mesa/glthread: enable immediate mode
[mesa.git] / src / mesa / vbo / vbo_exec_api.c
1 /**************************************************************************
2
3 Copyright 2002-2008 VMware, Inc.
4
5 All Rights Reserved.
6
7 Permission is hereby granted, free of charge, to any person obtaining a
8 copy of this software and associated documentation files (the "Software"),
9 to deal in the Software without restriction, including without limitation
10 on the rights to use, copy, modify, merge, publish, distribute, sub
11 license, and/or sell copies of the Software, and to permit persons to whom
12 the Software is furnished to do so, subject to the following conditions:
13
14 The above copyright notice and this permission notice (including the next
15 paragraph) shall be included in all copies or substantial portions of the
16 Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 VMWARE AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **************************************************************************/
27
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33 #include "main/glheader.h"
34 #include "main/bufferobj.h"
35 #include "main/context.h"
36 #include "main/macros.h"
37 #include "main/vtxfmt.h"
38 #include "main/dlist.h"
39 #include "main/eval.h"
40 #include "main/state.h"
41 #include "main/light.h"
42 #include "main/api_arrayelt.h"
43 #include "main/draw_validate.h"
44 #include "main/dispatch.h"
45 #include "util/bitscan.h"
46
47 #include "vbo_noop.h"
48 #include "vbo_private.h"
49
50
51 /** ID/name for immediate-mode VBO */
52 #define IMM_BUFFER_NAME 0xaabbccdd
53
54
55 static void
56 vbo_reset_all_attr(struct vbo_exec_context *exec);
57
58
59 /**
60 * Close off the last primitive, execute the buffer, restart the
61 * primitive. This is called when we fill a vertex buffer before
62 * hitting glEnd.
63 */
64 static void
65 vbo_exec_wrap_buffers(struct vbo_exec_context *exec)
66 {
67 if (exec->vtx.prim_count == 0) {
68 exec->vtx.copied.nr = 0;
69 exec->vtx.vert_count = 0;
70 exec->vtx.buffer_ptr = exec->vtx.buffer_map;
71 }
72 else {
73 struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1];
74 const GLuint last_begin = last_prim->begin;
75 GLuint last_count;
76
77 if (_mesa_inside_begin_end(exec->ctx)) {
78 last_prim->count = exec->vtx.vert_count - last_prim->start;
79 }
80
81 last_count = last_prim->count;
82
83 /* Special handling for wrapping GL_LINE_LOOP */
84 if (last_prim->mode == GL_LINE_LOOP &&
85 last_count > 0 &&
86 !last_prim->end) {
87 /* draw this section of the incomplete line loop as a line strip */
88 last_prim->mode = GL_LINE_STRIP;
89 if (!last_prim->begin) {
90 /* This is not the first section of the line loop, so don't
91 * draw the 0th vertex. We're saving it until we draw the
92 * very last section of the loop.
93 */
94 last_prim->start++;
95 last_prim->count--;
96 }
97 }
98
99 /* Execute the buffer and save copied vertices.
100 */
101 if (exec->vtx.vert_count)
102 vbo_exec_vtx_flush(exec, GL_FALSE);
103 else {
104 exec->vtx.prim_count = 0;
105 exec->vtx.copied.nr = 0;
106 }
107
108 /* Emit a glBegin to start the new list.
109 */
110 assert(exec->vtx.prim_count == 0);
111
112 if (_mesa_inside_begin_end(exec->ctx)) {
113 exec->vtx.prim[0].mode = exec->ctx->Driver.CurrentExecPrimitive;
114 exec->vtx.prim[0].begin = 0;
115 exec->vtx.prim[0].end = 0;
116 exec->vtx.prim[0].start = 0;
117 exec->vtx.prim[0].count = 0;
118 exec->vtx.prim_count++;
119
120 if (exec->vtx.copied.nr == last_count)
121 exec->vtx.prim[0].begin = last_begin;
122 }
123 }
124 }
125
126
127 /**
128 * Deal with buffer wrapping where provoked by the vertex buffer
129 * filling up, as opposed to upgrade_vertex().
130 */
131 static void
132 vbo_exec_vtx_wrap(struct vbo_exec_context *exec)
133 {
134 unsigned numComponents;
135
136 /* Run pipeline on current vertices, copy wrapped vertices
137 * to exec->vtx.copied.
138 */
139 vbo_exec_wrap_buffers(exec);
140
141 if (!exec->vtx.buffer_ptr) {
142 /* probably ran out of memory earlier when allocating the VBO */
143 return;
144 }
145
146 /* Copy stored stored vertices to start of new list.
147 */
148 assert(exec->vtx.max_vert - exec->vtx.vert_count > exec->vtx.copied.nr);
149
150 numComponents = exec->vtx.copied.nr * exec->vtx.vertex_size;
151 memcpy(exec->vtx.buffer_ptr,
152 exec->vtx.copied.buffer,
153 numComponents * sizeof(fi_type));
154 exec->vtx.buffer_ptr += numComponents;
155 exec->vtx.vert_count += exec->vtx.copied.nr;
156
157 exec->vtx.copied.nr = 0;
158 }
159
160
161 /**
162 * Copy the active vertex's values to the ctx->Current fields.
163 */
164 static void
165 vbo_exec_copy_to_current(struct vbo_exec_context *exec)
166 {
167 struct gl_context *ctx = exec->ctx;
168 struct vbo_context *vbo = vbo_context(ctx);
169 GLbitfield64 enabled = exec->vtx.enabled & (~BITFIELD64_BIT(VBO_ATTRIB_POS));
170
171 while (enabled) {
172 const int i = u_bit_scan64(&enabled);
173
174 /* Note: the exec->vtx.current[i] pointers point into the
175 * ctx->Current.Attrib and ctx->Light.Material.Attrib arrays.
176 */
177 GLfloat *current = (GLfloat *)vbo->current[i].Ptr;
178 fi_type tmp[8]; /* space for doubles */
179 int dmul = 1;
180
181 if (exec->vtx.attrtype[i] == GL_DOUBLE ||
182 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB)
183 dmul = 2;
184
185 assert(exec->vtx.attrsz[i]);
186
187 if (exec->vtx.attrtype[i] == GL_DOUBLE ||
188 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB) {
189 memset(tmp, 0, sizeof(tmp));
190 memcpy(tmp, exec->vtx.attrptr[i], exec->vtx.attrsz[i] * sizeof(GLfloat));
191 } else {
192 COPY_CLEAN_4V_TYPE_AS_UNION(tmp,
193 exec->vtx.attrsz[i],
194 exec->vtx.attrptr[i],
195 exec->vtx.attrtype[i]);
196 }
197
198 if (exec->vtx.attrtype[i] != vbo->current[i].Type ||
199 memcmp(current, tmp, 4 * sizeof(GLfloat) * dmul) != 0) {
200 memcpy(current, tmp, 4 * sizeof(GLfloat) * dmul);
201
202 /* Given that we explicitly state size here, there is no need
203 * for the COPY_CLEAN above, could just copy 16 bytes and be
204 * done. The only problem is when Mesa accesses ctx->Current
205 * directly.
206 */
207 /* Size here is in components - not bytes */
208 vbo->current[i].Size = exec->vtx.attrsz[i] / dmul;
209 vbo->current[i]._ElementSize =
210 vbo->current[i].Size * sizeof(GLfloat) * dmul;
211 vbo->current[i].Type = exec->vtx.attrtype[i];
212 vbo->current[i].Integer =
213 vbo_attrtype_to_integer_flag(exec->vtx.attrtype[i]);
214 vbo->current[i].Doubles =
215 vbo_attrtype_to_double_flag(exec->vtx.attrtype[i]);
216
217 /* This triggers rather too much recalculation of Mesa state
218 * that doesn't get used (eg light positions).
219 */
220 if (i >= VBO_ATTRIB_MAT_FRONT_AMBIENT &&
221 i <= VBO_ATTRIB_MAT_BACK_INDEXES)
222 ctx->NewState |= _NEW_LIGHT;
223
224 ctx->NewState |= _NEW_CURRENT_ATTRIB;
225 }
226 }
227
228 /* Colormaterial -- this kindof sucks.
229 */
230 if (ctx->Light.ColorMaterialEnabled &&
231 exec->vtx.attrsz[VBO_ATTRIB_COLOR0]) {
232 _mesa_update_color_material(ctx,
233 ctx->Current.Attrib[VBO_ATTRIB_COLOR0]);
234 }
235 }
236
237
238 /**
239 * Copy current vertex attribute values into the current vertex.
240 */
241 static void
242 vbo_exec_copy_from_current(struct vbo_exec_context *exec)
243 {
244 struct gl_context *ctx = exec->ctx;
245 struct vbo_context *vbo = vbo_context(ctx);
246 GLint i;
247
248 for (i = VBO_ATTRIB_POS + 1; i < VBO_ATTRIB_MAX; i++) {
249 if (exec->vtx.attrtype[i] == GL_DOUBLE ||
250 exec->vtx.attrtype[i] == GL_UNSIGNED_INT64_ARB) {
251 memcpy(exec->vtx.attrptr[i], vbo->current[i].Ptr,
252 exec->vtx.attrsz[i] * sizeof(GLfloat));
253 } else {
254 const fi_type *current = (fi_type *) vbo->current[i].Ptr;
255 switch (exec->vtx.attrsz[i]) {
256 case 4: exec->vtx.attrptr[i][3] = current[3];
257 case 3: exec->vtx.attrptr[i][2] = current[2];
258 case 2: exec->vtx.attrptr[i][1] = current[1];
259 case 1: exec->vtx.attrptr[i][0] = current[0];
260 break;
261 }
262 }
263 }
264 }
265
266
267 /**
268 * Flush existing data, set new attrib size, replay copied vertices.
269 * This is called when we transition from a small vertex attribute size
270 * to a larger one. Ex: glTexCoord2f -> glTexCoord4f.
271 * We need to go back over the previous 2-component texcoords and insert
272 * zero and one values.
273 * \param attr VBO_ATTRIB_x vertex attribute value
274 */
275 static void
276 vbo_exec_wrap_upgrade_vertex(struct vbo_exec_context *exec,
277 GLuint attr, GLuint newSize)
278 {
279 struct gl_context *ctx = exec->ctx;
280 struct vbo_context *vbo = vbo_context(ctx);
281 const GLint lastcount = exec->vtx.vert_count;
282 fi_type *old_attrptr[VBO_ATTRIB_MAX];
283 const GLuint old_vtx_size = exec->vtx.vertex_size; /* floats per vertex */
284 const GLuint oldSize = exec->vtx.attrsz[attr];
285 GLuint i;
286
287 assert(attr < VBO_ATTRIB_MAX);
288
289 /* Run pipeline on current vertices, copy wrapped vertices
290 * to exec->vtx.copied.
291 */
292 vbo_exec_wrap_buffers(exec);
293
294 if (unlikely(exec->vtx.copied.nr)) {
295 /* We're in the middle of a primitive, keep the old vertex
296 * format around to be able to translate the copied vertices to
297 * the new format.
298 */
299 memcpy(old_attrptr, exec->vtx.attrptr, sizeof(old_attrptr));
300 }
301
302 if (unlikely(oldSize)) {
303 /* Do a COPY_TO_CURRENT to ensure back-copying works for the
304 * case when the attribute already exists in the vertex and is
305 * having its size increased.
306 */
307 vbo_exec_copy_to_current(exec);
308 }
309
310 /* Heuristic: Attempt to isolate attributes received outside
311 * begin/end so that they don't bloat the vertices.
312 */
313 if (!_mesa_inside_begin_end(ctx) &&
314 !oldSize && lastcount > 8 && exec->vtx.vertex_size) {
315 vbo_exec_copy_to_current(exec);
316 vbo_reset_all_attr(exec);
317 }
318
319 /* Fix up sizes:
320 */
321 exec->vtx.attrsz[attr] = newSize;
322 exec->vtx.vertex_size += newSize - oldSize;
323 exec->vtx.max_vert = vbo_compute_max_verts(exec);
324 exec->vtx.vert_count = 0;
325 exec->vtx.buffer_ptr = exec->vtx.buffer_map;
326 exec->vtx.enabled |= BITFIELD64_BIT(attr);
327
328 if (unlikely(oldSize)) {
329 /* Size changed, recalculate all the attrptr[] values
330 */
331 fi_type *tmp = exec->vtx.vertex;
332
333 for (i = 0 ; i < VBO_ATTRIB_MAX ; i++) {
334 if (exec->vtx.attrsz[i]) {
335 exec->vtx.attrptr[i] = tmp;
336 tmp += exec->vtx.attrsz[i];
337 }
338 else
339 exec->vtx.attrptr[i] = NULL; /* will not be dereferenced */
340 }
341
342 /* Copy from current to repopulate the vertex with correct
343 * values.
344 */
345 vbo_exec_copy_from_current(exec);
346 }
347 else {
348 /* Just have to append the new attribute at the end */
349 exec->vtx.attrptr[attr] = exec->vtx.vertex +
350 exec->vtx.vertex_size - newSize;
351 }
352
353 /* Replay stored vertices to translate them
354 * to new format here.
355 *
356 * -- No need to replay - just copy piecewise
357 */
358 if (unlikely(exec->vtx.copied.nr)) {
359 fi_type *data = exec->vtx.copied.buffer;
360 fi_type *dest = exec->vtx.buffer_ptr;
361
362 assert(exec->vtx.buffer_ptr == exec->vtx.buffer_map);
363
364 for (i = 0 ; i < exec->vtx.copied.nr ; i++) {
365 GLbitfield64 enabled = exec->vtx.enabled;
366 while (enabled) {
367 const int j = u_bit_scan64(&enabled);
368 GLuint sz = exec->vtx.attrsz[j];
369 GLint old_offset = old_attrptr[j] - exec->vtx.vertex;
370 GLint new_offset = exec->vtx.attrptr[j] - exec->vtx.vertex;
371
372 assert(sz);
373
374 if (j == attr) {
375 if (oldSize) {
376 fi_type tmp[4];
377 COPY_CLEAN_4V_TYPE_AS_UNION(tmp, oldSize,
378 data + old_offset,
379 exec->vtx.attrtype[j]);
380 COPY_SZ_4V(dest + new_offset, newSize, tmp);
381 } else {
382 fi_type *current = (fi_type *)vbo->current[j].Ptr;
383 COPY_SZ_4V(dest + new_offset, sz, current);
384 }
385 }
386 else {
387 COPY_SZ_4V(dest + new_offset, sz, data + old_offset);
388 }
389 }
390
391 data += old_vtx_size;
392 dest += exec->vtx.vertex_size;
393 }
394
395 exec->vtx.buffer_ptr = dest;
396 exec->vtx.vert_count += exec->vtx.copied.nr;
397 exec->vtx.copied.nr = 0;
398 }
399 }
400
401
402 /**
403 * This is when a vertex attribute transitions to a different size.
404 * For example, we saw a bunch of glTexCoord2f() calls and now we got a
405 * glTexCoord4f() call. We promote the array from size=2 to size=4.
406 * \param newSize size of new vertex (number of 32-bit words).
407 * \param attr VBO_ATTRIB_x vertex attribute value
408 */
409 static void
410 vbo_exec_fixup_vertex(struct gl_context *ctx, GLuint attr,
411 GLuint newSize, GLenum newType)
412 {
413 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
414
415 assert(attr < VBO_ATTRIB_MAX);
416
417 if (newSize > exec->vtx.attrsz[attr] ||
418 newType != exec->vtx.attrtype[attr]) {
419 /* New size is larger. Need to flush existing vertices and get
420 * an enlarged vertex format.
421 */
422 vbo_exec_wrap_upgrade_vertex(exec, attr, newSize);
423 }
424 else if (newSize < exec->vtx.active_sz[attr]) {
425 GLuint i;
426 const fi_type *id =
427 vbo_get_default_vals_as_union(exec->vtx.attrtype[attr]);
428
429 /* New size is smaller - just need to fill in some
430 * zeros. Don't need to flush or wrap.
431 */
432 for (i = newSize; i <= exec->vtx.attrsz[attr]; i++)
433 exec->vtx.attrptr[attr][i-1] = id[i-1];
434 }
435
436 exec->vtx.active_sz[attr] = newSize;
437 exec->vtx.attrtype[attr] = newType;
438
439 /* Does setting NeedFlush belong here? Necessitates resetting
440 * vtxfmt on each flush (otherwise flags won't get reset
441 * afterwards).
442 */
443 if (attr == 0)
444 ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES;
445 }
446
447
448 /**
449 * Called upon first glVertex, glColor, glTexCoord, etc.
450 */
451 static void
452 vbo_exec_begin_vertices(struct gl_context *ctx)
453 {
454 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
455
456 vbo_exec_vtx_map(exec);
457
458 assert((ctx->Driver.NeedFlush & FLUSH_UPDATE_CURRENT) == 0);
459 assert(exec->begin_vertices_flags);
460
461 ctx->Driver.NeedFlush |= exec->begin_vertices_flags;
462 }
463
464
465 /**
466 * This macro is used to implement all the glVertex, glColor, glTexCoord,
467 * glVertexAttrib, etc functions.
468 * \param A VBO_ATTRIB_x attribute index
469 * \param N attribute size (1..4)
470 * \param T type (GL_FLOAT, GL_DOUBLE, GL_INT, GL_UNSIGNED_INT)
471 * \param C cast type (fi_type or double)
472 * \param V0, V1, v2, V3 attribute value
473 */
474 #define ATTR_UNION(A, N, T, C, V0, V1, V2, V3) \
475 do { \
476 struct vbo_exec_context *exec = &vbo_context(ctx)->exec; \
477 int sz = (sizeof(C) / sizeof(GLfloat)); \
478 \
479 assert(sz == 1 || sz == 2); \
480 \
481 /* check if attribute size or type is changing */ \
482 if (unlikely(exec->vtx.active_sz[A] != N * sz) || \
483 unlikely(exec->vtx.attrtype[A] != T)) { \
484 vbo_exec_fixup_vertex(ctx, A, N * sz, T); \
485 } \
486 \
487 /* store vertex attribute in vertex buffer */ \
488 { \
489 C *dest = (C *)exec->vtx.attrptr[A]; \
490 if (N>0) dest[0] = V0; \
491 if (N>1) dest[1] = V1; \
492 if (N>2) dest[2] = V2; \
493 if (N>3) dest[3] = V3; \
494 assert(exec->vtx.attrtype[A] == T); \
495 } \
496 \
497 if ((A) == 0) { \
498 /* This is a glVertex call */ \
499 GLuint i; \
500 \
501 if (unlikely((ctx->Driver.NeedFlush & FLUSH_UPDATE_CURRENT) == 0)) { \
502 vbo_exec_begin_vertices(ctx); \
503 } \
504 \
505 if (unlikely(!exec->vtx.buffer_ptr)) { \
506 vbo_exec_vtx_map(exec); \
507 } \
508 assert(exec->vtx.buffer_ptr); \
509 \
510 /* copy 32-bit words */ \
511 for (i = 0; i < exec->vtx.vertex_size; i++) \
512 exec->vtx.buffer_ptr[i] = exec->vtx.vertex[i]; \
513 \
514 exec->vtx.buffer_ptr += exec->vtx.vertex_size; \
515 \
516 /* Set FLUSH_STORED_VERTICES to indicate that there's now */ \
517 /* something to draw (not just updating a color or texcoord).*/ \
518 ctx->Driver.NeedFlush |= FLUSH_STORED_VERTICES; \
519 \
520 if (++exec->vtx.vert_count >= exec->vtx.max_vert) \
521 vbo_exec_vtx_wrap(exec); \
522 } else { \
523 /* we now have accumulated per-vertex attributes */ \
524 ctx->Driver.NeedFlush |= FLUSH_UPDATE_CURRENT; \
525 } \
526 } while (0)
527
528
529 #undef ERROR
530 #define ERROR(err) _mesa_error(ctx, err, __func__)
531 #define TAG(x) vbo_##x
532
533 #include "vbo_attrib_tmp.h"
534
535
536
537 /**
538 * Execute a glMaterial call. Note that if GL_COLOR_MATERIAL is enabled,
539 * this may be a (partial) no-op.
540 */
541 static void GLAPIENTRY
542 vbo_Materialfv(GLenum face, GLenum pname, const GLfloat *params)
543 {
544 GLbitfield updateMats;
545 GET_CURRENT_CONTEXT(ctx);
546
547 /* This function should be a no-op when it tries to update material
548 * attributes which are currently tracking glColor via glColorMaterial.
549 * The updateMats var will be a mask of the MAT_BIT_FRONT/BACK_x bits
550 * indicating which material attributes can actually be updated below.
551 */
552 if (ctx->Light.ColorMaterialEnabled) {
553 updateMats = ~ctx->Light._ColorMaterialBitmask;
554 }
555 else {
556 /* GL_COLOR_MATERIAL is disabled so don't skip any material updates */
557 updateMats = ALL_MATERIAL_BITS;
558 }
559
560 if (ctx->API == API_OPENGL_COMPAT && face == GL_FRONT) {
561 updateMats &= FRONT_MATERIAL_BITS;
562 }
563 else if (ctx->API == API_OPENGL_COMPAT && face == GL_BACK) {
564 updateMats &= BACK_MATERIAL_BITS;
565 }
566 else if (face != GL_FRONT_AND_BACK) {
567 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterial(invalid face)");
568 return;
569 }
570
571 switch (pname) {
572 case GL_EMISSION:
573 if (updateMats & MAT_BIT_FRONT_EMISSION)
574 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_EMISSION, 4, params);
575 if (updateMats & MAT_BIT_BACK_EMISSION)
576 MAT_ATTR(VBO_ATTRIB_MAT_BACK_EMISSION, 4, params);
577 break;
578 case GL_AMBIENT:
579 if (updateMats & MAT_BIT_FRONT_AMBIENT)
580 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_AMBIENT, 4, params);
581 if (updateMats & MAT_BIT_BACK_AMBIENT)
582 MAT_ATTR(VBO_ATTRIB_MAT_BACK_AMBIENT, 4, params);
583 break;
584 case GL_DIFFUSE:
585 if (updateMats & MAT_BIT_FRONT_DIFFUSE)
586 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_DIFFUSE, 4, params);
587 if (updateMats & MAT_BIT_BACK_DIFFUSE)
588 MAT_ATTR(VBO_ATTRIB_MAT_BACK_DIFFUSE, 4, params);
589 break;
590 case GL_SPECULAR:
591 if (updateMats & MAT_BIT_FRONT_SPECULAR)
592 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_SPECULAR, 4, params);
593 if (updateMats & MAT_BIT_BACK_SPECULAR)
594 MAT_ATTR(VBO_ATTRIB_MAT_BACK_SPECULAR, 4, params);
595 break;
596 case GL_SHININESS:
597 if (*params < 0 || *params > ctx->Const.MaxShininess) {
598 _mesa_error(ctx, GL_INVALID_VALUE,
599 "glMaterial(invalid shininess: %f out range [0, %f])",
600 *params, ctx->Const.MaxShininess);
601 return;
602 }
603 if (updateMats & MAT_BIT_FRONT_SHININESS)
604 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_SHININESS, 1, params);
605 if (updateMats & MAT_BIT_BACK_SHININESS)
606 MAT_ATTR(VBO_ATTRIB_MAT_BACK_SHININESS, 1, params);
607 break;
608 case GL_COLOR_INDEXES:
609 if (ctx->API != API_OPENGL_COMPAT) {
610 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterialfv(pname)");
611 return;
612 }
613 if (updateMats & MAT_BIT_FRONT_INDEXES)
614 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_INDEXES, 3, params);
615 if (updateMats & MAT_BIT_BACK_INDEXES)
616 MAT_ATTR(VBO_ATTRIB_MAT_BACK_INDEXES, 3, params);
617 break;
618 case GL_AMBIENT_AND_DIFFUSE:
619 if (updateMats & MAT_BIT_FRONT_AMBIENT)
620 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_AMBIENT, 4, params);
621 if (updateMats & MAT_BIT_FRONT_DIFFUSE)
622 MAT_ATTR(VBO_ATTRIB_MAT_FRONT_DIFFUSE, 4, params);
623 if (updateMats & MAT_BIT_BACK_AMBIENT)
624 MAT_ATTR(VBO_ATTRIB_MAT_BACK_AMBIENT, 4, params);
625 if (updateMats & MAT_BIT_BACK_DIFFUSE)
626 MAT_ATTR(VBO_ATTRIB_MAT_BACK_DIFFUSE, 4, params);
627 break;
628 default:
629 _mesa_error(ctx, GL_INVALID_ENUM, "glMaterialfv(pname)");
630 return;
631 }
632 }
633
634
635 /**
636 * Flush (draw) vertices.
637 * \param unmap - leave VBO unmapped after flushing?
638 */
639 static void
640 vbo_exec_FlushVertices_internal(struct vbo_exec_context *exec, GLboolean unmap)
641 {
642 if (exec->vtx.vert_count || unmap) {
643 vbo_exec_vtx_flush(exec, unmap);
644 }
645
646 if (exec->vtx.vertex_size) {
647 vbo_exec_copy_to_current(exec);
648 vbo_reset_all_attr(exec);
649 }
650 }
651
652
653 static void GLAPIENTRY
654 vbo_exec_EvalCoord1f(GLfloat u)
655 {
656 GET_CURRENT_CONTEXT(ctx);
657 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
658
659 {
660 GLint i;
661 if (exec->eval.recalculate_maps)
662 vbo_exec_eval_update(exec);
663
664 for (i = 0; i <= VBO_ATTRIB_TEX7; i++) {
665 if (exec->eval.map1[i].map)
666 if (exec->vtx.active_sz[i] != exec->eval.map1[i].sz)
667 vbo_exec_fixup_vertex(ctx, i, exec->eval.map1[i].sz, GL_FLOAT);
668 }
669 }
670
671 memcpy(exec->vtx.copied.buffer, exec->vtx.vertex,
672 exec->vtx.vertex_size * sizeof(GLfloat));
673
674 vbo_exec_do_EvalCoord1f(exec, u);
675
676 memcpy(exec->vtx.vertex, exec->vtx.copied.buffer,
677 exec->vtx.vertex_size * sizeof(GLfloat));
678 }
679
680
681 static void GLAPIENTRY
682 vbo_exec_EvalCoord2f(GLfloat u, GLfloat v)
683 {
684 GET_CURRENT_CONTEXT(ctx);
685 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
686
687 {
688 GLint i;
689 if (exec->eval.recalculate_maps)
690 vbo_exec_eval_update(exec);
691
692 for (i = 0; i <= VBO_ATTRIB_TEX7; i++) {
693 if (exec->eval.map2[i].map)
694 if (exec->vtx.active_sz[i] != exec->eval.map2[i].sz)
695 vbo_exec_fixup_vertex(ctx, i, exec->eval.map2[i].sz, GL_FLOAT);
696 }
697
698 if (ctx->Eval.AutoNormal)
699 if (exec->vtx.active_sz[VBO_ATTRIB_NORMAL] != 3)
700 vbo_exec_fixup_vertex(ctx, VBO_ATTRIB_NORMAL, 3, GL_FLOAT);
701 }
702
703 memcpy(exec->vtx.copied.buffer, exec->vtx.vertex,
704 exec->vtx.vertex_size * sizeof(GLfloat));
705
706 vbo_exec_do_EvalCoord2f(exec, u, v);
707
708 memcpy(exec->vtx.vertex, exec->vtx.copied.buffer,
709 exec->vtx.vertex_size * sizeof(GLfloat));
710 }
711
712
713 static void GLAPIENTRY
714 vbo_exec_EvalCoord1fv(const GLfloat *u)
715 {
716 vbo_exec_EvalCoord1f(u[0]);
717 }
718
719
720 static void GLAPIENTRY
721 vbo_exec_EvalCoord2fv(const GLfloat *u)
722 {
723 vbo_exec_EvalCoord2f(u[0], u[1]);
724 }
725
726
727 static void GLAPIENTRY
728 vbo_exec_EvalPoint1(GLint i)
729 {
730 GET_CURRENT_CONTEXT(ctx);
731 GLfloat du = ((ctx->Eval.MapGrid1u2 - ctx->Eval.MapGrid1u1) /
732 (GLfloat) ctx->Eval.MapGrid1un);
733 GLfloat u = i * du + ctx->Eval.MapGrid1u1;
734
735 vbo_exec_EvalCoord1f(u);
736 }
737
738
739 static void GLAPIENTRY
740 vbo_exec_EvalPoint2(GLint i, GLint j)
741 {
742 GET_CURRENT_CONTEXT(ctx);
743 GLfloat du = ((ctx->Eval.MapGrid2u2 - ctx->Eval.MapGrid2u1) /
744 (GLfloat) ctx->Eval.MapGrid2un);
745 GLfloat dv = ((ctx->Eval.MapGrid2v2 - ctx->Eval.MapGrid2v1) /
746 (GLfloat) ctx->Eval.MapGrid2vn);
747 GLfloat u = i * du + ctx->Eval.MapGrid2u1;
748 GLfloat v = j * dv + ctx->Eval.MapGrid2v1;
749
750 vbo_exec_EvalCoord2f(u, v);
751 }
752
753
754 /**
755 * Called via glBegin.
756 */
757 static void GLAPIENTRY
758 vbo_exec_Begin(GLenum mode)
759 {
760 GET_CURRENT_CONTEXT(ctx);
761 struct vbo_context *vbo = vbo_context(ctx);
762 struct vbo_exec_context *exec = &vbo->exec;
763 int i;
764
765 if (_mesa_inside_begin_end(ctx)) {
766 _mesa_error(ctx, GL_INVALID_OPERATION, "glBegin");
767 return;
768 }
769
770 if (!_mesa_valid_prim_mode(ctx, mode, "glBegin")) {
771 return;
772 }
773
774 if (ctx->NewState) {
775 _mesa_update_state(ctx);
776
777 CALL_Begin(ctx->Exec, (mode));
778 return;
779 }
780
781 if (!_mesa_valid_to_render(ctx, "glBegin")) {
782 return;
783 }
784
785 /* Heuristic: attempt to isolate attributes occurring outside
786 * begin/end pairs.
787 */
788 if (exec->vtx.vertex_size && !exec->vtx.attrsz[0])
789 vbo_exec_FlushVertices_internal(exec, GL_FALSE);
790
791 i = exec->vtx.prim_count++;
792 exec->vtx.prim[i].mode = mode;
793 exec->vtx.prim[i].begin = 1;
794 exec->vtx.prim[i].end = 0;
795 exec->vtx.prim[i].indexed = 0;
796 exec->vtx.prim[i].pad = 0;
797 exec->vtx.prim[i].start = exec->vtx.vert_count;
798 exec->vtx.prim[i].count = 0;
799 exec->vtx.prim[i].num_instances = 1;
800 exec->vtx.prim[i].base_instance = 0;
801 exec->vtx.prim[i].is_indirect = 0;
802
803 ctx->Driver.CurrentExecPrimitive = mode;
804
805 ctx->Exec = ctx->BeginEnd;
806
807 /* We may have been called from a display list, in which case we should
808 * leave dlist.c's dispatch table in place.
809 */
810 if (ctx->CurrentClientDispatch == ctx->MarshalExec) {
811 ctx->CurrentServerDispatch = ctx->Exec;
812 } else if (ctx->CurrentClientDispatch == ctx->OutsideBeginEnd) {
813 ctx->CurrentClientDispatch = ctx->Exec;
814 _glapi_set_dispatch(ctx->CurrentClientDispatch);
815 } else {
816 assert(ctx->CurrentClientDispatch == ctx->Save);
817 }
818 }
819
820
821 /**
822 * Try to merge / concatenate the two most recent VBO primitives.
823 */
824 static void
825 try_vbo_merge(struct vbo_exec_context *exec)
826 {
827 struct _mesa_prim *cur = &exec->vtx.prim[exec->vtx.prim_count - 1];
828
829 assert(exec->vtx.prim_count >= 1);
830
831 vbo_try_prim_conversion(cur);
832
833 if (exec->vtx.prim_count >= 2) {
834 struct _mesa_prim *prev = &exec->vtx.prim[exec->vtx.prim_count - 2];
835 assert(prev == cur - 1);
836
837 if (vbo_can_merge_prims(prev, cur)) {
838 assert(cur->begin);
839 assert(cur->end);
840 assert(prev->begin);
841 assert(prev->end);
842 vbo_merge_prims(prev, cur);
843 exec->vtx.prim_count--; /* drop the last primitive */
844 }
845 }
846 }
847
848
849 /**
850 * Called via glEnd.
851 */
852 static void GLAPIENTRY
853 vbo_exec_End(void)
854 {
855 GET_CURRENT_CONTEXT(ctx);
856 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
857
858 if (!_mesa_inside_begin_end(ctx)) {
859 _mesa_error(ctx, GL_INVALID_OPERATION, "glEnd");
860 return;
861 }
862
863 ctx->Exec = ctx->OutsideBeginEnd;
864
865 if (ctx->CurrentClientDispatch == ctx->MarshalExec) {
866 ctx->CurrentServerDispatch = ctx->Exec;
867 } else if (ctx->CurrentClientDispatch == ctx->BeginEnd) {
868 ctx->CurrentClientDispatch = ctx->Exec;
869 _glapi_set_dispatch(ctx->CurrentClientDispatch);
870 }
871
872 if (exec->vtx.prim_count > 0) {
873 /* close off current primitive */
874 struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1];
875
876 last_prim->end = 1;
877 last_prim->count = exec->vtx.vert_count - last_prim->start;
878
879 /* Special handling for GL_LINE_LOOP */
880 if (last_prim->mode == GL_LINE_LOOP && last_prim->begin == 0) {
881 /* We're finishing drawing a line loop. Append 0th vertex onto
882 * end of vertex buffer so we can draw it as a line strip.
883 */
884 const fi_type *src = exec->vtx.buffer_map +
885 last_prim->start * exec->vtx.vertex_size;
886 fi_type *dst = exec->vtx.buffer_map +
887 exec->vtx.vert_count * exec->vtx.vertex_size;
888
889 /* copy 0th vertex to end of buffer */
890 memcpy(dst, src, exec->vtx.vertex_size * sizeof(fi_type));
891
892 last_prim->start++; /* skip vertex0 */
893 /* note that last_prim->count stays unchanged */
894 last_prim->mode = GL_LINE_STRIP;
895
896 /* Increment the vertex count so the next primitive doesn't
897 * overwrite the last vertex which we just added.
898 */
899 exec->vtx.vert_count++;
900 exec->vtx.buffer_ptr += exec->vtx.vertex_size;
901 }
902
903 try_vbo_merge(exec);
904 }
905
906 ctx->Driver.CurrentExecPrimitive = PRIM_OUTSIDE_BEGIN_END;
907
908 if (exec->vtx.prim_count == VBO_MAX_PRIM)
909 vbo_exec_vtx_flush(exec, GL_FALSE);
910
911 if (MESA_DEBUG_FLAGS & DEBUG_ALWAYS_FLUSH) {
912 _mesa_flush(ctx);
913 }
914 }
915
916
917 /**
918 * Called via glPrimitiveRestartNV()
919 */
920 static void GLAPIENTRY
921 vbo_exec_PrimitiveRestartNV(void)
922 {
923 GLenum curPrim;
924 GET_CURRENT_CONTEXT(ctx);
925
926 curPrim = ctx->Driver.CurrentExecPrimitive;
927
928 if (curPrim == PRIM_OUTSIDE_BEGIN_END) {
929 _mesa_error(ctx, GL_INVALID_OPERATION, "glPrimitiveRestartNV");
930 }
931 else {
932 vbo_exec_End();
933 vbo_exec_Begin(curPrim);
934 }
935 }
936
937
938 static void
939 vbo_exec_vtxfmt_init(struct vbo_exec_context *exec)
940 {
941 struct gl_context *ctx = exec->ctx;
942 GLvertexformat *vfmt = &exec->vtxfmt;
943
944 vfmt->ArrayElement = _ae_ArrayElement;
945
946 vfmt->Begin = vbo_exec_Begin;
947 vfmt->End = vbo_exec_End;
948 vfmt->PrimitiveRestartNV = vbo_exec_PrimitiveRestartNV;
949
950 vfmt->CallList = _mesa_CallList;
951 vfmt->CallLists = _mesa_CallLists;
952
953 vfmt->EvalCoord1f = vbo_exec_EvalCoord1f;
954 vfmt->EvalCoord1fv = vbo_exec_EvalCoord1fv;
955 vfmt->EvalCoord2f = vbo_exec_EvalCoord2f;
956 vfmt->EvalCoord2fv = vbo_exec_EvalCoord2fv;
957 vfmt->EvalPoint1 = vbo_exec_EvalPoint1;
958 vfmt->EvalPoint2 = vbo_exec_EvalPoint2;
959
960 /* from attrib_tmp.h:
961 */
962 vfmt->Color3f = vbo_Color3f;
963 vfmt->Color3fv = vbo_Color3fv;
964 vfmt->Color4f = vbo_Color4f;
965 vfmt->Color4fv = vbo_Color4fv;
966 vfmt->FogCoordfEXT = vbo_FogCoordfEXT;
967 vfmt->FogCoordfvEXT = vbo_FogCoordfvEXT;
968 vfmt->MultiTexCoord1fARB = vbo_MultiTexCoord1f;
969 vfmt->MultiTexCoord1fvARB = vbo_MultiTexCoord1fv;
970 vfmt->MultiTexCoord2fARB = vbo_MultiTexCoord2f;
971 vfmt->MultiTexCoord2fvARB = vbo_MultiTexCoord2fv;
972 vfmt->MultiTexCoord3fARB = vbo_MultiTexCoord3f;
973 vfmt->MultiTexCoord3fvARB = vbo_MultiTexCoord3fv;
974 vfmt->MultiTexCoord4fARB = vbo_MultiTexCoord4f;
975 vfmt->MultiTexCoord4fvARB = vbo_MultiTexCoord4fv;
976 vfmt->Normal3f = vbo_Normal3f;
977 vfmt->Normal3fv = vbo_Normal3fv;
978 vfmt->SecondaryColor3fEXT = vbo_SecondaryColor3fEXT;
979 vfmt->SecondaryColor3fvEXT = vbo_SecondaryColor3fvEXT;
980 vfmt->TexCoord1f = vbo_TexCoord1f;
981 vfmt->TexCoord1fv = vbo_TexCoord1fv;
982 vfmt->TexCoord2f = vbo_TexCoord2f;
983 vfmt->TexCoord2fv = vbo_TexCoord2fv;
984 vfmt->TexCoord3f = vbo_TexCoord3f;
985 vfmt->TexCoord3fv = vbo_TexCoord3fv;
986 vfmt->TexCoord4f = vbo_TexCoord4f;
987 vfmt->TexCoord4fv = vbo_TexCoord4fv;
988 vfmt->Vertex2f = vbo_Vertex2f;
989 vfmt->Vertex2fv = vbo_Vertex2fv;
990 vfmt->Vertex3f = vbo_Vertex3f;
991 vfmt->Vertex3fv = vbo_Vertex3fv;
992 vfmt->Vertex4f = vbo_Vertex4f;
993 vfmt->Vertex4fv = vbo_Vertex4fv;
994
995 if (ctx->API == API_OPENGLES2) {
996 vfmt->VertexAttrib1fARB = _es_VertexAttrib1f;
997 vfmt->VertexAttrib1fvARB = _es_VertexAttrib1fv;
998 vfmt->VertexAttrib2fARB = _es_VertexAttrib2f;
999 vfmt->VertexAttrib2fvARB = _es_VertexAttrib2fv;
1000 vfmt->VertexAttrib3fARB = _es_VertexAttrib3f;
1001 vfmt->VertexAttrib3fvARB = _es_VertexAttrib3fv;
1002 vfmt->VertexAttrib4fARB = _es_VertexAttrib4f;
1003 vfmt->VertexAttrib4fvARB = _es_VertexAttrib4fv;
1004 } else {
1005 vfmt->VertexAttrib1fARB = vbo_VertexAttrib1fARB;
1006 vfmt->VertexAttrib1fvARB = vbo_VertexAttrib1fvARB;
1007 vfmt->VertexAttrib2fARB = vbo_VertexAttrib2fARB;
1008 vfmt->VertexAttrib2fvARB = vbo_VertexAttrib2fvARB;
1009 vfmt->VertexAttrib3fARB = vbo_VertexAttrib3fARB;
1010 vfmt->VertexAttrib3fvARB = vbo_VertexAttrib3fvARB;
1011 vfmt->VertexAttrib4fARB = vbo_VertexAttrib4fARB;
1012 vfmt->VertexAttrib4fvARB = vbo_VertexAttrib4fvARB;
1013 }
1014
1015 /* Note that VertexAttrib4fNV is used from dlist.c and api_arrayelt.c so
1016 * they can have a single entrypoint for updating any of the legacy
1017 * attribs.
1018 */
1019 vfmt->VertexAttrib1fNV = vbo_VertexAttrib1fNV;
1020 vfmt->VertexAttrib1fvNV = vbo_VertexAttrib1fvNV;
1021 vfmt->VertexAttrib2fNV = vbo_VertexAttrib2fNV;
1022 vfmt->VertexAttrib2fvNV = vbo_VertexAttrib2fvNV;
1023 vfmt->VertexAttrib3fNV = vbo_VertexAttrib3fNV;
1024 vfmt->VertexAttrib3fvNV = vbo_VertexAttrib3fvNV;
1025 vfmt->VertexAttrib4fNV = vbo_VertexAttrib4fNV;
1026 vfmt->VertexAttrib4fvNV = vbo_VertexAttrib4fvNV;
1027
1028 /* integer-valued */
1029 vfmt->VertexAttribI1i = vbo_VertexAttribI1i;
1030 vfmt->VertexAttribI2i = vbo_VertexAttribI2i;
1031 vfmt->VertexAttribI3i = vbo_VertexAttribI3i;
1032 vfmt->VertexAttribI4i = vbo_VertexAttribI4i;
1033 vfmt->VertexAttribI2iv = vbo_VertexAttribI2iv;
1034 vfmt->VertexAttribI3iv = vbo_VertexAttribI3iv;
1035 vfmt->VertexAttribI4iv = vbo_VertexAttribI4iv;
1036
1037 /* unsigned integer-valued */
1038 vfmt->VertexAttribI1ui = vbo_VertexAttribI1ui;
1039 vfmt->VertexAttribI2ui = vbo_VertexAttribI2ui;
1040 vfmt->VertexAttribI3ui = vbo_VertexAttribI3ui;
1041 vfmt->VertexAttribI4ui = vbo_VertexAttribI4ui;
1042 vfmt->VertexAttribI2uiv = vbo_VertexAttribI2uiv;
1043 vfmt->VertexAttribI3uiv = vbo_VertexAttribI3uiv;
1044 vfmt->VertexAttribI4uiv = vbo_VertexAttribI4uiv;
1045
1046 vfmt->Materialfv = vbo_Materialfv;
1047
1048 vfmt->EdgeFlag = vbo_EdgeFlag;
1049 vfmt->Indexf = vbo_Indexf;
1050 vfmt->Indexfv = vbo_Indexfv;
1051
1052 /* ARB_vertex_type_2_10_10_10_rev */
1053 vfmt->VertexP2ui = vbo_VertexP2ui;
1054 vfmt->VertexP2uiv = vbo_VertexP2uiv;
1055 vfmt->VertexP3ui = vbo_VertexP3ui;
1056 vfmt->VertexP3uiv = vbo_VertexP3uiv;
1057 vfmt->VertexP4ui = vbo_VertexP4ui;
1058 vfmt->VertexP4uiv = vbo_VertexP4uiv;
1059
1060 vfmt->TexCoordP1ui = vbo_TexCoordP1ui;
1061 vfmt->TexCoordP1uiv = vbo_TexCoordP1uiv;
1062 vfmt->TexCoordP2ui = vbo_TexCoordP2ui;
1063 vfmt->TexCoordP2uiv = vbo_TexCoordP2uiv;
1064 vfmt->TexCoordP3ui = vbo_TexCoordP3ui;
1065 vfmt->TexCoordP3uiv = vbo_TexCoordP3uiv;
1066 vfmt->TexCoordP4ui = vbo_TexCoordP4ui;
1067 vfmt->TexCoordP4uiv = vbo_TexCoordP4uiv;
1068
1069 vfmt->MultiTexCoordP1ui = vbo_MultiTexCoordP1ui;
1070 vfmt->MultiTexCoordP1uiv = vbo_MultiTexCoordP1uiv;
1071 vfmt->MultiTexCoordP2ui = vbo_MultiTexCoordP2ui;
1072 vfmt->MultiTexCoordP2uiv = vbo_MultiTexCoordP2uiv;
1073 vfmt->MultiTexCoordP3ui = vbo_MultiTexCoordP3ui;
1074 vfmt->MultiTexCoordP3uiv = vbo_MultiTexCoordP3uiv;
1075 vfmt->MultiTexCoordP4ui = vbo_MultiTexCoordP4ui;
1076 vfmt->MultiTexCoordP4uiv = vbo_MultiTexCoordP4uiv;
1077
1078 vfmt->NormalP3ui = vbo_NormalP3ui;
1079 vfmt->NormalP3uiv = vbo_NormalP3uiv;
1080
1081 vfmt->ColorP3ui = vbo_ColorP3ui;
1082 vfmt->ColorP3uiv = vbo_ColorP3uiv;
1083 vfmt->ColorP4ui = vbo_ColorP4ui;
1084 vfmt->ColorP4uiv = vbo_ColorP4uiv;
1085
1086 vfmt->SecondaryColorP3ui = vbo_SecondaryColorP3ui;
1087 vfmt->SecondaryColorP3uiv = vbo_SecondaryColorP3uiv;
1088
1089 vfmt->VertexAttribP1ui = vbo_VertexAttribP1ui;
1090 vfmt->VertexAttribP1uiv = vbo_VertexAttribP1uiv;
1091 vfmt->VertexAttribP2ui = vbo_VertexAttribP2ui;
1092 vfmt->VertexAttribP2uiv = vbo_VertexAttribP2uiv;
1093 vfmt->VertexAttribP3ui = vbo_VertexAttribP3ui;
1094 vfmt->VertexAttribP3uiv = vbo_VertexAttribP3uiv;
1095 vfmt->VertexAttribP4ui = vbo_VertexAttribP4ui;
1096 vfmt->VertexAttribP4uiv = vbo_VertexAttribP4uiv;
1097
1098 vfmt->VertexAttribL1d = vbo_VertexAttribL1d;
1099 vfmt->VertexAttribL2d = vbo_VertexAttribL2d;
1100 vfmt->VertexAttribL3d = vbo_VertexAttribL3d;
1101 vfmt->VertexAttribL4d = vbo_VertexAttribL4d;
1102
1103 vfmt->VertexAttribL1dv = vbo_VertexAttribL1dv;
1104 vfmt->VertexAttribL2dv = vbo_VertexAttribL2dv;
1105 vfmt->VertexAttribL3dv = vbo_VertexAttribL3dv;
1106 vfmt->VertexAttribL4dv = vbo_VertexAttribL4dv;
1107
1108 vfmt->VertexAttribL1ui64ARB = vbo_VertexAttribL1ui64ARB;
1109 vfmt->VertexAttribL1ui64vARB = vbo_VertexAttribL1ui64vARB;
1110 }
1111
1112
1113 /**
1114 * Tell the VBO module to use a real OpenGL vertex buffer object to
1115 * store accumulated immediate-mode vertex data.
1116 * This replaces the malloced buffer which was created in
1117 * vb_exec_vtx_init() below.
1118 */
1119 void
1120 vbo_use_buffer_objects(struct gl_context *ctx)
1121 {
1122 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
1123 /* Any buffer name but 0 can be used here since this bufferobj won't
1124 * go into the bufferobj hashtable.
1125 */
1126 GLuint bufName = IMM_BUFFER_NAME;
1127 GLenum target = GL_ARRAY_BUFFER_ARB;
1128 GLenum usage = GL_STREAM_DRAW_ARB;
1129 GLsizei size = VBO_VERT_BUFFER_SIZE;
1130
1131 /* Make sure this func is only used once */
1132 assert(exec->vtx.bufferobj == ctx->Shared->NullBufferObj);
1133
1134 _mesa_align_free(exec->vtx.buffer_map);
1135 exec->vtx.buffer_map = NULL;
1136 exec->vtx.buffer_ptr = NULL;
1137
1138 /* Allocate a real buffer object now */
1139 _mesa_reference_buffer_object(ctx, &exec->vtx.bufferobj, NULL);
1140 exec->vtx.bufferobj = ctx->Driver.NewBufferObject(ctx, bufName);
1141 if (!ctx->Driver.BufferData(ctx, target, size, NULL, usage,
1142 GL_MAP_WRITE_BIT |
1143 GL_DYNAMIC_STORAGE_BIT |
1144 GL_CLIENT_STORAGE_BIT,
1145 exec->vtx.bufferobj)) {
1146 _mesa_error(ctx, GL_OUT_OF_MEMORY, "VBO allocation");
1147 }
1148 }
1149
1150
1151 /**
1152 * If this function is called, all VBO buffers will be unmapped when
1153 * we flush.
1154 * Otherwise, if a simple command like glColor3f() is called and we flush,
1155 * the current VBO may be left mapped.
1156 */
1157 void
1158 vbo_always_unmap_buffers(struct gl_context *ctx)
1159 {
1160 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
1161 exec->begin_vertices_flags |= FLUSH_STORED_VERTICES;
1162 }
1163
1164
1165 void
1166 vbo_exec_vtx_init(struct vbo_exec_context *exec)
1167 {
1168 struct gl_context *ctx = exec->ctx;
1169 GLuint i;
1170
1171 /* Allocate a buffer object. Will just reuse this object
1172 * continuously, unless vbo_use_buffer_objects() is called to enable
1173 * use of real VBOs.
1174 */
1175 _mesa_reference_buffer_object(ctx,
1176 &exec->vtx.bufferobj,
1177 ctx->Shared->NullBufferObj);
1178
1179 assert(!exec->vtx.buffer_map);
1180 exec->vtx.buffer_map = _mesa_align_malloc(VBO_VERT_BUFFER_SIZE, 64);
1181 exec->vtx.buffer_ptr = exec->vtx.buffer_map;
1182
1183 vbo_exec_vtxfmt_init(exec);
1184 _mesa_noop_vtxfmt_init(&exec->vtxfmt_noop);
1185
1186 exec->vtx.enabled = 0;
1187 for (i = 0 ; i < VBO_ATTRIB_MAX ; i++) {
1188 assert(i < ARRAY_SIZE(exec->vtx.attrsz));
1189 exec->vtx.attrsz[i] = 0;
1190 assert(i < ARRAY_SIZE(exec->vtx.attrtype));
1191 exec->vtx.attrtype[i] = GL_FLOAT;
1192 assert(i < ARRAY_SIZE(exec->vtx.active_sz));
1193 exec->vtx.active_sz[i] = 0;
1194 }
1195
1196 exec->vtx.vertex_size = 0;
1197
1198 exec->begin_vertices_flags = FLUSH_UPDATE_CURRENT;
1199 }
1200
1201
1202 void
1203 vbo_exec_vtx_destroy(struct vbo_exec_context *exec)
1204 {
1205 /* using a real VBO for vertex data */
1206 struct gl_context *ctx = exec->ctx;
1207
1208 /* True VBOs should already be unmapped
1209 */
1210 if (exec->vtx.buffer_map) {
1211 assert(exec->vtx.bufferobj->Name == 0 ||
1212 exec->vtx.bufferobj->Name == IMM_BUFFER_NAME);
1213 if (exec->vtx.bufferobj->Name == 0) {
1214 _mesa_align_free(exec->vtx.buffer_map);
1215 exec->vtx.buffer_map = NULL;
1216 exec->vtx.buffer_ptr = NULL;
1217 }
1218 }
1219
1220 /* Free the vertex buffer. Unmap first if needed.
1221 */
1222 if (_mesa_bufferobj_mapped(exec->vtx.bufferobj, MAP_INTERNAL)) {
1223 ctx->Driver.UnmapBuffer(ctx, exec->vtx.bufferobj, MAP_INTERNAL);
1224 }
1225 _mesa_reference_buffer_object(ctx, &exec->vtx.bufferobj, NULL);
1226 }
1227
1228
1229 /**
1230 * If inside glBegin()/glEnd(), it should assert(0). Otherwise, if
1231 * FLUSH_STORED_VERTICES bit in \p flags is set flushes any buffered
1232 * vertices, if FLUSH_UPDATE_CURRENT bit is set updates
1233 * __struct gl_contextRec::Current and gl_light_attrib::Material
1234 *
1235 * Note that the default T&L engine never clears the
1236 * FLUSH_UPDATE_CURRENT bit, even after performing the update.
1237 *
1238 * \param flags bitmask of FLUSH_STORED_VERTICES, FLUSH_UPDATE_CURRENT
1239 */
1240 void
1241 vbo_exec_FlushVertices(struct gl_context *ctx, GLuint flags)
1242 {
1243 struct vbo_exec_context *exec = &vbo_context(ctx)->exec;
1244
1245 #ifdef DEBUG
1246 /* debug check: make sure we don't get called recursively */
1247 exec->flush_call_depth++;
1248 assert(exec->flush_call_depth == 1);
1249 #endif
1250
1251 if (_mesa_inside_begin_end(ctx)) {
1252 /* We've had glBegin but not glEnd! */
1253 #ifdef DEBUG
1254 exec->flush_call_depth--;
1255 assert(exec->flush_call_depth == 0);
1256 #endif
1257 return;
1258 }
1259
1260 /* Flush (draw), and make sure VBO is left unmapped when done */
1261 vbo_exec_FlushVertices_internal(exec, GL_TRUE);
1262
1263 /* Need to do this to ensure vbo_exec_begin_vertices gets called again:
1264 */
1265 ctx->Driver.NeedFlush &= ~(FLUSH_UPDATE_CURRENT | flags);
1266
1267 #ifdef DEBUG
1268 exec->flush_call_depth--;
1269 assert(exec->flush_call_depth == 0);
1270 #endif
1271 }
1272
1273
1274 /**
1275 * Reset the vertex attribute by setting its size to zero.
1276 */
1277 static void
1278 vbo_reset_attr(struct vbo_exec_context *exec, GLuint attr)
1279 {
1280 exec->vtx.attrsz[attr] = 0;
1281 exec->vtx.attrtype[attr] = GL_FLOAT;
1282 exec->vtx.active_sz[attr] = 0;
1283 }
1284
1285
1286 static void
1287 vbo_reset_all_attr(struct vbo_exec_context *exec)
1288 {
1289 while (exec->vtx.enabled) {
1290 const int i = u_bit_scan64(&exec->vtx.enabled);
1291 vbo_reset_attr(exec, i);
1292 }
1293
1294 exec->vtx.vertex_size = 0;
1295 }
1296
1297
1298 void GLAPIENTRY
1299 _es_Color4f(GLfloat r, GLfloat g, GLfloat b, GLfloat a)
1300 {
1301 vbo_Color4f(r, g, b, a);
1302 }
1303
1304
1305 void GLAPIENTRY
1306 _es_Normal3f(GLfloat x, GLfloat y, GLfloat z)
1307 {
1308 vbo_Normal3f(x, y, z);
1309 }
1310
1311
1312 void GLAPIENTRY
1313 _es_MultiTexCoord4f(GLenum target, GLfloat s, GLfloat t, GLfloat r, GLfloat q)
1314 {
1315 vbo_MultiTexCoord4f(target, s, t, r, q);
1316 }
1317
1318
1319 void GLAPIENTRY
1320 _es_Materialfv(GLenum face, GLenum pname, const GLfloat *params)
1321 {
1322 vbo_Materialfv(face, pname, params);
1323 }
1324
1325
1326 void GLAPIENTRY
1327 _es_Materialf(GLenum face, GLenum pname, GLfloat param)
1328 {
1329 GLfloat p[4];
1330 p[0] = param;
1331 p[1] = p[2] = p[3] = 0.0F;
1332 vbo_Materialfv(face, pname, p);
1333 }
1334
1335
1336 /**
1337 * A special version of glVertexAttrib4f that does not treat index 0 as
1338 * VBO_ATTRIB_POS.
1339 */
1340 static void
1341 VertexAttrib4f_nopos(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
1342 {
1343 GET_CURRENT_CONTEXT(ctx);
1344 if (index < MAX_VERTEX_GENERIC_ATTRIBS)
1345 ATTRF(VBO_ATTRIB_GENERIC0 + index, 4, x, y, z, w);
1346 else
1347 ERROR(GL_INVALID_VALUE);
1348 }
1349
1350 void GLAPIENTRY
1351 _es_VertexAttrib4f(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
1352 {
1353 VertexAttrib4f_nopos(index, x, y, z, w);
1354 }
1355
1356
1357 void GLAPIENTRY
1358 _es_VertexAttrib1f(GLuint indx, GLfloat x)
1359 {
1360 VertexAttrib4f_nopos(indx, x, 0.0f, 0.0f, 1.0f);
1361 }
1362
1363
1364 void GLAPIENTRY
1365 _es_VertexAttrib1fv(GLuint indx, const GLfloat* values)
1366 {
1367 VertexAttrib4f_nopos(indx, values[0], 0.0f, 0.0f, 1.0f);
1368 }
1369
1370
1371 void GLAPIENTRY
1372 _es_VertexAttrib2f(GLuint indx, GLfloat x, GLfloat y)
1373 {
1374 VertexAttrib4f_nopos(indx, x, y, 0.0f, 1.0f);
1375 }
1376
1377
1378 void GLAPIENTRY
1379 _es_VertexAttrib2fv(GLuint indx, const GLfloat* values)
1380 {
1381 VertexAttrib4f_nopos(indx, values[0], values[1], 0.0f, 1.0f);
1382 }
1383
1384
1385 void GLAPIENTRY
1386 _es_VertexAttrib3f(GLuint indx, GLfloat x, GLfloat y, GLfloat z)
1387 {
1388 VertexAttrib4f_nopos(indx, x, y, z, 1.0f);
1389 }
1390
1391
1392 void GLAPIENTRY
1393 _es_VertexAttrib3fv(GLuint indx, const GLfloat* values)
1394 {
1395 VertexAttrib4f_nopos(indx, values[0], values[1], values[2], 1.0f);
1396 }
1397
1398
1399 void GLAPIENTRY
1400 _es_VertexAttrib4fv(GLuint indx, const GLfloat* values)
1401 {
1402 VertexAttrib4f_nopos(indx, values[0], values[1], values[2], values[3]);
1403 }