db7ef6da7f44f4c43c479e9cb14976d8aa59f58a
[openpower-isa.git] / src / openpower / decoder / helpers.py
1 import unittest
2 import struct
3 from openpower.decoder.selectable_int import (SelectableInt, onebit,
4 selectconcat)
5 from nmutil.divmod import trunc_divs, trunc_rems
6 from operator import floordiv, mod
7 from openpower.decoder.selectable_int import selectltu as ltu
8 from openpower.decoder.selectable_int import selectgtu as gtu
9 from openpower.decoder.selectable_int import check_extsign
10
11 from openpower.util import log
12
13 trunc_div = floordiv
14 trunc_rem = mod
15 DIVS = trunc_divs
16 MODS = trunc_rems
17
18 """
19 Links:
20 * https://bugs.libre-soc.org/show_bug.cgi?id=324 - add trunc_div and trunc_rem
21 """
22
23
24 def exts(value, bits):
25 sign = 1 << (bits - 1)
26 return (value & (sign - 1)) - (value & sign)
27
28
29 def EXTS(value):
30 """ extends sign bit out from current MSB to all 256 bits
31 """
32 log ("EXTS", value, type(value))
33 assert isinstance(value, SelectableInt)
34 return SelectableInt(exts(value.value, value.bits) & ((1 << 256)-1), 256)
35
36
37 def EXTS64(value):
38 """ extends sign bit out from current MSB to 64 bits
39 """
40 assert isinstance(value, SelectableInt)
41 return SelectableInt(exts(value.value, value.bits) & ((1 << 64)-1), 64)
42
43
44 def EXTS128(value):
45 """ extends sign bit out from current MSB to 128 bits
46 """
47 assert isinstance(value, SelectableInt)
48 return SelectableInt(exts(value.value, value.bits) & ((1 << 128)-1), 128)
49
50
51 # signed version of MUL
52 def MULS(a, b):
53 if isinstance(b, int):
54 b = SelectableInt(b, self.bits)
55 b = check_extsign(a, b)
56 a_s = a.value & (1 << (a.bits-1)) != 0
57 b_s = b.value & (1 << (b.bits-1)) != 0
58 result = abs(a) * abs(b)
59 log("MULS", result, a_s, b_s)
60 if a_s == b_s:
61 return result
62 return -result
63
64
65 # XXX should this explicitly extend from 32 to 64?
66 def EXTZ64(value):
67 if isinstance(value, SelectableInt):
68 value = value.value
69 return SelectableInt(value & ((1 << 32)-1), 64)
70
71
72 def rotl(value, bits, wordlen):
73 if isinstance(bits, SelectableInt):
74 bits = bits.value
75 mask = (1 << wordlen) - 1
76 bits = bits & (wordlen - 1)
77 return ((value << bits) | (value >> (wordlen-bits))) & mask
78
79
80 def ROTL64(value, bits):
81 return rotl(value, bits, 64)
82
83
84 def ROTL32(value, bits):
85 if isinstance(bits, SelectableInt):
86 bits = bits.value
87 if isinstance(value, SelectableInt):
88 value = SelectableInt(value.value, 64)
89 return rotl(value | (value << 32), bits, 64)
90
91 def MASK32(x, y):
92 if isinstance(x, SelectableInt):
93 x = x.value
94 if isinstance(y, SelectableInt):
95 y = y.value
96 return MASK(x+32, y+32)
97
98 def MASK(x, y):
99 if isinstance(x, SelectableInt):
100 x = x.value
101 if isinstance(y, SelectableInt):
102 y = y.value
103 if x < y:
104 x = 64-x
105 y = 63-y
106 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
107 mask_b = ((1 << y) - 1) & ((1 << 64) - 1)
108 elif x == y:
109 return 1 << (63-x)
110 else:
111 x = 64-x
112 y = 63-y
113 mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
114 mask_b = (~((1 << y) - 1)) & ((1 << 64) - 1)
115 return mask_a ^ mask_b
116
117
118 def ne(a, b):
119 return onebit(a != b)
120
121
122 def eq(a, b):
123 return onebit(a == b)
124
125
126 def gt(a, b):
127 return onebit(a > b)
128
129
130 def ge(a, b):
131 return onebit(a >= b)
132
133
134 def lt(a, b):
135 return onebit(a < b)
136
137
138 def le(a, b):
139 return onebit(a <= b)
140
141
142 def length(a):
143 return len(a)
144
145
146 def undefined(v):
147 """ function that, for Power spec purposes, returns undefined bits of
148 the same shape as the input bits. however, for purposes of matching
149 POWER9's behavior returns the input bits unchanged. this effectively
150 "marks" (tags) locations in the v3.0B spec that need to be submitted
151 for clarification.
152 """
153 return v
154
155 def DOUBLE(WORD):
156 """convert incoming WORD to double. v3.0B p140 section 4.6.2
157 """
158 # result, FRT, start off all zeros
159 log ("WORD", WORD)
160 FRT = SelectableInt(0, 64)
161 z1 = SelectableInt(0, 1)
162 z29 = SelectableInt(0, 29)
163 e = WORD[1:9]
164 m = WORD[9:32]
165 s = WORD[0]
166 log ("word s e m", s, e, m)
167
168 # Normalized Operand
169 if e.value > 0 and e.value < 255:
170 log ("normalised")
171 FRT[0:2] = WORD[0:2]
172 FRT[2] = ~WORD[1]
173 FRT[3] = ~WORD[1]
174 FRT[4] = ~WORD[1]
175 FRT[5:64] = selectconcat(WORD[2:32], z29)
176
177 # Denormalized Operand
178 if e.value == 0 and m.value != 0:
179 log ("denormalised")
180 sign = WORD[0]
181 exp = -126
182 frac = selectconcat(z1, WORD[9:32], z29)
183 # normalize the operand
184 while frac[0].value == 0:
185 frac[0:53] = selectconcat(frac[1:53], z1)
186 exp = exp - 1
187 FRT[0] = sign
188 FRT[1:12] = exp + 1023
189 FRT[12:64] = frac[1:53]
190
191 # Zero / Infinity / NaN
192 if e.value == 255 or WORD[1:32].value == 0:
193 log ("z/inf/nan")
194 FRT[0:2] = WORD[0:2]
195 FRT[2] = WORD[1]
196 FRT[3] = WORD[1]
197 FRT[4] = WORD[1]
198 FRT[5:64] = selectconcat(WORD[2:32], z29)
199
200 log ("Double s e m", FRT[0].value, FRT[1:12].value-1023,
201 FRT[12:64].value)
202
203 return FRT
204
205
206 def SINGLE(FRS):
207 """convert incoming FRS into 32-bit word. v3.0B p144 section 4.6.3
208 """
209 # result - WORD - start off all zeros
210 WORD = SelectableInt(0, 32)
211
212 e = FRS[1:12]
213 m = FRS[12:64]
214 s = FRS[0]
215
216 log ("SINGLE", FRS)
217 log ("s e m", s.value, e.value, m.value)
218
219 #No Denormalization Required (includes Zero / Infinity / NaN)
220 if e.value > 896 or FRS[1:64].value == 0:
221 log("nodenorm", FRS[0:2].value, hex(FRS[5:35].value))
222 WORD[0:2] = FRS[0:2]
223 WORD[2:32] = FRS[5:35]
224
225 #Denormalization Required
226 if e.value >= 874 and e.value <= 896:
227 sign = FRS[0]
228 exp = e.value - 1023
229 frac = selectconcat(SelectableInt(1, 1), FRS[12:64])
230 log("exp, fract", exp, hex(frac.value))
231 # denormalize operand
232 while exp < -126:
233 frac[0:53] = selectconcat(SelectableInt(0, 1), frac[0:52])
234 exp = exp + 1
235 WORD[0] = sign
236 WORD[1:9] = SelectableInt(0, 8)
237 WORD[9:32] = frac[1:24]
238 #else WORD = undefined # return zeros
239
240 log ("WORD", WORD)
241
242 return WORD
243
244 # XXX NOTE: these are very quick hacked functions for utterly basic
245 # FP support
246
247 def fp64toselectable(frt):
248 """convert FP number to 64 bit SelectableInt
249 """
250 b = struct.pack(">d", frt)
251 val = int.from_bytes(b, byteorder='big', signed=False)
252 return SelectableInt(val, 64)
253
254
255 def FPADD32(FRA, FRB):
256 #return FPADD64(FRA, FRB)
257 #FRA = DOUBLE(SINGLE(FRA))
258 #FRB = DOUBLE(SINGLE(FRB))
259 result = float(FRA) + float(FRB)
260 cvt = fp64toselectable(result)
261 cvt = DOUBLE(SINGLE(cvt))
262 log ("FPADD32", FRA, FRB, result, cvt)
263 return cvt
264
265
266 def FPSUB32(FRA, FRB):
267 #return FPSUB64(FRA, FRB)
268 #FRA = DOUBLE(SINGLE(FRA))
269 #FRB = DOUBLE(SINGLE(FRB))
270 result = float(FRA) - float(FRB)
271 cvt = fp64toselectable(result)
272 cvt = DOUBLE(SINGLE(cvt))
273 log ("FPSUB32", FRA, FRB, result, cvt)
274 return cvt
275
276
277 def FPMUL32(FRA, FRB):
278 #return FPMUL64(FRA, FRB)
279 #FRA = DOUBLE(SINGLE(FRA))
280 #FRB = DOUBLE(SINGLE(FRB))
281 result = float(FRA) * float(FRB)
282 cvt = fp64toselectable(result)
283 cvt = DOUBLE(SINGLE(cvt))
284 log ("FPMUL32", FRA, FRB, result, cvt)
285 return cvt
286
287
288 def FPDIV32(FRA, FRB):
289 #return FPDIV64(FRA, FRB)
290 #FRA = DOUBLE(SINGLE(FRA))
291 #FRB = DOUBLE(SINGLE(FRB))
292 result = float(FRA) / float(FRB)
293 cvt = fp64toselectable(result)
294 cvt = DOUBLE(SINGLE(cvt))
295 log ("FPDIV32", FRA, FRB, result, cvt)
296 return cvt
297
298
299 def FPADD64(FRA, FRB):
300 result = float(FRA) + float(FRB)
301 cvt = fp64toselectable(result)
302 log ("FPADD64", FRA, FRB, result, cvt)
303 return cvt
304
305
306 def FPSUB64(FRA, FRB):
307 result = float(FRA) - float(FRB)
308 cvt = fp64toselectable(result)
309 log ("FPSUB64", FRA, FRB, result, cvt)
310 return cvt
311
312
313 def FPMUL64(FRA, FRB):
314 result = float(FRA) * float(FRB)
315 cvt = fp64toselectable(result)
316 log ("FPMUL64", FRA, FRB, result, cvt)
317 return cvt
318
319
320 def FPDIV64(FRA, FRB):
321 result = float(FRA) / float(FRB)
322 cvt = fp64toselectable(result)
323 log ("FPDIV64", FRA, FRB, result, cvt)
324 return cvt
325
326
327 # For these tests I tried to find power instructions that would let me
328 # isolate each of these helper operations. So for instance, when I was
329 # testing the MASK() function, I chose rlwinm and rldicl because if I
330 # set the shift equal to 0 and passed in a value of all ones, the
331 # result I got would be exactly the same as the output of MASK()
332
333
334 class HelperTests(unittest.TestCase):
335 def test_MASK(self):
336 # Verified using rlwinm, rldicl, rldicr in qemu
337 # li 1, -1
338 # rlwinm reg, 1, 0, 5, 15
339 self.assertHex(MASK(5+32, 15+32), 0x7ff0000)
340 # rlwinm reg, 1, 0, 15, 5
341 self.assertHex(MASK(15+32, 5+32), 0xfffffffffc01ffff)
342 self.assertHex(MASK(30+32, 2+32), 0xffffffffe0000003)
343 # rldicl reg, 1, 0, 37
344 self.assertHex(MASK(37, 63), 0x7ffffff)
345 self.assertHex(MASK(10, 63), 0x3fffffffffffff)
346 self.assertHex(MASK(58, 63), 0x3f)
347 # rldicr reg, 1, 0, 37
348 self.assertHex(MASK(0, 37), 0xfffffffffc000000)
349 self.assertHex(MASK(0, 10), 0xffe0000000000000)
350 self.assertHex(MASK(0, 58), 0xffffffffffffffe0)
351
352 # li 2, 5
353 # slw 1, 1, 2
354 self.assertHex(MASK(32, 63-5), 0xffffffe0)
355
356 self.assertHex(MASK(32, 33), 0xc0000000)
357 self.assertHex(MASK(32, 32), 0x80000000)
358 self.assertHex(MASK(33, 33), 0x40000000)
359
360 def test_ROTL64(self):
361 # r1 = 0xdeadbeef12345678
362 value = 0xdeadbeef12345678
363
364 # rldicl reg, 1, 10, 0
365 self.assertHex(ROTL64(value, 10), 0xb6fbbc48d159e37a)
366 # rldicl reg, 1, 35, 0
367 self.assertHex(ROTL64(value, 35), 0x91a2b3c6f56df778)
368 self.assertHex(ROTL64(value, 58), 0xe37ab6fbbc48d159)
369 self.assertHex(ROTL64(value, 22), 0xbbc48d159e37ab6f)
370
371 def test_ROTL32(self):
372 # r1 = 0xdeadbeef
373 value = 0xdeadbeef
374
375 # rlwinm reg, 1, 10, 0, 31
376 self.assertHex(ROTL32(value, 10), 0xb6fbbf7a)
377 # rlwinm reg, 1, 17, 0, 31
378 self.assertHex(ROTL32(value, 17), 0x7ddfbd5b)
379 self.assertHex(ROTL32(value, 25), 0xdfbd5b7d)
380 self.assertHex(ROTL32(value, 30), 0xf7ab6fbb)
381
382 def test_EXTS64(self):
383 value_a = SelectableInt(0xdeadbeef, 32) # r1
384 value_b = SelectableInt(0x73123456, 32) # r2
385 value_c = SelectableInt(0x80000000, 32) # r3
386
387 # extswsli reg, 1, 0
388 self.assertHex(EXTS64(value_a), 0xffffffffdeadbeef)
389 # extswsli reg, 2, 0
390 self.assertHex(EXTS64(value_b), SelectableInt(value_b.value, 64))
391 # extswsli reg, 3, 0
392 self.assertHex(EXTS64(value_c), 0xffffffff80000000)
393
394 def test_FPADD32(self):
395 value_a = SelectableInt(0x4014000000000000, 64) # 5.0
396 value_b = SelectableInt(0x403B4CCCCCCCCCCD, 64) # 27.3
397 result = FPADD32(value_a, value_b)
398 self.assertHex(0x4040266666666666, result)
399
400 def assertHex(self, a, b):
401 a_val = a
402 if isinstance(a, SelectableInt):
403 a_val = a.value
404 b_val = b
405 if isinstance(b, SelectableInt):
406 b_val = b.value
407 msg = "{:x} != {:x}".format(a_val, b_val)
408 return self.assertEqual(a, b, msg)
409
410
411 if __name__ == '__main__':
412 log(SelectableInt.__bases__)
413 unittest.main()