fix fog, rescale_normals bugs (from gallium branch)
[mesa.git] / src / mesa / tnl / t_vp_build.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2007 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "shader/program.h"
37 #include "shader/prog_instruction.h"
38 #include "shader/prog_parameter.h"
39 #include "shader/prog_print.h"
40 #include "shader/prog_statevars.h"
41 #include "t_context.h" /* NOTE: very light dependency on this */
42 #include "t_vp_build.h"
43
44
45 struct state_key {
46 unsigned light_global_enabled:1;
47 unsigned light_local_viewer:1;
48 unsigned light_twoside:1;
49 unsigned light_color_material:1;
50 unsigned light_color_material_mask:12;
51 unsigned light_material_mask:12;
52
53 unsigned normalize:1;
54 unsigned rescale_normals:1;
55 unsigned fog_source_is_depth:1;
56 unsigned tnl_do_vertex_fog:1;
57 unsigned separate_specular:1;
58 unsigned fog_mode:2;
59 unsigned point_attenuated:1;
60 unsigned texture_enabled_global:1;
61 unsigned fragprog_inputs_read:12;
62
63 struct {
64 unsigned light_enabled:1;
65 unsigned light_eyepos3_is_zero:1;
66 unsigned light_spotcutoff_is_180:1;
67 unsigned light_attenuated:1;
68 unsigned texunit_really_enabled:1;
69 unsigned texmat_enabled:1;
70 unsigned texgen_enabled:4;
71 unsigned texgen_mode0:4;
72 unsigned texgen_mode1:4;
73 unsigned texgen_mode2:4;
74 unsigned texgen_mode3:4;
75 } unit[8];
76 };
77
78
79
80 #define FOG_NONE 0
81 #define FOG_LINEAR 1
82 #define FOG_EXP 2
83 #define FOG_EXP2 3
84
85 static GLuint translate_fog_mode( GLenum mode )
86 {
87 switch (mode) {
88 case GL_LINEAR: return FOG_LINEAR;
89 case GL_EXP: return FOG_EXP;
90 case GL_EXP2: return FOG_EXP2;
91 default: return FOG_NONE;
92 }
93 }
94
95 #define TXG_NONE 0
96 #define TXG_OBJ_LINEAR 1
97 #define TXG_EYE_LINEAR 2
98 #define TXG_SPHERE_MAP 3
99 #define TXG_REFLECTION_MAP 4
100 #define TXG_NORMAL_MAP 5
101
102 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
103 {
104 if (!enabled)
105 return TXG_NONE;
106
107 switch (mode) {
108 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
109 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
110 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
111 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
112 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
113 default: return TXG_NONE;
114 }
115 }
116
117 static struct state_key *make_state_key( GLcontext *ctx )
118 {
119 TNLcontext *tnl = TNL_CONTEXT(ctx);
120 struct vertex_buffer *VB = &tnl->vb;
121 const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
122 struct state_key *key = CALLOC_STRUCT(state_key);
123 GLuint i;
124
125 /* This now relies on texenvprogram.c being active:
126 */
127 assert(fp);
128
129 key->fragprog_inputs_read = fp->Base.InputsRead;
130
131 key->separate_specular = (ctx->Light.Model.ColorControl ==
132 GL_SEPARATE_SPECULAR_COLOR);
133
134 if (ctx->Light.Enabled) {
135 key->light_global_enabled = 1;
136
137 if (ctx->Light.Model.LocalViewer)
138 key->light_local_viewer = 1;
139
140 if (ctx->Light.Model.TwoSide)
141 key->light_twoside = 1;
142
143 if (ctx->Light.ColorMaterialEnabled) {
144 key->light_color_material = 1;
145 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
146 }
147
148 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
149 if (VB->AttribPtr[i]->stride)
150 key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
151
152 for (i = 0; i < MAX_LIGHTS; i++) {
153 struct gl_light *light = &ctx->Light.Light[i];
154
155 if (light->Enabled) {
156 key->unit[i].light_enabled = 1;
157
158 if (light->EyePosition[3] == 0.0)
159 key->unit[i].light_eyepos3_is_zero = 1;
160
161 if (light->SpotCutoff == 180.0)
162 key->unit[i].light_spotcutoff_is_180 = 1;
163
164 if (light->ConstantAttenuation != 1.0 ||
165 light->LinearAttenuation != 0.0 ||
166 light->QuadraticAttenuation != 0.0)
167 key->unit[i].light_attenuated = 1;
168 }
169 }
170 }
171
172 if (ctx->Transform.Normalize)
173 key->normalize = 1;
174
175 if (ctx->Transform.RescaleNormals)
176 key->rescale_normals = 1;
177
178 key->fog_mode = translate_fog_mode(fp->FogOption);
179
180 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
181 key->fog_source_is_depth = 1;
182
183 if (tnl->_DoVertexFog)
184 key->tnl_do_vertex_fog = 1;
185
186 if (ctx->Point._Attenuated)
187 key->point_attenuated = 1;
188
189 if (ctx->Texture._TexGenEnabled ||
190 ctx->Texture._TexMatEnabled ||
191 ctx->Texture._EnabledUnits)
192 key->texture_enabled_global = 1;
193
194 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
195 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
196
197 if (texUnit->_ReallyEnabled)
198 key->unit[i].texunit_really_enabled = 1;
199
200 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
201 key->unit[i].texmat_enabled = 1;
202
203 if (texUnit->TexGenEnabled) {
204 key->unit[i].texgen_enabled = 1;
205
206 key->unit[i].texgen_mode0 =
207 translate_texgen( texUnit->TexGenEnabled & (1<<0),
208 texUnit->GenModeS );
209 key->unit[i].texgen_mode1 =
210 translate_texgen( texUnit->TexGenEnabled & (1<<1),
211 texUnit->GenModeT );
212 key->unit[i].texgen_mode2 =
213 translate_texgen( texUnit->TexGenEnabled & (1<<2),
214 texUnit->GenModeR );
215 key->unit[i].texgen_mode3 =
216 translate_texgen( texUnit->TexGenEnabled & (1<<3),
217 texUnit->GenModeQ );
218 }
219 }
220
221 return key;
222 }
223
224
225
226 /* Very useful debugging tool - produces annotated listing of
227 * generated program with line/function references for each
228 * instruction back into this file:
229 */
230 #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
231
232 /* Should be tunable by the driver - do we want to do matrix
233 * multiplications with DP4's or with MUL/MAD's? SSE works better
234 * with the latter, drivers may differ.
235 */
236 #define PREFER_DP4 0
237
238 #define MAX_INSN 256
239
240 /* Use uregs to represent registers internally, translate to Mesa's
241 * expected formats on emit.
242 *
243 * NOTE: These are passed by value extensively in this file rather
244 * than as usual by pointer reference. If this disturbs you, try
245 * remembering they are just 32bits in size.
246 *
247 * GCC is smart enough to deal with these dword-sized structures in
248 * much the same way as if I had defined them as dwords and was using
249 * macros to access and set the fields. This is much nicer and easier
250 * to evolve.
251 */
252 struct ureg {
253 GLuint file:4;
254 GLint idx:8; /* relative addressing may be negative */
255 GLuint negate:1;
256 GLuint swz:12;
257 GLuint pad:7;
258 };
259
260
261 struct tnl_program {
262 const struct state_key *state;
263 struct gl_vertex_program *program;
264
265 GLuint temp_in_use;
266 GLuint temp_reserved;
267
268 struct ureg eye_position;
269 struct ureg eye_position_normalized;
270 struct ureg eye_normal;
271 struct ureg identity;
272
273 GLuint materials;
274 GLuint color_materials;
275 };
276
277
278 static const struct ureg undef = {
279 PROGRAM_UNDEFINED,
280 ~0,
281 0,
282 0,
283 0
284 };
285
286 /* Local shorthand:
287 */
288 #define X SWIZZLE_X
289 #define Y SWIZZLE_Y
290 #define Z SWIZZLE_Z
291 #define W SWIZZLE_W
292
293
294 /* Construct a ureg:
295 */
296 static struct ureg make_ureg(GLuint file, GLint idx)
297 {
298 struct ureg reg;
299 reg.file = file;
300 reg.idx = idx;
301 reg.negate = 0;
302 reg.swz = SWIZZLE_NOOP;
303 reg.pad = 0;
304 return reg;
305 }
306
307
308
309 static struct ureg negate( struct ureg reg )
310 {
311 reg.negate ^= 1;
312 return reg;
313 }
314
315
316 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
317 {
318 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
319 GET_SWZ(reg.swz, y),
320 GET_SWZ(reg.swz, z),
321 GET_SWZ(reg.swz, w));
322
323 return reg;
324 }
325
326 static struct ureg swizzle1( struct ureg reg, int x )
327 {
328 return swizzle(reg, x, x, x, x);
329 }
330
331 static struct ureg get_temp( struct tnl_program *p )
332 {
333 int bit = _mesa_ffs( ~p->temp_in_use );
334 if (!bit) {
335 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
336 _mesa_exit(1);
337 }
338
339 if ((GLuint) bit > p->program->Base.NumTemporaries)
340 p->program->Base.NumTemporaries = bit;
341
342 p->temp_in_use |= 1<<(bit-1);
343 return make_ureg(PROGRAM_TEMPORARY, bit-1);
344 }
345
346 static struct ureg reserve_temp( struct tnl_program *p )
347 {
348 struct ureg temp = get_temp( p );
349 p->temp_reserved |= 1<<temp.idx;
350 return temp;
351 }
352
353 static void release_temp( struct tnl_program *p, struct ureg reg )
354 {
355 if (reg.file == PROGRAM_TEMPORARY) {
356 p->temp_in_use &= ~(1<<reg.idx);
357 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
358 }
359 }
360
361 static void release_temps( struct tnl_program *p )
362 {
363 p->temp_in_use = p->temp_reserved;
364 }
365
366
367
368 static struct ureg register_input( struct tnl_program *p, GLuint input )
369 {
370 p->program->Base.InputsRead |= (1<<input);
371 return make_ureg(PROGRAM_INPUT, input);
372 }
373
374 static struct ureg register_output( struct tnl_program *p, GLuint output )
375 {
376 p->program->Base.OutputsWritten |= (1<<output);
377 return make_ureg(PROGRAM_OUTPUT, output);
378 }
379
380 static struct ureg register_const4f( struct tnl_program *p,
381 GLfloat s0,
382 GLfloat s1,
383 GLfloat s2,
384 GLfloat s3)
385 {
386 GLfloat values[4];
387 GLint idx;
388 GLuint swizzle;
389 values[0] = s0;
390 values[1] = s1;
391 values[2] = s2;
392 values[3] = s3;
393 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
394 &swizzle );
395 ASSERT(swizzle == SWIZZLE_NOOP);
396 return make_ureg(PROGRAM_STATE_VAR, idx);
397 }
398
399 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
400 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
401 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
402 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
403
404 static GLboolean is_undef( struct ureg reg )
405 {
406 return reg.file == PROGRAM_UNDEFINED;
407 }
408
409 static struct ureg get_identity_param( struct tnl_program *p )
410 {
411 if (is_undef(p->identity))
412 p->identity = register_const4f(p, 0,0,0,1);
413
414 return p->identity;
415 }
416
417 static struct ureg register_param5(struct tnl_program *p,
418 GLint s0,
419 GLint s1,
420 GLint s2,
421 GLint s3,
422 GLint s4)
423 {
424 gl_state_index tokens[STATE_LENGTH];
425 GLint idx;
426 tokens[0] = s0;
427 tokens[1] = s1;
428 tokens[2] = s2;
429 tokens[3] = s3;
430 tokens[4] = s4;
431 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432 return make_ureg(PROGRAM_STATE_VAR, idx);
433 }
434
435
436 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
437 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
438 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
439 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442 static void register_matrix_param5( struct tnl_program *p,
443 GLint s0, /* modelview, projection, etc */
444 GLint s1, /* texture matrix number */
445 GLint s2, /* first row */
446 GLint s3, /* last row */
447 GLint s4, /* inverse, transpose, etc */
448 struct ureg *matrix )
449 {
450 GLint i;
451
452 /* This is a bit sad as the support is there to pull the whole
453 * matrix out in one go:
454 */
455 for (i = 0; i <= s3 - s2; i++)
456 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
457 }
458
459
460 /**
461 * Convert a ureg source register to a prog_src_register.
462 */
463 static void emit_arg( struct prog_src_register *src,
464 struct ureg reg )
465 {
466 assert(reg.file != PROGRAM_OUTPUT);
467 src->File = reg.file;
468 src->Index = reg.idx;
469 src->Swizzle = reg.swz;
470 src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
471 src->Abs = 0;
472 src->NegateAbs = 0;
473 src->RelAddr = 0;
474 }
475
476 /**
477 * Convert a ureg dest register to a prog_dst_register.
478 */
479 static void emit_dst( struct prog_dst_register *dst,
480 struct ureg reg, GLuint mask )
481 {
482 /* Check for legal output register type. UNDEFINED will occur in
483 * instruction that don't produce a result (like END).
484 */
485 assert(reg.file == PROGRAM_TEMPORARY ||
486 reg.file == PROGRAM_OUTPUT ||
487 reg.file == PROGRAM_UNDEFINED);
488 dst->File = reg.file;
489 dst->Index = reg.idx;
490 /* allow zero as a shorthand for xyzw */
491 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
492 dst->CondMask = COND_TR;
493 dst->CondSwizzle = 0;
494 dst->CondSrc = 0;
495 dst->pad = 0;
496 }
497
498 static void debug_insn( struct prog_instruction *inst, const char *fn,
499 GLuint line )
500 {
501 if (DISASSEM) {
502 static const char *last_fn;
503
504 if (fn != last_fn) {
505 last_fn = fn;
506 _mesa_printf("%s:\n", fn);
507 }
508
509 _mesa_printf("%d:\t", line);
510 _mesa_print_instruction(inst);
511 }
512 }
513
514
515 static void emit_op3fn(struct tnl_program *p,
516 GLuint op,
517 struct ureg dest,
518 GLuint mask,
519 struct ureg src0,
520 struct ureg src1,
521 struct ureg src2,
522 const char *fn,
523 GLuint line)
524 {
525 GLuint nr = p->program->Base.NumInstructions++;
526 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
527
528 if (p->program->Base.NumInstructions > MAX_INSN) {
529 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
530 return;
531 }
532
533 inst->Opcode = (enum prog_opcode) op;
534 inst->StringPos = 0;
535 inst->Data = 0;
536
537 emit_arg( &inst->SrcReg[0], src0 );
538 emit_arg( &inst->SrcReg[1], src1 );
539 emit_arg( &inst->SrcReg[2], src2 );
540
541 emit_dst( &inst->DstReg, dest, mask );
542
543 debug_insn(inst, fn, line);
544 }
545
546
547 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
548 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
549
550 #define emit_op2(p, op, dst, mask, src0, src1) \
551 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
552
553 #define emit_op1(p, op, dst, mask, src0) \
554 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
555
556
557 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
558 {
559 if (reg.file == PROGRAM_TEMPORARY &&
560 !(p->temp_reserved & (1<<reg.idx)))
561 return reg;
562 else {
563 struct ureg temp = get_temp(p);
564 emit_op1(p, OPCODE_MOV, temp, 0, reg);
565 return temp;
566 }
567 }
568
569
570 /* Currently no tracking performed of input/output/register size or
571 * active elements. Could be used to reduce these operations, as
572 * could the matrix type.
573 */
574 static void emit_matrix_transform_vec4( struct tnl_program *p,
575 struct ureg dest,
576 const struct ureg *mat,
577 struct ureg src)
578 {
579 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
580 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
581 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
582 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
583 }
584
585 /* This version is much easier to implement if writemasks are not
586 * supported natively on the target or (like SSE), the target doesn't
587 * have a clean/obvious dotproduct implementation.
588 */
589 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
590 struct ureg dest,
591 const struct ureg *mat,
592 struct ureg src)
593 {
594 struct ureg tmp;
595
596 if (dest.file != PROGRAM_TEMPORARY)
597 tmp = get_temp(p);
598 else
599 tmp = dest;
600
601 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
602 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
603 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
604 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
605
606 if (dest.file != PROGRAM_TEMPORARY)
607 release_temp(p, tmp);
608 }
609
610 static void emit_matrix_transform_vec3( struct tnl_program *p,
611 struct ureg dest,
612 const struct ureg *mat,
613 struct ureg src)
614 {
615 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
616 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
617 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
618 }
619
620
621 static void emit_normalize_vec3( struct tnl_program *p,
622 struct ureg dest,
623 struct ureg src )
624 {
625 struct ureg tmp = get_temp(p);
626 emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
627 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
628 emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
629 release_temp(p, tmp);
630 }
631
632 static void emit_passthrough( struct tnl_program *p,
633 GLuint input,
634 GLuint output )
635 {
636 struct ureg out = register_output(p, output);
637 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
638 }
639
640 static struct ureg get_eye_position( struct tnl_program *p )
641 {
642 if (is_undef(p->eye_position)) {
643 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
644 struct ureg modelview[4];
645
646 p->eye_position = reserve_temp(p);
647
648 if (PREFER_DP4) {
649 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
650 0, modelview );
651
652 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
653 }
654 else {
655 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
656 STATE_MATRIX_TRANSPOSE, modelview );
657
658 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
659 }
660 }
661
662 return p->eye_position;
663 }
664
665
666 static struct ureg get_eye_position_normalized( struct tnl_program *p )
667 {
668 if (is_undef(p->eye_position_normalized)) {
669 struct ureg eye = get_eye_position(p);
670 p->eye_position_normalized = reserve_temp(p);
671 emit_normalize_vec3(p, p->eye_position_normalized, eye);
672 }
673
674 return p->eye_position_normalized;
675 }
676
677
678 static struct ureg get_eye_normal( struct tnl_program *p )
679 {
680 if (is_undef(p->eye_normal)) {
681 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
682 struct ureg mvinv[3];
683
684 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
685 STATE_MATRIX_INVTRANS, mvinv );
686
687 p->eye_normal = reserve_temp(p);
688
689 /* Transform to eye space:
690 */
691 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
692
693 /* Normalize/Rescale:
694 */
695 if (p->state->normalize) {
696 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
697 }
698 else if (p->state->rescale_normals) {
699 struct ureg rescale = register_param2(p, STATE_INTERNAL,
700 STATE_NORMAL_SCALE);
701
702 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, p->eye_normal,
703 swizzle1(rescale, X));
704 }
705 }
706
707 return p->eye_normal;
708 }
709
710
711
712 static void build_hpos( struct tnl_program *p )
713 {
714 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
715 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
716 struct ureg mvp[4];
717
718 if (PREFER_DP4) {
719 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
720 0, mvp );
721 emit_matrix_transform_vec4( p, hpos, mvp, pos );
722 }
723 else {
724 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
725 STATE_MATRIX_TRANSPOSE, mvp );
726 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
727 }
728 }
729
730
731 static GLuint material_attrib( GLuint side, GLuint property )
732 {
733 return ((property - STATE_AMBIENT) * 2 +
734 side);
735 }
736
737 /* Get a bitmask of which material values vary on a per-vertex basis.
738 */
739 static void set_material_flags( struct tnl_program *p )
740 {
741 p->color_materials = 0;
742 p->materials = 0;
743
744 if (p->state->light_color_material) {
745 p->materials =
746 p->color_materials = p->state->light_color_material_mask;
747 }
748
749 p->materials |= p->state->light_material_mask;
750 }
751
752
753 static struct ureg get_material( struct tnl_program *p, GLuint side,
754 GLuint property )
755 {
756 GLuint attrib = material_attrib(side, property);
757
758 if (p->color_materials & (1<<attrib))
759 return register_input(p, VERT_ATTRIB_COLOR0);
760 else if (p->materials & (1<<attrib))
761 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
762 else
763 return register_param3( p, STATE_MATERIAL, side, property );
764 }
765
766 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
767 MAT_BIT_FRONT_AMBIENT | \
768 MAT_BIT_FRONT_DIFFUSE) << (side))
769
770 /* Either return a precalculated constant value or emit code to
771 * calculate these values dynamically in the case where material calls
772 * are present between begin/end pairs.
773 *
774 * Probably want to shift this to the program compilation phase - if
775 * we always emitted the calculation here, a smart compiler could
776 * detect that it was constant (given a certain set of inputs), and
777 * lift it out of the main loop. That way the programs created here
778 * would be independent of the vertex_buffer details.
779 */
780 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
781 {
782 if (p->materials & SCENE_COLOR_BITS(side)) {
783 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
784 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
785 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
786 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
787 struct ureg tmp = make_temp(p, material_diffuse);
788 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
789 material_ambient, material_emission);
790 return tmp;
791 }
792 else
793 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
794 }
795
796
797 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
798 GLuint side, GLuint property )
799 {
800 GLuint attrib = material_attrib(side, property);
801 if (p->materials & (1<<attrib)) {
802 struct ureg light_value =
803 register_param3(p, STATE_LIGHT, light, property);
804 struct ureg material_value = get_material(p, side, property);
805 struct ureg tmp = get_temp(p);
806 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
807 return tmp;
808 }
809 else
810 return register_param4(p, STATE_LIGHTPROD, light, side, property);
811 }
812
813 static struct ureg calculate_light_attenuation( struct tnl_program *p,
814 GLuint i,
815 struct ureg VPpli,
816 struct ureg dist )
817 {
818 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
819 STATE_ATTENUATION);
820 struct ureg att = get_temp(p);
821
822 /* Calculate spot attenuation:
823 */
824 if (!p->state->unit[i].light_spotcutoff_is_180) {
825 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
826 STATE_SPOT_DIR_NORMALIZED, i);
827 struct ureg spot = get_temp(p);
828 struct ureg slt = get_temp(p);
829
830 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
831 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
832 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
833 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
834
835 release_temp(p, spot);
836 release_temp(p, slt);
837 }
838
839 /* Calculate distance attenuation:
840 */
841 if (p->state->unit[i].light_attenuated) {
842
843 /* 1/d,d,d,1/d */
844 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
845 /* 1,d,d*d,1/d */
846 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
847 /* 1/dist-atten */
848 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
849
850 if (!p->state->unit[i].light_spotcutoff_is_180) {
851 /* dist-atten */
852 emit_op1(p, OPCODE_RCP, dist, 0, dist);
853 /* spot-atten * dist-atten */
854 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
855 } else {
856 /* dist-atten */
857 emit_op1(p, OPCODE_RCP, att, 0, dist);
858 }
859 }
860
861 return att;
862 }
863
864
865
866
867
868 /* Need to add some addtional parameters to allow lighting in object
869 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
870 * space lighting.
871 */
872 static void build_lighting( struct tnl_program *p )
873 {
874 const GLboolean twoside = p->state->light_twoside;
875 const GLboolean separate = p->state->separate_specular;
876 GLuint nr_lights = 0, count = 0;
877 struct ureg normal = get_eye_normal(p);
878 struct ureg lit = get_temp(p);
879 struct ureg dots = get_temp(p);
880 struct ureg _col0 = undef, _col1 = undef;
881 struct ureg _bfc0 = undef, _bfc1 = undef;
882 GLuint i;
883
884 for (i = 0; i < MAX_LIGHTS; i++)
885 if (p->state->unit[i].light_enabled)
886 nr_lights++;
887
888 set_material_flags(p);
889
890 {
891 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
892 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
893 release_temp(p, shininess);
894
895 _col0 = make_temp(p, get_scenecolor(p, 0));
896 if (separate)
897 _col1 = make_temp(p, get_identity_param(p));
898 else
899 _col1 = _col0;
900
901 }
902
903 if (twoside) {
904 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
905 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
906 negate(swizzle1(shininess,X)));
907 release_temp(p, shininess);
908
909 _bfc0 = make_temp(p, get_scenecolor(p, 1));
910 if (separate)
911 _bfc1 = make_temp(p, get_identity_param(p));
912 else
913 _bfc1 = _bfc0;
914 }
915
916
917 /* If no lights, still need to emit the scenecolor.
918 */
919 {
920 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
921 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
922 }
923
924 if (separate) {
925 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
926 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
927 }
928
929 if (twoside) {
930 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
931 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
932 }
933
934 if (twoside && separate) {
935 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
936 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
937 }
938
939 if (nr_lights == 0) {
940 release_temps(p);
941 return;
942 }
943
944
945 for (i = 0; i < MAX_LIGHTS; i++) {
946 if (p->state->unit[i].light_enabled) {
947 struct ureg half = undef;
948 struct ureg att = undef, VPpli = undef;
949
950 count++;
951
952 if (p->state->unit[i].light_eyepos3_is_zero) {
953 /* Can used precomputed constants in this case.
954 * Attenuation never applies to infinite lights.
955 */
956 VPpli = register_param3(p, STATE_LIGHT, i,
957 STATE_POSITION_NORMALIZED);
958 if (p->state->light_local_viewer) {
959 struct ureg eye_hat = get_eye_position_normalized(p);
960 half = get_temp(p);
961 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
962 emit_normalize_vec3(p, half, half);
963 } else {
964 half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
965 }
966 }
967 else {
968 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
969 STATE_POSITION);
970 struct ureg V = get_eye_position(p);
971 struct ureg dist = get_temp(p);
972 struct ureg tmpPpli = get_temp(p);
973
974 VPpli = get_temp(p);
975 half = get_temp(p);
976
977 /* In homogeneous object coordinates
978 */
979 emit_op1(p, OPCODE_RCP, dist, 0, swizzle1(Ppli, W));
980 emit_op2(p, OPCODE_MUL, tmpPpli, 0, Ppli, dist);
981
982 /* Calculate VPpli vector
983 */
984 emit_op2(p, OPCODE_SUB, VPpli, 0, tmpPpli, V);
985
986 /* Normalize VPpli. The dist value also used in
987 * attenuation below.
988 */
989 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
990 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
991 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
992
993
994 /* Calculate attenuation:
995 */
996 if (!p->state->unit[i].light_spotcutoff_is_180 ||
997 p->state->unit[i].light_attenuated) {
998 att = calculate_light_attenuation(p, i, VPpli, dist);
999 }
1000
1001
1002 /* Calculate viewer direction, or use infinite viewer:
1003 */
1004 if (p->state->light_local_viewer) {
1005 struct ureg eye_hat = get_eye_position_normalized(p);
1006 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1007 }
1008 else {
1009 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1010 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1011 }
1012
1013 emit_normalize_vec3(p, half, half);
1014
1015 release_temp(p, dist);
1016 release_temp(p, tmpPpli);
1017 }
1018
1019 /* Calculate dot products:
1020 */
1021 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1022 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1023
1024
1025 /* Front face lighting:
1026 */
1027 {
1028 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1029 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1030 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1031 struct ureg res0, res1;
1032 GLuint mask0, mask1;
1033
1034 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1035
1036 if (!is_undef(att))
1037 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1038
1039
1040 if (count == nr_lights) {
1041 if (separate) {
1042 mask0 = WRITEMASK_XYZ;
1043 mask1 = WRITEMASK_XYZ;
1044 res0 = register_output( p, VERT_RESULT_COL0 );
1045 res1 = register_output( p, VERT_RESULT_COL1 );
1046 }
1047 else {
1048 mask0 = 0;
1049 mask1 = WRITEMASK_XYZ;
1050 res0 = _col0;
1051 res1 = register_output( p, VERT_RESULT_COL0 );
1052 }
1053 } else {
1054 mask0 = 0;
1055 mask1 = 0;
1056 res0 = _col0;
1057 res1 = _col1;
1058 }
1059
1060 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1061 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1062 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1063
1064 release_temp(p, ambient);
1065 release_temp(p, diffuse);
1066 release_temp(p, specular);
1067 }
1068
1069 /* Back face lighting:
1070 */
1071 if (twoside) {
1072 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1073 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1074 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1075 struct ureg res0, res1;
1076 GLuint mask0, mask1;
1077
1078 emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1079
1080 if (!is_undef(att))
1081 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1082
1083 if (count == nr_lights) {
1084 if (separate) {
1085 mask0 = WRITEMASK_XYZ;
1086 mask1 = WRITEMASK_XYZ;
1087 res0 = register_output( p, VERT_RESULT_BFC0 );
1088 res1 = register_output( p, VERT_RESULT_BFC1 );
1089 }
1090 else {
1091 mask0 = 0;
1092 mask1 = WRITEMASK_XYZ;
1093 res0 = _bfc0;
1094 res1 = register_output( p, VERT_RESULT_BFC0 );
1095 }
1096 } else {
1097 res0 = _bfc0;
1098 res1 = _bfc1;
1099 mask0 = 0;
1100 mask1 = 0;
1101 }
1102
1103 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1104 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1105 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1106
1107 release_temp(p, ambient);
1108 release_temp(p, diffuse);
1109 release_temp(p, specular);
1110 }
1111
1112 release_temp(p, half);
1113 release_temp(p, VPpli);
1114 release_temp(p, att);
1115 }
1116 }
1117
1118 release_temps( p );
1119 }
1120
1121
1122 static void build_fog( struct tnl_program *p )
1123 {
1124 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1125 struct ureg input;
1126
1127 if (p->state->fog_source_is_depth) {
1128 input = swizzle1(get_eye_position(p), Z);
1129 }
1130 else {
1131 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1132 }
1133
1134 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1135 struct ureg params = register_param2(p, STATE_INTERNAL,
1136 STATE_FOG_PARAMS_OPTIMIZED);
1137 struct ureg tmp = get_temp(p);
1138 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1139
1140 if (useabs) {
1141 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1142 }
1143
1144 switch (p->state->fog_mode) {
1145 case FOG_LINEAR: {
1146 struct ureg id = get_identity_param(p);
1147 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1148 swizzle1(params,X), swizzle1(params,Y));
1149 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1150 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1151 break;
1152 }
1153 case FOG_EXP:
1154 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1155 swizzle1(params,Z));
1156 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1157 break;
1158 case FOG_EXP2:
1159 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1160 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1161 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1162 break;
1163 }
1164
1165 release_temp(p, tmp);
1166 }
1167 else {
1168 /* results = incoming fog coords (compute fog per-fragment later)
1169 *
1170 * KW: Is it really necessary to do anything in this case?
1171 * BP: Yes, we always need to compute the absolute value, unless
1172 * we want to push that down into the fragment program...
1173 */
1174 GLboolean useabs = GL_TRUE;
1175 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1176 }
1177 }
1178
1179 static void build_reflect_texgen( struct tnl_program *p,
1180 struct ureg dest,
1181 GLuint writemask )
1182 {
1183 struct ureg normal = get_eye_normal(p);
1184 struct ureg eye_hat = get_eye_position_normalized(p);
1185 struct ureg tmp = get_temp(p);
1186
1187 /* n.u */
1188 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1189 /* 2n.u */
1190 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1191 /* (-2n.u)n + u */
1192 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1193
1194 release_temp(p, tmp);
1195 }
1196
1197 static void build_sphere_texgen( struct tnl_program *p,
1198 struct ureg dest,
1199 GLuint writemask )
1200 {
1201 struct ureg normal = get_eye_normal(p);
1202 struct ureg eye_hat = get_eye_position_normalized(p);
1203 struct ureg tmp = get_temp(p);
1204 struct ureg half = register_scalar_const(p, .5);
1205 struct ureg r = get_temp(p);
1206 struct ureg inv_m = get_temp(p);
1207 struct ureg id = get_identity_param(p);
1208
1209 /* Could share the above calculations, but it would be
1210 * a fairly odd state for someone to set (both sphere and
1211 * reflection active for different texture coordinate
1212 * components. Of course - if two texture units enable
1213 * reflect and/or sphere, things start to tilt in favour
1214 * of seperating this out:
1215 */
1216
1217 /* n.u */
1218 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1219 /* 2n.u */
1220 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1221 /* (-2n.u)n + u */
1222 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1223 /* r + 0,0,1 */
1224 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1225 /* rx^2 + ry^2 + (rz+1)^2 */
1226 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1227 /* 2/m */
1228 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1229 /* 1/m */
1230 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1231 /* r/m + 1/2 */
1232 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1233
1234 release_temp(p, tmp);
1235 release_temp(p, r);
1236 release_temp(p, inv_m);
1237 }
1238
1239
1240 static void build_texture_transform( struct tnl_program *p )
1241 {
1242 GLuint i, j;
1243
1244 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1245
1246 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1247 continue;
1248
1249 if (p->state->unit[i].texgen_enabled ||
1250 p->state->unit[i].texmat_enabled) {
1251
1252 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1253 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1254 struct ureg out_texgen = undef;
1255
1256 if (p->state->unit[i].texgen_enabled) {
1257 GLuint copy_mask = 0;
1258 GLuint sphere_mask = 0;
1259 GLuint reflect_mask = 0;
1260 GLuint normal_mask = 0;
1261 GLuint modes[4];
1262
1263 if (texmat_enabled)
1264 out_texgen = get_temp(p);
1265 else
1266 out_texgen = out;
1267
1268 modes[0] = p->state->unit[i].texgen_mode0;
1269 modes[1] = p->state->unit[i].texgen_mode1;
1270 modes[2] = p->state->unit[i].texgen_mode2;
1271 modes[3] = p->state->unit[i].texgen_mode3;
1272
1273 for (j = 0; j < 4; j++) {
1274 switch (modes[j]) {
1275 case TXG_OBJ_LINEAR: {
1276 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1277 struct ureg plane =
1278 register_param3(p, STATE_TEXGEN, i,
1279 STATE_TEXGEN_OBJECT_S + j);
1280
1281 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1282 obj, plane );
1283 break;
1284 }
1285 case TXG_EYE_LINEAR: {
1286 struct ureg eye = get_eye_position(p);
1287 struct ureg plane =
1288 register_param3(p, STATE_TEXGEN, i,
1289 STATE_TEXGEN_EYE_S + j);
1290
1291 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1292 eye, plane );
1293 break;
1294 }
1295 case TXG_SPHERE_MAP:
1296 sphere_mask |= WRITEMASK_X << j;
1297 break;
1298 case TXG_REFLECTION_MAP:
1299 reflect_mask |= WRITEMASK_X << j;
1300 break;
1301 case TXG_NORMAL_MAP:
1302 normal_mask |= WRITEMASK_X << j;
1303 break;
1304 case TXG_NONE:
1305 copy_mask |= WRITEMASK_X << j;
1306 }
1307
1308 }
1309
1310
1311 if (sphere_mask) {
1312 build_sphere_texgen(p, out_texgen, sphere_mask);
1313 }
1314
1315 if (reflect_mask) {
1316 build_reflect_texgen(p, out_texgen, reflect_mask);
1317 }
1318
1319 if (normal_mask) {
1320 struct ureg normal = get_eye_normal(p);
1321 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1322 }
1323
1324 if (copy_mask) {
1325 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1326 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1327 }
1328 }
1329
1330 if (texmat_enabled) {
1331 struct ureg texmat[4];
1332 struct ureg in = (!is_undef(out_texgen) ?
1333 out_texgen :
1334 register_input(p, VERT_ATTRIB_TEX0+i));
1335 if (PREFER_DP4) {
1336 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1337 0, texmat );
1338 emit_matrix_transform_vec4( p, out, texmat, in );
1339 }
1340 else {
1341 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1342 STATE_MATRIX_TRANSPOSE, texmat );
1343 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1344 }
1345 }
1346
1347 release_temps(p);
1348 }
1349 else {
1350 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1351 }
1352 }
1353 }
1354
1355
1356 static void build_pointsize( struct tnl_program *p )
1357 {
1358 struct ureg eye = get_eye_position(p);
1359 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1360 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1361 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1362 struct ureg ut = get_temp(p);
1363
1364 /* dist = |eyez| */
1365 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1366 /* p1 + dist * (p2 + dist * p3); */
1367 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1368 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1369 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1370 ut, swizzle1(state_attenuation, X));
1371
1372 /* 1 / sqrt(factor) */
1373 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1374
1375 #if 1
1376 /* out = pointSize / sqrt(factor) */
1377 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1378 #else
1379 /* not sure, might make sense to do clamping here,
1380 but it's not done in t_vb_points neither */
1381 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1382 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1383 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1384 #endif
1385
1386 release_temp(p, ut);
1387 }
1388
1389 static void build_tnl_program( struct tnl_program *p )
1390 { /* Emit the program, starting with modelviewproject:
1391 */
1392 build_hpos(p);
1393
1394 /* Lighting calculations:
1395 */
1396 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1397 if (p->state->light_global_enabled)
1398 build_lighting(p);
1399 else {
1400 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1401 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1402
1403 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1404 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1405 }
1406 }
1407
1408 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1409 p->state->fog_mode != FOG_NONE)
1410 build_fog(p);
1411
1412 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1413 build_texture_transform(p);
1414
1415 if (p->state->point_attenuated)
1416 build_pointsize(p);
1417
1418 /* Finish up:
1419 */
1420 emit_op1(p, OPCODE_END, undef, 0, undef);
1421
1422 /* Disassemble:
1423 */
1424 if (DISASSEM) {
1425 _mesa_printf ("\n");
1426 }
1427 }
1428
1429
1430 static void
1431 create_new_program( const struct state_key *key,
1432 struct gl_vertex_program *program,
1433 GLuint max_temps)
1434 {
1435 struct tnl_program p;
1436
1437 _mesa_memset(&p, 0, sizeof(p));
1438 p.state = key;
1439 p.program = program;
1440 p.eye_position = undef;
1441 p.eye_position_normalized = undef;
1442 p.eye_normal = undef;
1443 p.identity = undef;
1444 p.temp_in_use = 0;
1445
1446 if (max_temps >= sizeof(int) * 8)
1447 p.temp_reserved = 0;
1448 else
1449 p.temp_reserved = ~((1<<max_temps)-1);
1450
1451 p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN);
1452 p.program->Base.String = NULL;
1453 p.program->Base.NumInstructions =
1454 p.program->Base.NumTemporaries =
1455 p.program->Base.NumParameters =
1456 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1457 p.program->Base.Parameters = _mesa_new_parameter_list();
1458 p.program->Base.InputsRead = 0;
1459 p.program->Base.OutputsWritten = 0;
1460
1461 build_tnl_program( &p );
1462 }
1463
1464 static void *search_cache( struct tnl_cache *cache,
1465 GLuint hash,
1466 const void *key,
1467 GLuint keysize)
1468 {
1469 struct tnl_cache_item *c;
1470
1471 for (c = cache->items[hash % cache->size]; c; c = c->next) {
1472 if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1473 return c->data;
1474 }
1475
1476 return NULL;
1477 }
1478
1479 static void rehash( struct tnl_cache *cache )
1480 {
1481 struct tnl_cache_item **items;
1482 struct tnl_cache_item *c, *next;
1483 GLuint size, i;
1484
1485 size = cache->size * 3;
1486 items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1487 _mesa_memset(items, 0, size * sizeof(*items));
1488
1489 for (i = 0; i < cache->size; i++)
1490 for (c = cache->items[i]; c; c = next) {
1491 next = c->next;
1492 c->next = items[c->hash % size];
1493 items[c->hash % size] = c;
1494 }
1495
1496 FREE(cache->items);
1497 cache->items = items;
1498 cache->size = size;
1499 }
1500
1501 static void cache_item( struct tnl_cache *cache,
1502 GLuint hash,
1503 void *key,
1504 void *data )
1505 {
1506 struct tnl_cache_item *c = (struct tnl_cache_item*) _mesa_malloc(sizeof(*c));
1507 c->hash = hash;
1508 c->key = key;
1509 c->data = data;
1510
1511 if (++cache->n_items > cache->size * 1.5)
1512 rehash(cache);
1513
1514 c->next = cache->items[hash % cache->size];
1515 cache->items[hash % cache->size] = c;
1516 }
1517
1518 static GLuint hash_key( struct state_key *key )
1519 {
1520 GLuint *ikey = (GLuint *)key;
1521 GLuint hash = 0, i;
1522
1523 /* I'm sure this can be improved on, but speed is important:
1524 */
1525 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1526 hash ^= ikey[i];
1527
1528 return hash;
1529 }
1530
1531 void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1532 {
1533 TNLcontext *tnl = TNL_CONTEXT(ctx);
1534 struct state_key *key;
1535 GLuint hash;
1536 const struct gl_vertex_program *prev = ctx->VertexProgram._Current;
1537
1538 if (!ctx->VertexProgram._Current ||
1539 ctx->VertexProgram._Current == ctx->VertexProgram._TnlProgram) {
1540 /* Grab all the relevent state and put it in a single structure:
1541 */
1542 key = make_state_key(ctx);
1543 hash = hash_key(key);
1544
1545 /* Look for an already-prepared program for this state:
1546 */
1547 ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1548 search_cache( tnl->vp_cache, hash, key, sizeof(*key) );
1549
1550 /* OK, we'll have to build a new one:
1551 */
1552 if (!ctx->VertexProgram._TnlProgram) {
1553 if (0)
1554 _mesa_printf("Build new TNL program\n");
1555
1556 ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *)
1557 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1558
1559 create_new_program( key, ctx->VertexProgram._TnlProgram,
1560 ctx->Const.VertexProgram.MaxTemps );
1561
1562 if (ctx->Driver.ProgramStringNotify)
1563 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1564 &ctx->VertexProgram._TnlProgram->Base );
1565
1566 cache_item(tnl->vp_cache, hash, key, ctx->VertexProgram._TnlProgram );
1567 }
1568 else {
1569 FREE(key);
1570 if (0)
1571 _mesa_printf("Found existing TNL program for key %x\n", hash);
1572 }
1573 ctx->VertexProgram._Current = ctx->VertexProgram._TnlProgram;
1574 }
1575
1576 /* Tell the driver about the change. Could define a new target for
1577 * this?
1578 */
1579 if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) {
1580 ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB,
1581 (struct gl_program *) ctx->VertexProgram._Current);
1582 }
1583 }
1584
1585 void _tnl_ProgramCacheInit( GLcontext *ctx )
1586 {
1587 TNLcontext *tnl = TNL_CONTEXT(ctx);
1588
1589 tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache));
1590 tnl->vp_cache->size = 17;
1591 tnl->vp_cache->n_items = 0;
1592 tnl->vp_cache->items = (struct tnl_cache_item**)
1593 _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items));
1594 }
1595
1596 void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1597 {
1598 TNLcontext *tnl = TNL_CONTEXT(ctx);
1599 struct tnl_cache_item *c, *next;
1600 GLuint i;
1601
1602 for (i = 0; i < tnl->vp_cache->size; i++)
1603 for (c = tnl->vp_cache->items[i]; c; c = next) {
1604 next = c->next;
1605 FREE(c->key);
1606 FREE(c->data);
1607 FREE(c);
1608 }
1609
1610 FREE(tnl->vp_cache->items);
1611 FREE(tnl->vp_cache);
1612 }