476 static GLuint hash_key( struct state_key *key )
1477 {
1478 GLuint *ikey = (GLuint *)key;
1479 GLuint hash = 0, i;
1480
1481 /* I'm sure this can be improved on, but speed is important:
1482 */
1483 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1484 hash ^= ikey[i];
1485
1486 return hash;
1487 }
1488
1489 void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1490 {
1491 TNLcontext *tnl = TNL_CONTEXT(ctx);
1492 struct state_key *key;
1493 GLuint hash;
1494 struct vertex_program *prev = ctx->VertexProgram._Current;
1495
1496 if (ctx->VertexProgram._Enabled == GL_FALSE) {
1497 /* Grab all the relevent state and put it in a single structure:
1498 */
1499 key = make_state_key(ctx);
1500 hash = hash_key(key);
1501
1502 /* Look for an already-prepared program for this state:
1503 */
1504 ctx->_TnlProgram = (struct vertex_program *)
1505 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1506
1507 /* OK, we'll have to build a new one:
1508 */
1509 if (!ctx->_TnlProgram) {
1510 if (0)
1511 _mesa_printf("Build new TNL program\n");
1512
1513 ctx->_TnlProgram = (struct vertex_program *)
1514 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1515
1516 create_new_program( key, ctx->_TnlProgram,
1517 ctx->Const.VertexProgram.MaxTemps );
1518
1519 if (ctx->Driver.ProgramStringNotify)
1520 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1521 &ctx->_TnlProgram->Base );
1522
1523 cache_item(tnl->vp_cache, hash, key, ctx->_TnlProgram );
1524 }
1525 else {
1526 FREE(key);
1527 if (0)
1528 _mesa_printf("Found existing TNL program for key %x\n", hash);
1529 }
1530 ctx->VertexProgram._Current = ctx->_TnlProgram;
1531 }
1532 else {
1533 ctx->VertexProgram._Current = ctx->VertexProgram.Current;
1534 }
1535
1536 /* Tell the driver about the change. Could define a new target for
1537 * this?
1538 */
1539 if (ctx->VertexProgram._Current != prev &&
1540 ctx->Driver.BindProgram)
1541 ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB, (struct program *)
1542 ctx->VertexProgram._Current);
1543 }
1544
1545
1546 void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1547 {
1548 TNLcontext *tnl = TNL_CONTEXT(ctx);
1549 struct tnl_cache_item *c, *next;
1550 GLuint i;
1551
1552 for (i = 0; i < tnl->vp_cache->size; i++)
1553 for (c = tnl->vp_cache->items[i]; c; c = next) {
1554 next = c->next;
1555 FREE(c->key);
1556 FREE(c->data);
1557 FREE(c);
1558 }
1559
1560 FREE(tnl->vp_cache->items);
1561 FREE(tnl->vp_cache);
1562 }