Correct test for attenuation.
[mesa.git] / src / mesa / tnl / t_vp_build.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.3
4 *
5 * Copyright (C) 2005 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "t_context.h"
37 #include "t_vp_build.h"
38
39 #include "shader/program.h"
40 #include "shader/nvvertprog.h"
41 #include "shader/arbvertparse.h"
42
43 struct state_key {
44 unsigned light_global_enabled:1;
45 unsigned light_local_viewer:1;
46 unsigned light_twoside:1;
47 unsigned light_color_material:1;
48 unsigned light_color_material_mask:12;
49 unsigned light_material_mask:12;
50
51 unsigned normalize:1;
52 unsigned rescale_normals:1;
53 unsigned fog_source_is_depth:1;
54 unsigned tnl_do_vertex_fog:1;
55 unsigned separate_specular:1;
56 unsigned fog_enabled:1;
57 unsigned fog_mode:2;
58 unsigned point_attenuated:1;
59 unsigned texture_enabled_global:1;
60
61 struct {
62 unsigned light_enabled:1;
63 unsigned light_eyepos3_is_zero:1;
64 unsigned light_spotcutoff_is_180:1;
65 unsigned light_attenuated:1;
66 unsigned texunit_really_enabled:1;
67 unsigned texmat_enabled:1;
68 unsigned texgen_enabled:4;
69 unsigned texgen_mode0:4;
70 unsigned texgen_mode1:4;
71 unsigned texgen_mode2:4;
72 unsigned texgen_mode3:4;
73 } unit[8];
74 };
75
76
77
78 #define FOG_LINEAR 0
79 #define FOG_EXP 1
80 #define FOG_EXP2 2
81 #define FOG_UNKNOWN 3
82
83 static GLuint translate_fog_mode( GLenum mode )
84 {
85 switch (mode) {
86 case GL_LINEAR: return FOG_LINEAR;
87 case GL_EXP: return FOG_EXP;
88 case GL_EXP2: return FOG_EXP2;
89 default: return FOG_UNKNOWN;
90 }
91 }
92
93 #define TXG_NONE 0
94 #define TXG_OBJ_LINEAR 1
95 #define TXG_EYE_LINEAR 2
96 #define TXG_SPHERE_MAP 3
97 #define TXG_REFLECTION_MAP 4
98 #define TXG_NORMAL_MAP 5
99
100 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
101 {
102 if (!enabled)
103 return TXG_NONE;
104
105 switch (mode) {
106 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
107 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
108 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
109 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
110 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
111 default: return TXG_NONE;
112 }
113 }
114
115 static struct state_key *make_state_key( GLcontext *ctx )
116 {
117 TNLcontext *tnl = TNL_CONTEXT(ctx);
118 struct vertex_buffer *VB = &tnl->vb;
119 struct state_key *key = CALLOC_STRUCT(state_key);
120 GLuint i;
121
122 key->separate_specular = (ctx->Light.Model.ColorControl ==
123 GL_SEPARATE_SPECULAR_COLOR);
124
125 if (ctx->Light.Enabled) {
126 key->light_global_enabled = 1;
127
128 if (ctx->Light.Model.LocalViewer)
129 key->light_local_viewer = 1;
130
131 if (ctx->Light.Model.TwoSide)
132 key->light_twoside = 1;
133
134 if (ctx->Light.ColorMaterialEnabled) {
135 key->light_color_material = 1;
136 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
137 _mesa_printf("ColorMaterialBitmask %x / %x\n", ctx->Light.ColorMaterialBitmask,
138 key->light_color_material_mask);
139 }
140
141 for (i = _TNL_ATTRIB_MAT_FRONT_AMBIENT ; i < _TNL_ATTRIB_INDEX ; i++)
142 if (VB->AttribPtr[i]->stride)
143 key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
144
145 for (i = 0; i < MAX_LIGHTS; i++) {
146 struct gl_light *light = &ctx->Light.Light[i];
147
148 if (light->Enabled) {
149 key->unit[i].light_enabled = 1;
150
151 if (light->EyePosition[3] == 0.0)
152 key->unit[i].light_eyepos3_is_zero = 1;
153
154 if (light->SpotCutoff == 180.0)
155 key->unit[i].light_spotcutoff_is_180 = 1;
156
157 if (light->ConstantAttenuation != 1.0 ||
158 light->LinearAttenuation != 0.0 ||
159 light->QuadraticAttenuation != 0.0)
160 key->unit[i].light_attenuated = 1;
161 }
162 }
163 }
164
165 if (ctx->Transform.Normalize)
166 key->normalize = 1;
167
168 if (ctx->Transform.RescaleNormals)
169 key->rescale_normals = 1;
170
171 if (ctx->Fog.Enabled)
172 key->fog_enabled = 1;
173
174 if (key->fog_enabled) {
175 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
176 key->fog_source_is_depth = 1;
177
178 if (tnl->_DoVertexFog)
179 key->tnl_do_vertex_fog = 1;
180
181 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
182 }
183
184 if (ctx->Point._Attenuated)
185 key->point_attenuated = 1;
186
187 if (ctx->Texture._TexGenEnabled ||
188 ctx->Texture._TexMatEnabled ||
189 ctx->Texture._EnabledUnits)
190 key->texture_enabled_global = 1;
191
192 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
193 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
194
195 if (texUnit->_ReallyEnabled)
196 key->unit[i].texunit_really_enabled = 1;
197
198 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
199 key->unit[i].texmat_enabled = 1;
200
201 if (texUnit->TexGenEnabled) {
202 key->unit[i].texgen_enabled = 1;
203
204 key->unit[i].texgen_mode0 =
205 translate_texgen( texUnit->TexGenEnabled & (1<<0),
206 texUnit->GenModeS );
207 key->unit[i].texgen_mode1 =
208 translate_texgen( texUnit->TexGenEnabled & (1<<1),
209 texUnit->GenModeT );
210 key->unit[i].texgen_mode2 =
211 translate_texgen( texUnit->TexGenEnabled & (1<<2),
212 texUnit->GenModeR );
213 key->unit[i].texgen_mode3 =
214 translate_texgen( texUnit->TexGenEnabled & (1<<3),
215 texUnit->GenModeQ );
216 }
217 }
218
219 return key;
220 }
221
222
223
224 /* Very useful debugging tool - produces annotated listing of
225 * generated program with line/function references for each
226 * instruction back into this file:
227 */
228 #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
229
230 /* Should be tunable by the driver - do we want to do matrix
231 * multiplications with DP4's or with MUL/MAD's? SSE works better
232 * with the latter, drivers may differ.
233 */
234 #define PREFER_DP4 0
235
236 #define MAX_INSN 200
237
238 /* Use uregs to represent registers internally, translate to Mesa's
239 * expected formats on emit.
240 *
241 * NOTE: These are passed by value extensively in this file rather
242 * than as usual by pointer reference. If this disturbs you, try
243 * remembering they are just 32bits in size.
244 *
245 * GCC is smart enough to deal with these dword-sized structures in
246 * much the same way as if I had defined them as dwords and was using
247 * macros to access and set the fields. This is much nicer and easier
248 * to evolve.
249 */
250 struct ureg {
251 GLuint file:4;
252 GLuint idx:8;
253 GLuint negate:1;
254 GLuint swz:12;
255 GLuint pad:7;
256 };
257
258
259 struct tnl_program {
260 const struct state_key *state;
261 struct vertex_program *program;
262
263 GLuint temp_in_use;
264 GLuint temp_reserved;
265
266 struct ureg eye_position;
267 struct ureg eye_position_normalized;
268 struct ureg eye_normal;
269 struct ureg identity;
270
271 GLuint materials;
272 GLuint color_materials;
273 };
274
275
276 const static struct ureg undef = {
277 ~0,
278 ~0,
279 0,
280 0,
281 0
282 };
283
284 /* Local shorthand:
285 */
286 #define X SWIZZLE_X
287 #define Y SWIZZLE_Y
288 #define Z SWIZZLE_Z
289 #define W SWIZZLE_W
290
291
292 /* Construct a ureg:
293 */
294 static struct ureg make_ureg(GLuint file, GLuint idx)
295 {
296 struct ureg reg;
297 reg.file = file;
298 reg.idx = idx;
299 reg.negate = 0;
300 reg.swz = SWIZZLE_NOOP;
301 reg.pad = 0;
302 return reg;
303 }
304
305
306
307 static struct ureg negate( struct ureg reg )
308 {
309 reg.negate ^= 1;
310 return reg;
311 }
312
313
314 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
315 {
316 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
317 GET_SWZ(reg.swz, y),
318 GET_SWZ(reg.swz, z),
319 GET_SWZ(reg.swz, w));
320
321 return reg;
322 }
323
324 static struct ureg swizzle1( struct ureg reg, int x )
325 {
326 return swizzle(reg, x, x, x, x);
327 }
328
329 static struct ureg get_temp( struct tnl_program *p )
330 {
331 int bit = ffs( ~p->temp_in_use );
332 if (!bit) {
333 fprintf(stderr, "%s: out of temporaries\n", __FILE__);
334 exit(1);
335 }
336
337 p->temp_in_use |= 1<<(bit-1);
338 return make_ureg(PROGRAM_TEMPORARY, bit-1);
339 }
340
341 static struct ureg reserve_temp( struct tnl_program *p )
342 {
343 struct ureg temp = get_temp( p );
344 p->temp_reserved |= 1<<temp.idx;
345 return temp;
346 }
347
348 static void release_temp( struct tnl_program *p, struct ureg reg )
349 {
350 if (reg.file == PROGRAM_TEMPORARY) {
351 p->temp_in_use &= ~(1<<reg.idx);
352 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
353 }
354 }
355
356 static void release_temps( struct tnl_program *p )
357 {
358 p->temp_in_use = p->temp_reserved;
359 }
360
361
362
363 static struct ureg register_input( struct tnl_program *p, GLuint input )
364 {
365 p->program->InputsRead |= (1<<input);
366 return make_ureg(PROGRAM_INPUT, input);
367 }
368
369 static struct ureg register_output( struct tnl_program *p, GLuint output )
370 {
371 p->program->OutputsWritten |= (1<<output);
372 return make_ureg(PROGRAM_OUTPUT, output);
373 }
374
375 static struct ureg register_const4f( struct tnl_program *p,
376 GLfloat s0,
377 GLfloat s1,
378 GLfloat s2,
379 GLfloat s3)
380 {
381 GLfloat values[4];
382 GLuint idx;
383 values[0] = s0;
384 values[1] = s1;
385 values[2] = s2;
386 values[3] = s3;
387 idx = _mesa_add_unnamed_constant( p->program->Parameters, values );
388 return make_ureg(PROGRAM_STATE_VAR, idx);
389 }
390
391 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
392 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
393 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
394 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
395
396 static GLboolean is_undef( struct ureg reg )
397 {
398 return reg.file == 0xf;
399 }
400
401 static struct ureg get_identity_param( struct tnl_program *p )
402 {
403 if (is_undef(p->identity))
404 p->identity = register_const4f(p, 0,0,0,1);
405
406 return p->identity;
407 }
408
409 static struct ureg register_param6( struct tnl_program *p,
410 GLint s0,
411 GLint s1,
412 GLint s2,
413 GLint s3,
414 GLint s4,
415 GLint s5)
416 {
417 GLint tokens[6];
418 GLuint idx;
419 tokens[0] = s0;
420 tokens[1] = s1;
421 tokens[2] = s2;
422 tokens[3] = s3;
423 tokens[4] = s4;
424 tokens[5] = s5;
425 idx = _mesa_add_state_reference( p->program->Parameters, tokens );
426 return make_ureg(PROGRAM_STATE_VAR, idx);
427 }
428
429
430 #define register_param1(p,s0) register_param6(p,s0,0,0,0,0,0)
431 #define register_param2(p,s0,s1) register_param6(p,s0,s1,0,0,0,0)
432 #define register_param3(p,s0,s1,s2) register_param6(p,s0,s1,s2,0,0,0)
433 #define register_param4(p,s0,s1,s2,s3) register_param6(p,s0,s1,s2,s3,0,0)
434
435
436 static void register_matrix_param6( struct tnl_program *p,
437 GLint s0,
438 GLint s1,
439 GLint s2,
440 GLint s3,
441 GLint s4,
442 GLint s5,
443 struct ureg *matrix )
444 {
445 GLuint i;
446
447 /* This is a bit sad as the support is there to pull the whole
448 * matrix out in one go:
449 */
450 for (i = 0; i <= s4 - s3; i++)
451 matrix[i] = register_param6( p, s0, s1, s2, i, i, s5 );
452 }
453
454
455 static void emit_arg( struct vp_src_register *src,
456 struct ureg reg )
457 {
458 src->File = reg.file;
459 src->Index = reg.idx;
460 src->Swizzle = reg.swz;
461 src->Negate = reg.negate;
462 src->RelAddr = 0;
463 src->pad = 0;
464 }
465
466 static void emit_dst( struct vp_dst_register *dst,
467 struct ureg reg, GLuint mask )
468 {
469 dst->File = reg.file;
470 dst->Index = reg.idx;
471 /* allow zero as a shorthand for xyzw */
472 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
473 dst->pad = 0;
474 }
475
476 static void debug_insn( struct vp_instruction *inst, const char *fn,
477 GLuint line )
478 {
479 if (DISASSEM) {
480 static const char *last_fn;
481
482 if (fn != last_fn) {
483 last_fn = fn;
484 _mesa_printf("%s:\n", fn);
485 }
486
487 _mesa_printf("%d:\t", line);
488 _mesa_debug_vp_inst(1, inst);
489 }
490 }
491
492
493 static void emit_op3fn(struct tnl_program *p,
494 GLuint op,
495 struct ureg dest,
496 GLuint mask,
497 struct ureg src0,
498 struct ureg src1,
499 struct ureg src2,
500 const char *fn,
501 GLuint line)
502 {
503 GLuint nr = p->program->Base.NumInstructions++;
504 struct vp_instruction *inst = &p->program->Instructions[nr];
505
506 if (p->program->Base.NumInstructions > MAX_INSN) {
507 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
508 return;
509 }
510
511 inst->Opcode = op;
512 inst->StringPos = 0;
513 inst->Data = 0;
514
515 emit_arg( &inst->SrcReg[0], src0 );
516 emit_arg( &inst->SrcReg[1], src1 );
517 emit_arg( &inst->SrcReg[2], src2 );
518
519 emit_dst( &inst->DstReg, dest, mask );
520
521 debug_insn(inst, fn, line);
522 }
523
524
525
526 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
527 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
528
529 #define emit_op2(p, op, dst, mask, src0, src1) \
530 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
531
532 #define emit_op1(p, op, dst, mask, src0) \
533 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
534
535
536 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
537 {
538 if (reg.file == PROGRAM_TEMPORARY &&
539 !(p->temp_reserved & (1<<reg.idx)))
540 return reg;
541 else {
542 struct ureg temp = get_temp(p);
543 emit_op1(p, VP_OPCODE_MOV, temp, 0, reg);
544 return temp;
545 }
546 }
547
548
549 /* Currently no tracking performed of input/output/register size or
550 * active elements. Could be used to reduce these operations, as
551 * could the matrix type.
552 */
553 static void emit_matrix_transform_vec4( struct tnl_program *p,
554 struct ureg dest,
555 const struct ureg *mat,
556 struct ureg src)
557 {
558 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
559 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
560 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
561 emit_op2(p, VP_OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
562 }
563
564 /* This version is much easier to implement if writemasks are not
565 * supported natively on the target or (like SSE), the target doesn't
566 * have a clean/obvious dotproduct implementation.
567 */
568 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
569 struct ureg dest,
570 const struct ureg *mat,
571 struct ureg src)
572 {
573 struct ureg tmp;
574
575 if (dest.file != PROGRAM_TEMPORARY)
576 tmp = get_temp(p);
577 else
578 tmp = dest;
579
580 emit_op2(p, VP_OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
581 emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
582 emit_op3(p, VP_OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
583 emit_op3(p, VP_OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
584
585 if (dest.file != PROGRAM_TEMPORARY)
586 release_temp(p, tmp);
587 }
588
589 static void emit_matrix_transform_vec3( struct tnl_program *p,
590 struct ureg dest,
591 const struct ureg *mat,
592 struct ureg src)
593 {
594 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
595 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
596 emit_op2(p, VP_OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
597 }
598
599
600 static void emit_normalize_vec3( struct tnl_program *p,
601 struct ureg dest,
602 struct ureg src )
603 {
604 struct ureg tmp = get_temp(p);
605 emit_op2(p, VP_OPCODE_DP3, tmp, 0, src, src);
606 emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
607 emit_op2(p, VP_OPCODE_MUL, dest, 0, src, tmp);
608 release_temp(p, tmp);
609 }
610
611 static void emit_passthrough( struct tnl_program *p,
612 GLuint input,
613 GLuint output )
614 {
615 struct ureg out = register_output(p, output);
616 emit_op1(p, VP_OPCODE_MOV, out, 0, register_input(p, input));
617 }
618
619 static struct ureg get_eye_position( struct tnl_program *p )
620 {
621 if (is_undef(p->eye_position)) {
622 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
623 struct ureg modelview[4];
624
625 p->eye_position = reserve_temp(p);
626
627 if (PREFER_DP4) {
628 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
629 STATE_MATRIX, modelview );
630
631 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
632 }
633 else {
634 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 3,
635 STATE_MATRIX_TRANSPOSE, modelview );
636
637 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
638 }
639 }
640
641 return p->eye_position;
642 }
643
644
645 static struct ureg get_eye_position_normalized( struct tnl_program *p )
646 {
647 if (is_undef(p->eye_position_normalized)) {
648 struct ureg eye = get_eye_position(p);
649 p->eye_position_normalized = reserve_temp(p);
650 emit_normalize_vec3(p, p->eye_position_normalized, eye);
651 }
652
653 return p->eye_position_normalized;
654 }
655
656
657 static struct ureg get_eye_normal( struct tnl_program *p )
658 {
659 if (is_undef(p->eye_normal)) {
660 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
661 struct ureg mvinv[3];
662
663 register_matrix_param6( p, STATE_MATRIX, STATE_MODELVIEW, 0, 0, 2,
664 STATE_MATRIX_INVTRANS, mvinv );
665
666 p->eye_normal = reserve_temp(p);
667
668 /* Transform to eye space:
669 */
670 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
671
672 /* Normalize/Rescale:
673 */
674 if (p->state->normalize) {
675 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
676 }
677 else if (p->state->rescale_normals) {
678 struct ureg rescale = register_param2(p, STATE_INTERNAL,
679 STATE_NORMAL_SCALE);
680
681 emit_op2( p, VP_OPCODE_MUL, p->eye_normal, 0, normal,
682 swizzle1(rescale, X));
683 }
684 }
685
686 return p->eye_normal;
687 }
688
689
690
691 static void build_hpos( struct tnl_program *p )
692 {
693 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
694 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
695 struct ureg mvp[4];
696
697 if (PREFER_DP4) {
698 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
699 STATE_MATRIX, mvp );
700 emit_matrix_transform_vec4( p, hpos, mvp, pos );
701 }
702 else {
703 register_matrix_param6( p, STATE_MATRIX, STATE_MVP, 0, 0, 3,
704 STATE_MATRIX_TRANSPOSE, mvp );
705 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
706 }
707 }
708
709
710 static GLuint material_attrib( GLuint side, GLuint property )
711 {
712 return ((property - STATE_AMBIENT) * 2 +
713 side);
714 }
715
716 static void set_material_flags( struct tnl_program *p )
717 {
718 p->color_materials = 0;
719 p->materials = 0;
720
721 if (p->state->light_color_material) {
722 p->materials =
723 p->color_materials = p->state->light_color_material_mask;
724 }
725
726 p->materials |= p->state->light_material_mask;
727 }
728
729
730 static struct ureg get_material( struct tnl_program *p, GLuint side,
731 GLuint property )
732 {
733 GLuint attrib = material_attrib(side, property);
734
735 if (p->color_materials & (1<<attrib))
736 return register_input(p, VERT_ATTRIB_COLOR0);
737 else if (p->materials & (1<<attrib))
738 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
739 else
740 return register_param3( p, STATE_MATERIAL, side, property );
741 }
742
743 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
744 MAT_BIT_FRONT_AMBIENT | \
745 MAT_BIT_FRONT_DIFFUSE) << (side))
746
747 /* Either return a precalculated constant value or emit code to
748 * calculate these values dynamically in the case where material calls
749 * are present between begin/end pairs.
750 *
751 * Probably want to shift this to the program compilation phase - if
752 * we always emitted the calculation here, a smart compiler could
753 * detect that it was constant (given a certain set of inputs), and
754 * lift it out of the main loop. That way the programs created here
755 * would be independent of the vertex_buffer details.
756 */
757 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
758 {
759 if (p->materials & SCENE_COLOR_BITS(side)) {
760 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
761 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
762 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
763 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
764 struct ureg tmp = make_temp(p, material_diffuse);
765 emit_op3(p, VP_OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
766 material_ambient, material_emission);
767 return tmp;
768 }
769 else
770 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
771 }
772
773
774 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
775 GLuint side, GLuint property )
776 {
777 GLuint attrib = material_attrib(side, property);
778 if (p->materials & (1<<attrib)) {
779 struct ureg light_value =
780 register_param3(p, STATE_LIGHT, light, property);
781 struct ureg material_value = get_material(p, side, property);
782 struct ureg tmp = get_temp(p);
783 emit_op2(p, VP_OPCODE_MUL, tmp, 0, light_value, material_value);
784 return tmp;
785 }
786 else
787 return register_param4(p, STATE_LIGHTPROD, light, side, property);
788 }
789
790 static struct ureg calculate_light_attenuation( struct tnl_program *p,
791 GLuint i,
792 struct ureg VPpli,
793 struct ureg dist )
794 {
795 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
796 STATE_ATTENUATION);
797 struct ureg att = get_temp(p);
798
799 /* Calculate spot attenuation:
800 */
801 if (!p->state->unit[i].light_spotcutoff_is_180) {
802 struct ureg spot_dir = register_param3(p, STATE_LIGHT, i,
803 STATE_SPOT_DIRECTION);
804 struct ureg spot = get_temp(p);
805 struct ureg slt = get_temp(p);
806
807 emit_normalize_vec3( p, spot, spot_dir ); /* XXX: precompute! */
808 emit_op2(p, VP_OPCODE_DP3, spot, 0, negate(VPpli), spot_dir);
809 emit_op2(p, VP_OPCODE_SLT, slt, 0, swizzle1(spot_dir,W), spot);
810 emit_op2(p, VP_OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
811 emit_op2(p, VP_OPCODE_MUL, att, 0, slt, spot);
812
813 release_temp(p, spot);
814 release_temp(p, slt);
815 }
816
817 /* Calculate distance attenuation:
818 */
819 if (p->state->unit[i].light_attenuated) {
820
821 /* 1/d,d,d,1/d */
822 emit_op1(p, VP_OPCODE_RCP, dist, WRITEMASK_YZ, dist);
823 /* 1,d,d*d,1/d */
824 emit_op2(p, VP_OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
825 /* 1/dist-atten */
826 emit_op2(p, VP_OPCODE_DP3, dist, 0, attenuation, dist);
827
828 if (!p->state->unit[i].light_spotcutoff_is_180) {
829 /* dist-atten */
830 emit_op1(p, VP_OPCODE_RCP, dist, 0, dist);
831 /* spot-atten * dist-atten */
832 emit_op2(p, VP_OPCODE_MUL, att, 0, dist, att);
833 } else {
834 /* dist-atten */
835 emit_op1(p, VP_OPCODE_RCP, att, 0, dist);
836 }
837 }
838
839 return att;
840 }
841
842
843
844
845
846 /* Need to add some addtional parameters to allow lighting in object
847 * space - STATE_SPOT_DIRECTION and STATE_HALF implicitly assume eye
848 * space lighting.
849 */
850 static void build_lighting( struct tnl_program *p )
851 {
852 const GLboolean twoside = p->state->light_twoside;
853 const GLboolean separate = p->state->separate_specular;
854 GLuint nr_lights = 0, count = 0;
855 struct ureg normal = get_eye_normal(p);
856 struct ureg lit = get_temp(p);
857 struct ureg dots = get_temp(p);
858 struct ureg _col0 = undef, _col1 = undef;
859 struct ureg _bfc0 = undef, _bfc1 = undef;
860 GLuint i;
861
862 for (i = 0; i < MAX_LIGHTS; i++)
863 if (p->state->unit[i].light_enabled)
864 nr_lights++;
865
866 set_material_flags(p);
867
868 {
869 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
870 emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
871 release_temp(p, shininess);
872
873 _col0 = make_temp(p, get_scenecolor(p, 0));
874 if (separate)
875 _col1 = make_temp(p, get_identity_param(p));
876 else
877 _col1 = _col0;
878
879 }
880
881 if (twoside) {
882 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
883 emit_op1(p, VP_OPCODE_MOV, dots, WRITEMASK_Z,
884 negate(swizzle1(shininess,X)));
885 release_temp(p, shininess);
886
887 _bfc0 = make_temp(p, get_scenecolor(p, 1));
888 if (separate)
889 _bfc1 = make_temp(p, get_identity_param(p));
890 else
891 _bfc1 = _bfc0;
892 }
893
894
895 /* If no lights, still need to emit the scenecolor.
896 */
897 {
898 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
899 emit_op1(p, VP_OPCODE_MOV, res0, 0, _col0);
900 }
901
902 if (separate) {
903 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
904 emit_op1(p, VP_OPCODE_MOV, res1, 0, _col1);
905 }
906
907 if (twoside) {
908 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
909 emit_op1(p, VP_OPCODE_MOV, res0, 0, _bfc0);
910 }
911
912 if (twoside && separate) {
913 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
914 emit_op1(p, VP_OPCODE_MOV, res1, 0, _bfc1);
915 }
916
917 if (nr_lights == 0) {
918 release_temps(p);
919 return;
920 }
921
922
923 for (i = 0; i < MAX_LIGHTS; i++) {
924 if (p->state->unit[i].light_enabled) {
925 struct ureg half = undef;
926 struct ureg att = undef, VPpli = undef;
927
928 count++;
929
930 if (p->state->unit[i].light_eyepos3_is_zero) {
931 /* Can used precomputed constants in this case.
932 * Attenuation never applies to infinite lights.
933 */
934 VPpli = register_param3(p, STATE_LIGHT, i,
935 STATE_POSITION_NORMALIZED);
936 half = register_param3(p, STATE_LIGHT, i, STATE_HALF);
937 }
938 else {
939 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
940 STATE_POSITION);
941 struct ureg V = get_eye_position(p);
942 struct ureg dist = get_temp(p);
943
944 VPpli = get_temp(p);
945 half = get_temp(p);
946
947 /* Calulate VPpli vector
948 */
949 emit_op2(p, VP_OPCODE_SUB, VPpli, 0, Ppli, V);
950
951 /* Normalize VPpli. The dist value also used in
952 * attenuation below.
953 */
954 emit_op2(p, VP_OPCODE_DP3, dist, 0, VPpli, VPpli);
955 emit_op1(p, VP_OPCODE_RSQ, dist, 0, dist);
956 emit_op2(p, VP_OPCODE_MUL, VPpli, 0, VPpli, dist);
957
958
959 /* Calculate attenuation:
960 */
961 if (!p->state->unit[i].light_spotcutoff_is_180 ||
962 p->state->unit[i].light_attenuated) {
963 att = calculate_light_attenuation(p, i, VPpli, dist);
964 }
965
966
967 /* Calculate viewer direction, or use infinite viewer:
968 */
969 if (p->state->light_local_viewer) {
970 struct ureg eye_hat = get_eye_position_normalized(p);
971 emit_op2(p, VP_OPCODE_SUB, half, 0, VPpli, eye_hat);
972 }
973 else {
974 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
975 emit_op2(p, VP_OPCODE_ADD, half, 0, VPpli, z_dir);
976 }
977
978 emit_normalize_vec3(p, half, half);
979
980 release_temp(p, dist);
981 }
982
983 /* Calculate dot products:
984 */
985 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
986 emit_op2(p, VP_OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
987
988
989 /* Front face lighting:
990 */
991 {
992 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
993 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
994 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
995 struct ureg res0, res1;
996 GLuint mask0, mask1;
997
998 emit_op1(p, VP_OPCODE_LIT, lit, 0, dots);
999
1000 if (!is_undef(att))
1001 emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1002
1003
1004 if (count == nr_lights) {
1005 if (separate) {
1006 mask0 = WRITEMASK_XYZ;
1007 mask1 = WRITEMASK_XYZ;
1008 res0 = register_output( p, VERT_RESULT_COL0 );
1009 res1 = register_output( p, VERT_RESULT_COL1 );
1010 }
1011 else {
1012 mask0 = 0;
1013 mask1 = WRITEMASK_XYZ;
1014 res0 = _col0;
1015 res1 = register_output( p, VERT_RESULT_COL0 );
1016 }
1017 } else {
1018 mask0 = 0;
1019 mask1 = 0;
1020 res0 = _col0;
1021 res1 = _col1;
1022 }
1023
1024 emit_op3(p, VP_OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1025 emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1026 emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1027
1028 release_temp(p, ambient);
1029 release_temp(p, diffuse);
1030 release_temp(p, specular);
1031 }
1032
1033 /* Back face lighting:
1034 */
1035 if (twoside) {
1036 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1037 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1038 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1039 struct ureg res0, res1;
1040 GLuint mask0, mask1;
1041
1042 emit_op1(p, VP_OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1043
1044 if (!is_undef(att))
1045 emit_op2(p, VP_OPCODE_MUL, lit, 0, lit, att);
1046
1047 if (count == nr_lights) {
1048 if (separate) {
1049 mask0 = WRITEMASK_XYZ;
1050 mask1 = WRITEMASK_XYZ;
1051 res0 = register_output( p, VERT_RESULT_BFC0 );
1052 res1 = register_output( p, VERT_RESULT_BFC1 );
1053 }
1054 else {
1055 mask0 = 0;
1056 mask1 = WRITEMASK_XYZ;
1057 res0 = _bfc0;
1058 res1 = register_output( p, VERT_RESULT_BFC0 );
1059 }
1060 } else {
1061 res0 = _bfc0;
1062 res1 = _bfc1;
1063 mask0 = 0;
1064 mask1 = 0;
1065 }
1066
1067 emit_op3(p, VP_OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1068 emit_op3(p, VP_OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1069 emit_op3(p, VP_OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1070
1071 release_temp(p, ambient);
1072 release_temp(p, diffuse);
1073 release_temp(p, specular);
1074 }
1075
1076 release_temp(p, half);
1077 release_temp(p, VPpli);
1078 release_temp(p, att);
1079 }
1080 }
1081
1082 release_temps( p );
1083 }
1084
1085
1086 static void build_fog( struct tnl_program *p )
1087 {
1088 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1089 struct ureg input;
1090
1091 if (p->state->fog_source_is_depth) {
1092 input = swizzle1(get_eye_position(p), Z);
1093 }
1094 else {
1095 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1096 }
1097
1098 if (p->state->tnl_do_vertex_fog) {
1099 struct ureg params = register_param1(p, STATE_FOG_PARAMS);
1100 struct ureg tmp = get_temp(p);
1101
1102 switch (p->state->fog_mode) {
1103 case FOG_LINEAR: {
1104 struct ureg id = get_identity_param(p);
1105 emit_op2(p, VP_OPCODE_SUB, tmp, 0, swizzle1(params,Z), input);
1106 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,W));
1107 emit_op2(p, VP_OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1108 emit_op2(p, VP_OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1109 break;
1110 }
1111 case FOG_EXP:
1112 emit_op1(p, VP_OPCODE_ABS, tmp, 0, input);
1113 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, swizzle1(params,X));
1114 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1115 register_const1f(p, M_E), negate(tmp));
1116 break;
1117 case FOG_EXP2:
1118 emit_op2(p, VP_OPCODE_MUL, tmp, 0, input, swizzle1(params,X));
1119 emit_op2(p, VP_OPCODE_MUL, tmp, 0, tmp, tmp);
1120 emit_op2(p, VP_OPCODE_POW, fog, WRITEMASK_X,
1121 register_const1f(p, M_E), negate(tmp));
1122 break;
1123 }
1124
1125 release_temp(p, tmp);
1126 }
1127 else {
1128 /* results = incoming fog coords (compute fog per-fragment later)
1129 *
1130 * KW: Is it really necessary to do anything in this case?
1131 */
1132 emit_op1(p, VP_OPCODE_MOV, fog, WRITEMASK_X, input);
1133 }
1134 }
1135
1136 static void build_reflect_texgen( struct tnl_program *p,
1137 struct ureg dest,
1138 GLuint writemask )
1139 {
1140 struct ureg normal = get_eye_normal(p);
1141 struct ureg eye_hat = get_eye_position_normalized(p);
1142 struct ureg tmp = get_temp(p);
1143
1144 /* n.u */
1145 emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1146 /* 2n.u */
1147 emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1148 /* (-2n.u)n + u */
1149 emit_op3(p, VP_OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1150 }
1151
1152 static void build_sphere_texgen( struct tnl_program *p,
1153 struct ureg dest,
1154 GLuint writemask )
1155 {
1156 struct ureg normal = get_eye_normal(p);
1157 struct ureg eye_hat = get_eye_position_normalized(p);
1158 struct ureg tmp = get_temp(p);
1159 struct ureg half = register_scalar_const(p, .5);
1160 struct ureg r = get_temp(p);
1161 struct ureg inv_m = get_temp(p);
1162 struct ureg id = get_identity_param(p);
1163
1164 /* Could share the above calculations, but it would be
1165 * a fairly odd state for someone to set (both sphere and
1166 * reflection active for different texture coordinate
1167 * components. Of course - if two texture units enable
1168 * reflect and/or sphere, things start to tilt in favour
1169 * of seperating this out:
1170 */
1171
1172 /* n.u */
1173 emit_op2(p, VP_OPCODE_DP3, tmp, 0, normal, eye_hat);
1174 /* 2n.u */
1175 emit_op2(p, VP_OPCODE_ADD, tmp, 0, tmp, tmp);
1176 /* (-2n.u)n + u */
1177 emit_op3(p, VP_OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1178 /* r + 0,0,1 */
1179 emit_op2(p, VP_OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1180 /* rx^2 + ry^2 + (rz+1)^2 */
1181 emit_op2(p, VP_OPCODE_DP3, tmp, 0, tmp, tmp);
1182 /* 2/m */
1183 emit_op1(p, VP_OPCODE_RSQ, tmp, 0, tmp);
1184 /* 1/m */
1185 emit_op2(p, VP_OPCODE_MUL, inv_m, 0, tmp, half);
1186 /* r/m + 1/2 */
1187 emit_op3(p, VP_OPCODE_MAD, dest, writemask, r, inv_m, half);
1188
1189 release_temp(p, tmp);
1190 release_temp(p, r);
1191 release_temp(p, inv_m);
1192 }
1193
1194
1195 static void build_texture_transform( struct tnl_program *p )
1196 {
1197 GLuint i, j;
1198
1199 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1200 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1201
1202 if (p->state->unit[i].texgen_enabled || texmat_enabled) {
1203 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1204 struct ureg out_texgen = undef;
1205
1206 if (p->state->unit[i].texgen_enabled) {
1207 GLuint copy_mask = 0;
1208 GLuint sphere_mask = 0;
1209 GLuint reflect_mask = 0;
1210 GLuint normal_mask = 0;
1211 GLuint modes[4];
1212
1213 if (texmat_enabled)
1214 out_texgen = get_temp(p);
1215 else
1216 out_texgen = out;
1217
1218 modes[0] = p->state->unit[i].texgen_mode0;
1219 modes[1] = p->state->unit[i].texgen_mode1;
1220 modes[2] = p->state->unit[i].texgen_mode2;
1221 modes[3] = p->state->unit[i].texgen_mode3;
1222
1223 for (j = 0; j < 4; j++) {
1224 switch (modes[j]) {
1225 case TXG_OBJ_LINEAR: {
1226 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1227 struct ureg plane =
1228 register_param3(p, STATE_TEXGEN, i,
1229 STATE_TEXGEN_OBJECT_S + j);
1230
1231 emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1232 obj, plane );
1233 break;
1234 }
1235 case TXG_EYE_LINEAR: {
1236 struct ureg eye = get_eye_position(p);
1237 struct ureg plane =
1238 register_param3(p, STATE_TEXGEN, i,
1239 STATE_TEXGEN_EYE_S + j);
1240
1241 emit_op2(p, VP_OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1242 eye, plane );
1243 break;
1244 }
1245 case TXG_SPHERE_MAP:
1246 sphere_mask |= WRITEMASK_X << j;
1247 break;
1248 case TXG_REFLECTION_MAP:
1249 reflect_mask |= WRITEMASK_X << j;
1250 break;
1251 case TXG_NORMAL_MAP:
1252 normal_mask |= WRITEMASK_X << j;
1253 break;
1254 case TXG_NONE:
1255 copy_mask |= WRITEMASK_X << j;
1256 }
1257
1258 }
1259
1260
1261 if (sphere_mask) {
1262 build_sphere_texgen(p, out_texgen, sphere_mask);
1263 }
1264
1265 if (reflect_mask) {
1266 build_reflect_texgen(p, out_texgen, reflect_mask);
1267 }
1268
1269 if (normal_mask) {
1270 struct ureg normal = get_eye_normal(p);
1271 emit_op1(p, VP_OPCODE_MOV, out_texgen, normal_mask, normal );
1272 }
1273
1274 if (copy_mask) {
1275 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1276 emit_op1(p, VP_OPCODE_MOV, out_texgen, copy_mask, in );
1277 }
1278 }
1279
1280 if (texmat_enabled) {
1281 struct ureg texmat[4];
1282 struct ureg in = (!is_undef(out_texgen) ?
1283 out_texgen :
1284 register_input(p, VERT_ATTRIB_TEX0+i));
1285 if (PREFER_DP4) {
1286 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1287 0, 3, STATE_MATRIX, texmat );
1288 emit_matrix_transform_vec4( p, out, texmat, in );
1289 }
1290 else {
1291 register_matrix_param6( p, STATE_MATRIX, STATE_TEXTURE, i,
1292 0, 3, STATE_MATRIX_TRANSPOSE, texmat );
1293 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1294 }
1295 }
1296
1297 release_temps(p);
1298 }
1299 else if (p->state->unit[i].texunit_really_enabled) {
1300 /* KW: _ReallyEnabled isn't sufficient? Need to know whether
1301 * this texture unit is referenced by the fragment shader.
1302 */
1303 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1304 }
1305 }
1306 }
1307
1308
1309 /* Seems like it could be tighter:
1310 */
1311 static void build_pointsize( struct tnl_program *p )
1312 {
1313 struct ureg eye = get_eye_position(p);
1314 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1315 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1316 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1317 struct ureg ut = get_temp(p);
1318
1319 /* 1, -Z, Z * Z, 1 */
1320 emit_op1(p, VP_OPCODE_MOV, ut, 0, swizzle1(get_identity_param(p), W));
1321 emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_YZ, ut, negate(swizzle1(eye, Z)));
1322 emit_op2(p, VP_OPCODE_MUL, ut, WRITEMASK_Z, ut, negate(swizzle1(eye, Z)));
1323
1324
1325 /* p1 + p2 * dist + p3 * dist * dist, 0 */
1326 emit_op2(p, VP_OPCODE_DP3, ut, 0, ut, state_attenuation);
1327
1328 /* 1 / factor */
1329 emit_op1(p, VP_OPCODE_RCP, ut, 0, ut );
1330
1331 /* out = pointSize / factor */
1332 emit_op2(p, VP_OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1333
1334 release_temp(p, ut);
1335 }
1336
1337 static void build_tnl_program( struct tnl_program *p )
1338 { /* Emit the program, starting with modelviewproject:
1339 */
1340 build_hpos(p);
1341
1342 /* Lighting calculations:
1343 */
1344 if (p->state->light_global_enabled)
1345 build_lighting(p);
1346 else
1347 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1348
1349 if (p->state->fog_enabled)
1350 build_fog(p);
1351
1352 if (p->state->texture_enabled_global)
1353 build_texture_transform(p);
1354
1355 if (p->state->point_attenuated)
1356 build_pointsize(p);
1357
1358 /* Finish up:
1359 */
1360 emit_op1(p, VP_OPCODE_END, undef, 0, undef);
1361
1362 /* Disassemble:
1363 */
1364 if (DISASSEM) {
1365 _mesa_printf ("\n");
1366 }
1367 }
1368
1369
1370 void create_new_program( const struct state_key *key,
1371 struct vertex_program *program,
1372 GLuint max_temps)
1373 {
1374 struct tnl_program p;
1375
1376 _mesa_memset(&p, 0, sizeof(p));
1377 p.state = key;
1378 p.program = program;
1379 p.eye_position = undef;
1380 p.eye_position_normalized = undef;
1381 p.eye_normal = undef;
1382 p.identity = undef;
1383 p.temp_in_use = 0;
1384
1385 if (max_temps >= sizeof(int) * 8)
1386 p.temp_reserved = 0;
1387 else
1388 p.temp_reserved = ~((1<<max_temps)-1);
1389
1390 p.program->Instructions = MALLOC(sizeof(struct vp_instruction) * MAX_INSN);
1391 p.program->Base.String = 0;
1392 p.program->Base.NumInstructions =
1393 p.program->Base.NumTemporaries =
1394 p.program->Base.NumParameters =
1395 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1396 p.program->Parameters = _mesa_new_parameter_list();
1397 p.program->InputsRead = 0;
1398 p.program->OutputsWritten = 0;
1399
1400 build_tnl_program( &p );
1401 }
1402
1403 static void *search_cache( struct tnl_cache *cache,
1404 GLuint hash,
1405 const void *key,
1406 GLuint keysize)
1407 {
1408 struct tnl_cache *c;
1409
1410 for (c = cache; c; c = c->next) {
1411 if (c->hash == hash && memcmp(c->key, key, keysize) == 0)
1412 return c->data;
1413 }
1414
1415 return NULL;
1416 }
1417
1418 static void cache_item( struct tnl_cache **cache,
1419 GLuint hash,
1420 void *key,
1421 void *data )
1422 {
1423 struct tnl_cache *c = MALLOC(sizeof(*c));
1424 c->hash = hash;
1425 c->key = key;
1426 c->data = data;
1427 c->next = *cache;
1428 *cache = c;
1429 }
1430
1431 static GLuint hash_key( struct state_key *key )
1432 {
1433 GLuint *ikey = (GLuint *)key;
1434 GLuint hash = 0, i;
1435
1436 /* I'm sure this can be improved on, but speed is important:
1437 */
1438 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1439 hash ^= ikey[i];
1440
1441 return hash;
1442 }
1443
1444 void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1445 {
1446 TNLcontext *tnl = TNL_CONTEXT(ctx);
1447 struct state_key *key;
1448 GLuint hash;
1449
1450 if (ctx->VertexProgram._Enabled)
1451 return;
1452
1453 /* Grab all the relevent state and put it in a single structure:
1454 */
1455 key = make_state_key(ctx);
1456 hash = hash_key(key);
1457
1458 /* Look for an already-prepared program for this state:
1459 */
1460 ctx->_TnlProgram = (struct vertex_program *)
1461 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1462
1463 /* OK, we'll have to build a new one:
1464 */
1465 if (!ctx->_TnlProgram) {
1466 if (0)
1467 _mesa_printf("Build new TNL program\n");
1468
1469 ctx->_TnlProgram = (struct vertex_program *)
1470 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1471
1472 create_new_program( key, ctx->_TnlProgram,
1473 ctx->Const.MaxVertexProgramTemps );
1474
1475 cache_item(&tnl->vp_cache, hash, key, ctx->_TnlProgram );
1476 }
1477 else {
1478 if (0)
1479 _mesa_printf("Found existing TNL program for key %x\n", hash);
1480 }
1481
1482 /* Need a BindProgram callback for the driver?
1483 */
1484 }
1485
1486
1487 void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1488 {
1489 TNLcontext *tnl = TNL_CONTEXT(ctx);
1490 struct tnl_cache *a, *tmp;
1491
1492 for (a = tnl->vp_cache ; a; a = tmp) {
1493 tmp = a->next;
1494 FREE(a->key);
1495 FREE(a->data);
1496 FREE(a);
1497 }
1498 }