61ac6cacc96b2d1d90be851e47d82138b6c2ab73
[openpower-isa.git] / src / openpower / sv / trans / svp64.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Funded by NLnet http://nlnet.nl
4
5 """SVP64 OpenPOWER v3.0B assembly translator
6
7 This class takes raw svp64 assembly mnemonics (aliases excluded) and creates
8 an EXT001-encoded "svp64 prefix" (as a .long) followed by a v3.0B opcode.
9
10 It is very simple and straightforward, the only weirdness being the
11 extraction of the register information and conversion to v3.0B numbering.
12
13 Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
14 Encoding format of arithmetic: https://libre-soc.org/openpower/sv/normal/
15 Encoding format of LDST: https://libre-soc.org/openpower/sv/ldst/
16 **TODO format of branches: https://libre-soc.org/openpower/sv/branches/**
17 **TODO format of CRs: https://libre-soc.org/openpower/sv/cr_ops/**
18 Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
19 """
20
21 import functools
22 import os
23 import sys
24 from collections import OrderedDict
25
26 from openpower.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
27 SV64P_PID_SIZE, SVP64RMFields,
28 SVP64RM_EXTRA2_SPEC_SIZE,
29 SVP64RM_EXTRA3_SPEC_SIZE,
30 SVP64RM_MODE_SIZE,
31 SVP64RM_SMASK_SIZE,
32 SVP64RM_MMODE_SIZE,
33 SVP64RM_MASK_SIZE,
34 SVP64RM_SUBVL_SIZE,
35 SVP64RM_EWSRC_SIZE,
36 SVP64RM_ELWIDTH_SIZE)
37 from openpower.decoder.pseudo.pagereader import ISA
38 from openpower.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
39 from openpower.decoder.selectable_int import SelectableInt
40 from openpower.consts import SVP64MODE
41
42 # for debug logging
43 from openpower.util import log
44
45
46 def instruction(*fields):
47 def instruction(insn, desc):
48 (value, start, end) = desc
49 bits = ((1,) * ((end + 1) - start))
50 mask = 0
51 for bit in bits:
52 mask = ((mask << 1) | bit)
53 return (insn | ((value & mask) << (31 - end)))
54
55 return functools.reduce(instruction, fields, 0)
56
57
58 def setvl(fields, Rc):
59 """
60 setvl is a *32-bit-only* instruction. It controls SVSTATE.
61 It is *not* a 64-bit-prefixed Vector instruction (no sv.setvl, yet),
62 it is a Vector *control* instruction.
63
64 * setvl RT,RA,SVi,vf,vs,ms
65
66 1.6.28 SVL-FORM - from fields.txt
67 |0 |6 |11 |16 |23 |24 |25 |26 |31 |
68 | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
69 """
70 PO = 22
71 XO = 0b11011
72 # ARRRGH these are in a non-obvious order in openpower/isa/simplev.mdwn
73 # compared to the SVL-Form above. sigh
74 # setvl RT,RA,SVi,vf,vs,ms
75 (RT, RA, SVi, vf, vs, ms) = fields
76 SVi -= 1
77 return instruction(
78 (PO , 0 , 5),
79 (RT , 6 , 10),
80 (RA , 11, 15),
81 (SVi, 16, 22),
82 (ms , 23, 23),
83 (vs , 24, 24),
84 (vf , 25, 25),
85 (XO , 26, 30),
86 (Rc , 31, 31),
87 )
88
89
90 def svstep(fields, Rc):
91 """
92 svstep is a 32-bit instruction. It updates SVSTATE.
93 It *can* be SVP64-prefixed, to indicate that its registers
94 are Vectorised.
95
96 * svstep RT,SVi,vf
97
98 # 1.6.28 SVL-FORM - from fields.txt
99 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
100 # | PO | RT | / | SVi |/ |/ |vf | XO |Rc |
101
102 """
103 PO = 22
104 XO = 0b10011
105 (RT, SVi, vf) = fields
106 SVi -= 1
107 return instruction(
108 (PO , 0 , 5),
109 (RT , 6 , 10),
110 (0 , 11, 15),
111 (SVi, 16, 22),
112 (0 , 23, 23),
113 (0 , 24, 24),
114 (vf , 25, 25),
115 (XO , 26, 30),
116 (Rc , 31, 31),
117 )
118
119
120 def svshape(fields):
121 """
122 svshape is a *32-bit-only* instruction. It updates SVSHAPE and SVSTATE.
123 It is *not* a 64-bit-prefixed Vector instruction (no sv.svshape, yet),
124 it is a Vector *control* instruction.
125
126 * svshape SVxd,SVyd,SVzd,SVrm,vf
127
128 # 1.6.33 SVM-FORM from fields.txt
129 # |0 |6 |11 |16 |21 |25 |26 |31 |
130 # | PO | SVxd | SVyd | SVzd | SVrm |vf | XO |
131
132 """
133 PO = 22
134 XO = 0b011001
135 (SVxd, SVyd, SVzd, SVrm, vf) = fields
136 SVxd -= 1
137 SVyd -= 1
138 SVzd -= 1
139 return instruction(
140 (PO , 0 , 5),
141 (SVxd, 6 , 10),
142 (SVyd, 11, 15),
143 (SVzd, 16, 20),
144 (SVrm, 21, 24),
145 (vf , 25, 25),
146 (XO , 26, 31),
147 )
148
149
150 def svindex(fields):
151 """
152 svindex is a *32-bit-only* instruction. It is a convenience
153 instruction that reduces instruction count for Indexed REMAP
154 Mode.
155 It is *not* a 64-bit-prefixed Vector instruction (no sv.svindex, yet),
156 it is a Vector *control* instruction.
157
158 1.6.28 SVI-FORM
159 |0 |6 |11 |16 |21 |23|24|25|26 31|
160 | PO | RS |rmm | SVd |ew |yx|mm|sk| XO |
161 """
162 # note that the dimension field one subtracted
163 PO = 22
164 XO = 0b101001
165 (RS, rmm, SVd, ew, yx, mm, sk) = fields
166 SVd -= 1
167 return instruction(
168 (PO , 0 , 5),
169 (RS , 6 , 10),
170 (rmm, 11 , 15),
171 (SVd, 16 , 20),
172 (ew , 21 , 22),
173 (yx , 23 , 23),
174 (mm , 24 , 24),
175 (sk , 25 , 25),
176 (XO , 26 , 31),
177 )
178
179
180 def svremap(fields):
181 """
182 this is a *32-bit-only* instruction. It updates the SVSHAPE SPR
183 it is *not* a 64-bit-prefixed Vector instruction (no sv.svremap),
184 it is a Vector *control* instruction.
185
186 * svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
187
188 # 1.6.34 SVRM-FORM
189 |0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
190 | PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO |
191
192 """
193 PO = 22
194 XO = 0b111001
195 (SVme, mi0, mi1, mi2, mo0, mo1, pst) = fields
196 return instruction(
197 (PO , 0 , 5),
198 (SVme, 6 , 10),
199 (mi0 , 11, 12),
200 (mi1 , 13, 14),
201 (mi2 , 15, 16),
202 (mo0 , 17, 18),
203 (mo1 , 19, 20),
204 (pst , 21, 21),
205 (0 , 22, 25),
206 (XO , 26, 31),
207 )
208
209
210 # ok from here-on down these are added as 32-bit instructions
211 # and are here only because binutils (at present) doesn't have
212 # them (that's being fixed!)
213 # they can - if implementations then choose - be Vectorised
214 # because they are general-purpose scalar instructions
215 def bmask(fields):
216 """
217 1.6.2.2 BM2-FORM
218 |0 |6 |11 |16 |21 |26 |27 31|
219 | PO | RT | RA | RB |bm |L | XO |
220 """
221 PO = 22
222 XO = 0b010001
223 (RT, RA, RB, bm, L) = fields
224 return instruction(
225 (PO, 0 , 5),
226 (RT, 6 , 10),
227 (RA, 11, 15),
228 (RB, 16, 20),
229 (bm, 21, 25),
230 (L , 26, 26),
231 (XO, 27, 31),
232 )
233
234
235 def fsins(fields, Rc):
236 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
237 # however we are out of space with opcode 22
238 # 1.6.7 X-FORM
239 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
240 # | PO | FRT | /// | FRB | XO |Rc |
241 PO = 59
242 XO = 0b1000001110
243 (FRT, FRB) = fields
244 return instruction(
245 (PO , 0 , 5),
246 (FRT, 6 , 10),
247 (0 , 11, 15),
248 (FRB, 16, 20),
249 (XO , 21, 30),
250 (Rc , 31, 31),
251 )
252
253
254 def fcoss(fields, Rc):
255 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
256 # however we are out of space with opcode 22
257 # 1.6.7 X-FORM
258 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
259 # | PO | FRT | /// | FRB | XO |Rc |
260 PO = 59
261 XO = 0b1000101110
262 (FRT, FRB) = fields
263 return instruction(
264 (PO , 0 , 5),
265 (FRT, 6 , 10),
266 (0 , 11, 15),
267 (FRB, 16, 20),
268 (XO , 21, 30),
269 (Rc , 31, 31),
270 )
271
272
273 def ternlogi(fields, Rc):
274 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
275 # however we are out of space with opcode 22
276 # 1.6.34 TLI-FORM
277 # |0 |6 |11 |16 |21 |29 |31 |
278 # | PO | RT | RA | RB | TLI | XO |Rc |
279 PO = 5
280 XO = 0
281 (RT, RA, RB, TLI) = fields
282 return instruction(
283 (PO , 0 , 5),
284 (RT , 6 , 10),
285 (RA , 11, 15),
286 (RB , 16, 20),
287 (TLI, 21, 28),
288 (XO , 29, 30),
289 (Rc , 31, 31),
290 )
291
292
293 def grev(fields, Rc, imm, wide):
294 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
295 # however we are out of space with opcode 22
296 insn = PO = 5
297 # _ matches fields in table at:
298 # https://libre-soc.org/openPOwer/sv/bitmanip/
299 XO = 0b1_0010_110
300 if wide:
301 XO |= 0b100_000
302 if imm:
303 XO |= 0b1000_000
304 (RT, RA, XBI) = fields
305 insn = (insn << 5) | RT
306 insn = (insn << 5) | RA
307 if imm and not wide:
308 assert 0 <= XBI < 64
309 insn = (insn << 6) | XBI
310 insn = (insn << 9) | XO
311 else:
312 assert 0 <= XBI < 32
313 insn = (insn << 5) | XBI
314 insn = (insn << 10) | XO
315 insn = (insn << 1) | Rc
316 return insn
317
318
319 def av(fields, XO, Rc):
320 # 1.6.7 X-FORM
321 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
322 # | PO | RT | RA | RB | XO |Rc |
323 PO = 22
324 (RT, RA, RB) = fields
325 return instruction(
326 (PO, 0 , 5),
327 (RT, 6 , 10),
328 (RA, 11, 15),
329 (RB, 16, 20),
330 (XO, 21, 30),
331 (Rc, 31, 31),
332 )
333
334
335 CUSTOM_INSNS = {}
336 for (name, hook) in (
337 ("setvl", setvl),
338 ("svstep", svstep),
339 ("fsins", fsins),
340 ("fcoss", fcoss),
341 ("ternlogi", ternlogi),
342 ):
343 CUSTOM_INSNS[name] = functools.partial(hook, Rc=False)
344 CUSTOM_INSNS[f"{name}."] = functools.partial(hook, Rc=True)
345 CUSTOM_INSNS["bmask"] = bmask
346 CUSTOM_INSNS["svshape"] = svshape
347 CUSTOM_INSNS["svindex"] = svindex
348 CUSTOM_INSNS["svremap"] = svremap
349
350 for (name, imm, wide) in (
351 ("grev", False, False),
352 ("grevi", True, False),
353 ("grevw", False, True),
354 ("grevwi", True, True),
355 ):
356 CUSTOM_INSNS[name] = functools.partial(grev,
357 imm=("i" in name), wide=("w" in name), Rc=False)
358 CUSTOM_INSNS[f"{name}."] = functools.partial(grev,
359 imm=("i" in name), wide=("w" in name), Rc=True)
360
361 for (name, XO) in (
362 ("maxs" , 0b0111001110),
363 ("maxu" , 0b0011001110),
364 ("minu" , 0b0001001110),
365 ("mins" , 0b0101001110),
366 ("absdu" , 0b1011110110),
367 ("absds" , 0b1001110110),
368 ("avgadd" , 0b1101001110),
369 ("absdacu", 0b1111110110),
370 ("absdacs", 0b0111110110),
371 ("cprop" , 0b0110001110),
372 ):
373 CUSTOM_INSNS[name] = functools.partial(av, XO=XO, Rc=False)
374 CUSTOM_INSNS[f"{name}."] = functools.partial(av, XO=XO, Rc=True)
375
376
377 # decode GPR into sv extra
378 def get_extra_gpr(etype, regmode, field):
379 if regmode == 'scalar':
380 # cut into 2-bits 5-bits SS FFFFF
381 sv_extra = field >> 5
382 field = field & 0b11111
383 else:
384 # cut into 5-bits 2-bits FFFFF SS
385 sv_extra = field & 0b11
386 field = field >> 2
387 return sv_extra, field
388
389
390 # decode 3-bit CR into sv extra
391 def get_extra_cr_3bit(etype, regmode, field):
392 if regmode == 'scalar':
393 # cut into 2-bits 3-bits SS FFF
394 sv_extra = field >> 3
395 field = field & 0b111
396 else:
397 # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
398 sv_extra = field & 0b1111
399 field = field >> 4
400 return sv_extra, field
401
402
403 # decodes SUBVL
404 def decode_subvl(encoding):
405 pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
406 assert encoding in pmap, \
407 "encoding %s for SUBVL not recognised" % encoding
408 return pmap[encoding]
409
410
411 # decodes elwidth
412 def decode_elwidth(encoding):
413 pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
414 assert encoding in pmap, \
415 "encoding %s for elwidth not recognised" % encoding
416 return pmap[encoding]
417
418
419 # decodes predicate register encoding
420 def decode_predicate(encoding):
421 pmap = { # integer
422 '1<<r3': (0, 0b001),
423 'r3': (0, 0b010),
424 '~r3': (0, 0b011),
425 'r10': (0, 0b100),
426 '~r10': (0, 0b101),
427 'r30': (0, 0b110),
428 '~r30': (0, 0b111),
429 # CR
430 'lt': (1, 0b000),
431 'nl': (1, 0b001), 'ge': (1, 0b001), # same value
432 'gt': (1, 0b010),
433 'ng': (1, 0b011), 'le': (1, 0b011), # same value
434 'eq': (1, 0b100),
435 'ne': (1, 0b101),
436 'so': (1, 0b110), 'un': (1, 0b110), # same value
437 'ns': (1, 0b111), 'nu': (1, 0b111), # same value
438 }
439 assert encoding in pmap, \
440 "encoding %s for predicate not recognised" % encoding
441 return pmap[encoding]
442
443
444 # decodes "Mode" in similar way to BO field (supposed to, anyway)
445 def decode_bo(encoding):
446 pmap = { # TODO: double-check that these are the same as Branch BO
447 'lt': 0b000,
448 'nl': 0b001, 'ge': 0b001, # same value
449 'gt': 0b010,
450 'ng': 0b011, 'le': 0b011, # same value
451 'eq': 0b100,
452 'ne': 0b101,
453 'so': 0b110, 'un': 0b110, # same value
454 'ns': 0b111, 'nu': 0b111, # same value
455 }
456 assert encoding in pmap, \
457 "encoding %s for BO Mode not recognised" % encoding
458 return pmap[encoding]
459
460 # partial-decode fail-first mode
461
462
463 def decode_ffirst(encoding):
464 if encoding in ['RC1', '~RC1']:
465 return encoding
466 return decode_bo(encoding)
467
468
469 def decode_reg(field, macros=None):
470 if macros is None:
471 macros = {}
472 # decode the field number. "5.v" or "3.s" or "9"
473 # and now also "*0", and "*%0". note: *NOT* to add "*%rNNN" etc.
474 # https://bugs.libre-soc.org/show_bug.cgi?id=884#c0
475 if field.startswith(("*%", "*")):
476 if field.startswith("*%"):
477 field = field[2:]
478 else:
479 field = field[1:]
480 while field in macros:
481 field = macros[field]
482 return int(field), "vector" # actual register number
483
484 # try old convention (to be retired)
485 field = field.split(".")
486 regmode = 'scalar' # default
487 if len(field) == 2:
488 if field[1] == 's':
489 regmode = 'scalar'
490 elif field[1] == 'v':
491 regmode = 'vector'
492 field = int(field[0]) # actual register number
493 return field, regmode
494
495
496 def decode_imm(field):
497 ldst_imm = "(" in field and field[-1] == ')'
498 if ldst_imm:
499 return field[:-1].split("(")
500 else:
501 return None, field
502
503
504 def crf_extra(etype, regmode, field, extras):
505 """takes a CR Field number (CR0-CR127), splits into EXTRA2/3 and v3.0
506 the scalar/vector mode (crNN.v or crNN.s) changes both the format
507 of the EXTRA2/3 encoding as well as what range of registers is possible.
508 this function can be used for both BF/BFA and BA/BB/BT by first removing
509 the bottom 2 bits of BA/BB/BT then re-instating them after encoding.
510 see https://libre-soc.org/openpower/sv/svp64/appendix/#cr_extra
511 for specification
512 """
513 sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
514 # now sanity-check (and shrink afterwards)
515 if etype == 'EXTRA2':
516 # 3-bit CR Field (BF, BFA) EXTRA2 encoding
517 if regmode == 'scalar':
518 # range is CR0-CR15 in increments of 1
519 assert (sv_extra >> 1) == 0, \
520 "scalar CR %s cannot fit into EXTRA2 %s" % \
521 (rname, str(extras[extra_idx]))
522 # all good: encode as scalar
523 sv_extra = sv_extra & 0b01
524 else: # vector
525 # range is CR0-CR127 in increments of 16
526 assert sv_extra & 0b111 == 0, \
527 "vector CR %s cannot fit into EXTRA2 %s" % \
528 (rname, str(extras[extra_idx]))
529 # all good: encode as vector (bit 2 set)
530 sv_extra = 0b10 | (sv_extra >> 3)
531 else:
532 # 3-bit CR Field (BF, BFA) EXTRA3 encoding
533 if regmode == 'scalar':
534 # range is CR0-CR31 in increments of 1
535 assert (sv_extra >> 2) == 0, \
536 "scalar CR %s cannot fit into EXTRA3 %s" % \
537 (rname, str(extras[extra_idx]))
538 # all good: encode as scalar
539 sv_extra = sv_extra & 0b11
540 else: # vector
541 # range is CR0-CR127 in increments of 8
542 assert sv_extra & 0b11 == 0, \
543 "vector CR %s cannot fit into EXTRA3 %s" % \
544 (rname, str(extras[extra_idx]))
545 # all good: encode as vector (bit 3 set)
546 sv_extra = 0b100 | (sv_extra >> 2)
547 return sv_extra, field
548
549
550 # decodes svp64 assembly listings and creates EXT001 svp64 prefixes
551 class SVP64Asm:
552 def __init__(self, lst, bigendian=False, macros=None):
553 if macros is None:
554 macros = {}
555 self.macros = macros
556 self.lst = lst
557 self.trans = self.translate(lst)
558 self.isa = ISA() # reads the v3.0B pseudo-code markdown files
559 self.svp64 = SVP64RM() # reads the svp64 Remap entries for registers
560 assert bigendian == False, "error, bigendian not supported yet"
561
562 def __iter__(self):
563 yield from self.trans
564
565 def translate_one(self, insn, macros=None):
566 if macros is None:
567 macros = {}
568 macros.update(self.macros)
569 isa = self.isa
570 svp64 = self.svp64
571 # find first space, to get opcode
572 ls = insn.split(' ')
573 opcode = ls[0]
574 # now find opcode fields
575 fields = ''.join(ls[1:]).split(',')
576 mfields = list(map(str.strip, fields))
577 log("opcode, fields", ls, opcode, mfields)
578 fields = []
579 # macro substitution
580 for field in mfields:
581 fields.append(macro_subst(macros, field))
582 log("opcode, fields substed", ls, opcode, fields)
583
584 # identify if it is a special instruction
585 custom_insn_hook = CUSTOM_INSNS.get(opcode)
586 if custom_insn_hook is not None:
587 fields = tuple(map(int, fields))
588 insn = custom_insn_hook(fields)
589 log(opcode, bin(insn))
590 yield ".long 0x%x" % insn
591 return
592
593 # identify if is a svp64 mnemonic
594 if not opcode.startswith('sv.'):
595 yield insn # unaltered
596 return
597 opcode = opcode[3:] # strip leading "sv"
598
599 # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
600 opmodes = opcode.split("/") # split at "/"
601 v30b_op = opmodes.pop(0) # first is the v3.0B
602 # check instruction ends with dot
603 rc_mode = v30b_op.endswith('.')
604 if rc_mode:
605 v30b_op = v30b_op[:-1]
606
607 # sigh again, have to recognised LD/ST bit-reverse instructions
608 # this has to be "processed" to fit into a v3.0B without the "sh"
609 # e.g. ldsh is actually ld
610 ldst_shift = v30b_op.startswith("l") and v30b_op.endswith("sh")
611
612 if v30b_op not in isa.instr:
613 raise Exception("opcode %s of '%s' not supported" %
614 (v30b_op, insn))
615
616 if ldst_shift:
617 # okaay we need to process the fields and make this:
618 # ldsh RT, SVD(RA), RC - 11 bits for SVD, 5 for RC
619 # into this:
620 # ld RT, D(RA) - 16 bits
621 # likewise same for SVDS (9 bits for SVDS, 5 for RC, 14 bits for DS)
622 form = isa.instr[v30b_op].form # get form (SVD-Form, SVDS-Form)
623
624 newfields = []
625 for field in fields:
626 # identify if this is a ld/st immediate(reg) thing
627 ldst_imm = "(" in field and field[-1] == ')'
628 if ldst_imm:
629 newfields.append(field[:-1].split("("))
630 else:
631 newfields.append(field)
632
633 immed, RA = newfields[1]
634 immed = int(immed)
635 RC = int(newfields.pop(2)) # better be an integer number!
636 if form == 'SVD': # 16 bit: immed 11 bits, RC shift up 11
637 immed = (immed & 0b11111111111) | (RC << 11)
638 if immed & (1 << 15): # should be negative
639 immed -= 1 << 16
640 if form == 'SVDS': # 14 bit: immed 9 bits, RC shift up 9
641 immed = (immed & 0b111111111) | (RC << 9)
642 if immed & (1 << 13): # should be negative
643 immed -= 1 << 14
644 newfields[1] = "%d(%s)" % (immed, RA)
645 fields = newfields
646
647 # and strip off "sh" from end, and add "sh" to opmodes, instead
648 v30b_op = v30b_op[:-2]
649 opmodes.append("sh")
650 log("rewritten", v30b_op, opmodes, fields)
651
652 if v30b_op not in svp64.instrs:
653 raise Exception("opcode %s of '%s' not an svp64 instruction" %
654 (v30b_op, insn))
655 v30b_regs = isa.instr[v30b_op].regs[0] # get regs info "RT, RA, RB"
656 rm = svp64.instrs[v30b_op] # one row of the svp64 RM CSV
657 log("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
658 log("v3.0B regs", opcode, v30b_regs)
659 log("RM", rm)
660
661 # right. the first thing to do is identify the ordering of
662 # the registers, by name. the EXTRA2/3 ordering is in
663 # rm['0']..rm['3'] but those fields contain the names RA, BB
664 # etc. we have to read the pseudocode to understand which
665 # reg is which in our instruction. sigh.
666
667 # first turn the svp64 rm into a "by name" dict, recording
668 # which position in the RM EXTRA it goes into
669 # also: record if the src or dest was a CR, for sanity-checking
670 # (elwidth overrides on CRs are banned)
671 decode = decode_extra(rm)
672 dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
673
674 log("EXTRA field index, src", svp64_src)
675 log("EXTRA field index, dest", svp64_dest)
676
677 # okaaay now we identify the field value (opcode N,N,N) with
678 # the pseudo-code info (opcode RT, RA, RB)
679 assert len(fields) == len(v30b_regs), \
680 "length of fields %s must match insn `%s` fields %s" % \
681 (str(v30b_regs), insn, str(fields))
682 opregfields = zip(fields, v30b_regs) # err that was easy
683
684 # now for each of those find its place in the EXTRA encoding
685 # note there is the possibility (for LD/ST-with-update) of
686 # RA occurring **TWICE**. to avoid it getting added to the
687 # v3.0B suffix twice, we spot it as a duplicate, here
688 extras = OrderedDict()
689 for idx, (field, regname) in enumerate(opregfields):
690 imm, regname = decode_imm(regname)
691 rtype = get_regtype(regname)
692 log(" idx find", rtype, idx, field, regname, imm)
693 if rtype is None:
694 # probably an immediate field, append it straight
695 extras[('imm', idx, False)] = (idx, field, None, None, None)
696 continue
697 extra = svp64_src.get(regname, None)
698 if extra is not None:
699 extra = ('s', extra, False) # not a duplicate
700 extras[extra] = (idx, field, regname, rtype, imm)
701 log(" idx src", idx, extra, extras[extra])
702 dextra = svp64_dest.get(regname, None)
703 log("regname in", regname, dextra)
704 if dextra is not None:
705 is_a_duplicate = extra is not None # duplicate spotted
706 dextra = ('d', dextra, is_a_duplicate)
707 extras[dextra] = (idx, field, regname, rtype, imm)
708 log(" idx dst", idx, extra, extras[dextra])
709
710 # great! got the extra fields in their associated positions:
711 # also we know the register type. now to create the EXTRA encodings
712 etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
713 ptype = rm['Ptype'] # Predication type: Twin / Single
714 extra_bits = 0
715 v30b_newfields = []
716 for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
717 # is it a field we don't alter/examine? if so just put it
718 # into newfields
719 if rtype is None:
720 v30b_newfields.append(field)
721 continue
722
723 # identify if this is a ld/st immediate(reg) thing
724 ldst_imm = "(" in field and field[-1] == ')'
725 if ldst_imm:
726 immed, field = field[:-1].split("(")
727
728 field, regmode = decode_reg(field, macros=macros)
729 log(" ", extra_idx, rname, rtype,
730 regmode, iname, field, end=" ")
731
732 # see Mode field https://libre-soc.org/openpower/sv/svp64/
733 # XXX TODO: the following is a bit of a laborious repeated
734 # mess, which could (and should) easily be parameterised.
735 # XXX also TODO: the LD/ST modes which are different
736 # https://libre-soc.org/openpower/sv/ldst/
737
738 # rright. SVP64 register numbering is from 0 to 127
739 # for GPRs, FPRs *and* CR Fields, where for v3.0 the GPRs and RPFs
740 # are 0-31 and CR Fields are only 0-7. the SVP64 RM "Extra"
741 # area is used to extend the numbering from the 32-bit
742 # instruction, and also to record whether the register
743 # is scalar or vector. on a per-operand basis. this
744 # results in a slightly finnicky encoding: here we go...
745
746 # encode SV-GPR and SV-FPR field into extra, v3.0field
747 if rtype in ['GPR', 'FPR']:
748 sv_extra, field = get_extra_gpr(etype, regmode, field)
749 # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
750 # (and shrink to a single bit if ok)
751 if etype == 'EXTRA2':
752 if regmode == 'scalar':
753 # range is r0-r63 in increments of 1
754 assert (sv_extra >> 1) == 0, \
755 "scalar GPR %s cannot fit into EXTRA2 %s" % \
756 (rname, str(extras[extra_idx]))
757 # all good: encode as scalar
758 sv_extra = sv_extra & 0b01
759 else:
760 # range is r0-r127 in increments of 2 (r0 r2 ... r126)
761 assert sv_extra & 0b01 == 0, \
762 "%s: vector field %s cannot fit " \
763 "into EXTRA2 %s" % \
764 (insn, rname, str(extras[extra_idx]))
765 # all good: encode as vector (bit 2 set)
766 sv_extra = 0b10 | (sv_extra >> 1)
767 elif regmode == 'vector':
768 # EXTRA3 vector bit needs marking
769 sv_extra |= 0b100
770
771 # encode SV-CR 3-bit field into extra, v3.0field.
772 # 3-bit is for things like BF and BFA
773 elif rtype == 'CR_3bit':
774 sv_extra, field = crf_extra(etype, regmode, field, extras)
775
776 # encode SV-CR 5-bit field into extra, v3.0field
777 # 5-bit is for things like BA BB BC BT etc.
778 # *sigh* this is the same as 3-bit except the 2 LSBs of the
779 # 5-bit field are passed through unaltered.
780 elif rtype == 'CR_5bit':
781 cr_subfield = field & 0b11 # record bottom 2 bits for later
782 field = field >> 2 # strip bottom 2 bits
783 # use the exact same 3-bit function for the top 3 bits
784 sv_extra, field = crf_extra(etype, regmode, field, extras)
785 # reconstruct the actual 5-bit CR field (preserving the
786 # bottom 2 bits, unaltered)
787 field = (field << 2) | cr_subfield
788
789 else:
790 raise Exception("no type match: %s" % rtype)
791
792 # capture the extra field info
793 log("=>", "%5s" % bin(sv_extra), field)
794 extras[extra_idx] = sv_extra
795
796 # append altered field value to v3.0b, differs for LDST
797 # note that duplicates are skipped e.g. EXTRA2 contains
798 # *BOTH* s:RA *AND* d:RA which happens on LD/ST-with-update
799 srcdest, idx, duplicate = extra_idx
800 if duplicate: # skip adding to v3.0b fields, already added
801 continue
802 if ldst_imm:
803 v30b_newfields.append(("%s(%s)" % (immed, str(field))))
804 else:
805 v30b_newfields.append(str(field))
806
807 log("new v3.0B fields", v30b_op, v30b_newfields)
808 log("extras", extras)
809
810 # rright. now we have all the info. start creating SVP64 RM
811 svp64_rm = SVP64RMFields()
812
813 # begin with EXTRA fields
814 for idx, sv_extra in extras.items():
815 log(idx)
816 if idx is None:
817 continue
818 if idx[0] == 'imm':
819 continue
820 srcdest, idx, duplicate = idx
821 if etype == 'EXTRA2':
822 svp64_rm.extra2[idx].eq(
823 SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
824 else:
825 svp64_rm.extra3[idx].eq(
826 SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
827
828 # identify if the op is a LD/ST. the "blegh" way. copied
829 # from power_enums. TODO, split the list _insns down.
830 is_ld = v30b_op in [
831 "lbarx", "lbz", "lbzu", "lbzux", "lbzx", # load byte
832 "ld", "ldarx", "ldbrx", "ldu", "ldux", "ldx", # load double
833 "lfs", "lfsx", "lfsu", "lfsux", # FP load single
834 "lfd", "lfdx", "lfdu", "lfdux", "lfiwzx", "lfiwax", # FP load dbl
835 "lha", "lharx", "lhau", "lhaux", "lhax", # load half
836 "lhbrx", "lhz", "lhzu", "lhzux", "lhzx", # more load half
837 "lwa", "lwarx", "lwaux", "lwax", "lwbrx", # load word
838 "lwz", "lwzcix", "lwzu", "lwzux", "lwzx", # more load word
839 ]
840 is_st = v30b_op in [
841 "stb", "stbcix", "stbcx", "stbu", "stbux", "stbx",
842 "std", "stdbrx", "stdcx", "stdu", "stdux", "stdx",
843 "stfs", "stfsx", "stfsu", "stfux", # FP store sgl
844 "stfd", "stfdx", "stfdu", "stfdux", "stfiwx", # FP store dbl
845 "sth", "sthbrx", "sthcx", "sthu", "sthux", "sthx",
846 "stw", "stwbrx", "stwcx", "stwu", "stwux", "stwx",
847 ]
848 # use this to determine if the SVP64 RM format is different.
849 # see https://libre-soc.org/openpower/sv/ldst/
850 is_ldst = is_ld or is_st
851
852 # branch-conditional detection
853 is_bc = v30b_op in [
854 "bc", "bclr",
855 ]
856
857 # parts of svp64_rm
858 mmode = 0 # bit 0
859 pmask = 0 # bits 1-3
860 destwid = 0 # bits 4-5
861 srcwid = 0 # bits 6-7
862 subvl = 0 # bits 8-9
863 smask = 0 # bits 16-18 but only for twin-predication
864 mode = 0 # bits 19-23
865
866 mask_m_specified = False
867 has_pmask = False
868 has_smask = False
869
870 saturation = None
871 src_zero = 0
872 dst_zero = 0
873 sv_mode = None
874
875 mapreduce = False
876 reverse_gear = False
877 mapreduce_crm = False
878 mapreduce_svm = False
879
880 predresult = False
881 failfirst = False
882 ldst_elstride = 0
883
884 # branch-conditional bits
885 bc_all = 0
886 bc_lru = 0
887 bc_brc = 0
888 bc_svstep = 0
889 bc_vsb = 0
890 bc_vlset = 0
891 bc_vli = 0
892 bc_snz = 0
893
894 # ok let's start identifying opcode augmentation fields
895 for encmode in opmodes:
896 # predicate mask (src and dest)
897 if encmode.startswith("m="):
898 pme = encmode
899 pmmode, pmask = decode_predicate(encmode[2:])
900 smmode, smask = pmmode, pmask
901 mmode = pmmode
902 mask_m_specified = True
903 # predicate mask (dest)
904 elif encmode.startswith("dm="):
905 pme = encmode
906 pmmode, pmask = decode_predicate(encmode[3:])
907 mmode = pmmode
908 has_pmask = True
909 # predicate mask (src, twin-pred)
910 elif encmode.startswith("sm="):
911 sme = encmode
912 smmode, smask = decode_predicate(encmode[3:])
913 mmode = smmode
914 has_smask = True
915 # shifted LD/ST
916 elif encmode.startswith("sh"):
917 ldst_shift = True
918 # vec2/3/4
919 elif encmode.startswith("vec"):
920 subvl = decode_subvl(encmode[3:])
921 # elwidth
922 elif encmode.startswith("ew="):
923 destwid = decode_elwidth(encmode[3:])
924 elif encmode.startswith("sw="):
925 srcwid = decode_elwidth(encmode[3:])
926 # element-strided LD/ST
927 elif encmode == 'els':
928 ldst_elstride = 1
929 # saturation
930 elif encmode == 'sats':
931 assert sv_mode is None
932 saturation = 1
933 sv_mode = 0b10
934 elif encmode == 'satu':
935 assert sv_mode is None
936 sv_mode = 0b10
937 saturation = 0
938 # predicate zeroing
939 elif encmode == 'sz':
940 src_zero = 1
941 elif encmode == 'dz':
942 dst_zero = 1
943 # failfirst
944 elif encmode.startswith("ff="):
945 assert sv_mode is None
946 sv_mode = 0b01
947 failfirst = decode_ffirst(encmode[3:])
948 # predicate-result, interestingly same as fail-first
949 elif encmode.startswith("pr="):
950 assert sv_mode is None
951 sv_mode = 0b11
952 predresult = decode_ffirst(encmode[3:])
953 # map-reduce mode, reverse-gear
954 elif encmode == 'mrr':
955 assert sv_mode is None
956 sv_mode = 0b00
957 mapreduce = True
958 reverse_gear = True
959 # map-reduce mode
960 elif encmode == 'mr':
961 assert sv_mode is None
962 sv_mode = 0b00
963 mapreduce = True
964 elif encmode == 'crm': # CR on map-reduce
965 assert sv_mode is None
966 sv_mode = 0b00
967 mapreduce_crm = True
968 elif encmode == 'svm': # sub-vector mode
969 mapreduce_svm = True
970 elif is_bc:
971 if encmode == 'all':
972 bc_all = 1
973 elif encmode == 'st': # svstep mode
974 bc_step = 1
975 elif encmode == 'sr': # svstep BRc mode
976 bc_step = 1
977 bc_brc = 1
978 elif encmode == 'vs': # VLSET mode
979 bc_vlset = 1
980 elif encmode == 'vsi': # VLSET mode with VLI (VL inclusives)
981 bc_vlset = 1
982 bc_vli = 1
983 elif encmode == 'vsb': # VLSET mode with VSb
984 bc_vlset = 1
985 bc_vsb = 1
986 elif encmode == 'vsbi': # VLSET mode with VLI and VSb
987 bc_vlset = 1
988 bc_vli = 1
989 bc_vsb = 1
990 elif encmode == 'snz': # sz (only) already set above
991 src_zero = 1
992 bc_snz = 1
993 elif encmode == 'lu': # LR update mode
994 bc_lru = 1
995 else:
996 raise AssertionError("unknown encmode %s" % encmode)
997 else:
998 raise AssertionError("unknown encmode %s" % encmode)
999
1000 if ptype == '2P':
1001 # since m=xx takes precedence (overrides) sm=xx and dm=xx,
1002 # treat them as mutually exclusive
1003 if mask_m_specified:
1004 assert not has_smask,\
1005 "cannot have both source-mask and predicate mask"
1006 assert not has_pmask,\
1007 "cannot have both dest-mask and predicate mask"
1008 # since the default is INT predication (ALWAYS), if you
1009 # specify one CR mask, you must specify both, to avoid
1010 # mixing INT and CR reg types
1011 if has_pmask and pmmode == 1:
1012 assert has_smask, \
1013 "need explicit source-mask in CR twin predication"
1014 if has_smask and smmode == 1:
1015 assert has_pmask, \
1016 "need explicit dest-mask in CR twin predication"
1017 # sanity-check that 2Pred mask is same mode
1018 if has_pmask and has_smask:
1019 assert smmode == pmmode, \
1020 "predicate masks %s and %s must be same reg type" % \
1021 (pme, sme)
1022
1023 # sanity-check that twin-predication mask only specified in 2P mode
1024 if ptype == '1P':
1025 assert not has_smask, \
1026 "source-mask can only be specified on Twin-predicate ops"
1027 assert not has_pmask, \
1028 "dest-mask can only be specified on Twin-predicate ops"
1029
1030 # construct the mode field, doing sanity-checking along the way
1031 if mapreduce_svm:
1032 assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
1033 assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
1034
1035 if src_zero:
1036 assert has_smask or mask_m_specified, \
1037 "src zeroing requires a source predicate"
1038 if dst_zero:
1039 assert has_pmask or mask_m_specified, \
1040 "dest zeroing requires a dest predicate"
1041
1042 # check LDST shifted, only available in "normal" mode
1043 if is_ldst and ldst_shift:
1044 assert sv_mode is None, \
1045 "LD shift cannot have modes (%s) applied" % sv_mode
1046
1047 # okaaay, so there are 4 different modes, here, which will be
1048 # partly-merged-in: is_ldst is merged in with "normal", but
1049 # is_bc is so different it's done separately. likewise is_cr
1050 # (when it is done). here are the maps:
1051
1052 # for "normal" arithmetic: https://libre-soc.org/openpower/sv/normal/
1053 """
1054 | 0-1 | 2 | 3 4 | description |
1055 | --- | --- |---------|-------------------------- |
1056 | 00 | 0 | dz sz | normal mode |
1057 | 00 | 1 | 0 RG | scalar reduce mode (mapreduce), SUBVL=1 |
1058 | 00 | 1 | 1 / | parallel reduce mode (mapreduce), SUBVL=1 |
1059 | 00 | 1 | SVM RG | subvector reduce mode, SUBVL>1 |
1060 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1061 | 01 | inv | VLi RC1 | Rc=0: ffirst z/nonz |
1062 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1063 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1064 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1065 """
1066
1067 # https://libre-soc.org/openpower/sv/ldst/
1068 # for LD/ST-immediate:
1069 """
1070 | 0-1 | 2 | 3 4 | description |
1071 | --- | --- |---------|--------------------------- |
1072 | 00 | 0 | dz els | normal mode |
1073 | 00 | 1 | dz shf | shift mode |
1074 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1075 | 01 | inv | els RC1 | Rc=0: ffirst z/nonz |
1076 | 10 | N | dz els | sat mode: N=0/1 u/s |
1077 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1078 | 11 | inv | els RC1 | Rc=0: pred-result z/nonz |
1079 """
1080
1081 # for LD/ST-indexed (RA+RB):
1082 """
1083 | 0-1 | 2 | 3 4 | description |
1084 | --- | --- |---------|-------------------------- |
1085 | 00 | SEA | dz sz | normal mode |
1086 | 01 | SEA | dz sz | Strided (scalar only source) |
1087 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1088 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1089 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1090 """
1091
1092 # and leaving out branches and cr_ops for now because they're
1093 # under development
1094 """ TODO branches and cr_ops
1095 """
1096
1097 # now create mode and (overridden) src/dst widths
1098 # XXX TODO: sanity-check bc modes
1099 if is_bc:
1100 sv_mode = ((bc_svstep << SVP64MODE.MOD2_MSB) |
1101 (bc_vlset << SVP64MODE.MOD2_LSB) |
1102 (bc_snz << SVP64MODE.BC_SNZ))
1103 srcwid = (bc_vsb << 1) | bc_lru
1104 destwid = (bc_lru << 1) | bc_all
1105
1106 else:
1107
1108 ######################################
1109 # "normal" mode
1110 if sv_mode is None:
1111 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1112 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1113 if is_ldst:
1114 # TODO: for now, LD/ST-indexed is ignored.
1115 mode |= ldst_elstride << SVP64MODE.ELS_NORMAL # el-strided
1116 # shifted mode
1117 if ldst_shift:
1118 mode |= 1 << SVP64MODE.LDST_SHIFT
1119 else:
1120 # TODO, reduce and subvector mode
1121 # 00 1 dz CRM reduce mode (mapreduce), SUBVL=1
1122 # 00 1 SVM CRM subvector reduce mode, SUBVL>1
1123 pass
1124 sv_mode = 0b00
1125
1126 ######################################
1127 # "mapreduce" modes
1128 elif sv_mode == 0b00:
1129 mode |= (0b1 << SVP64MODE.REDUCE) # sets mapreduce
1130 assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
1131 if reverse_gear:
1132 mode |= (0b1 << SVP64MODE.RG) # sets Reverse-gear mode
1133 if mapreduce_crm:
1134 mode |= (0b1 << SVP64MODE.CRM) # sets CRM mode
1135 assert rc_mode, "CRM only allowed when Rc=1"
1136 # bit of weird encoding to jam zero-pred or SVM mode in.
1137 # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
1138 if subvl == 0:
1139 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1140 elif mapreduce_svm:
1141 mode |= (0b1 << SVP64MODE.SVM) # sets SVM mode
1142
1143 ######################################
1144 # "failfirst" modes
1145 elif sv_mode == 0b01:
1146 assert src_zero == 0, "dest-zero not allowed in failfirst mode"
1147 if failfirst == 'RC1':
1148 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1149 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1150 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1151 elif failfirst == '~RC1':
1152 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1153 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1154 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1155 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1156 else:
1157 assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
1158 assert rc_mode, "ffirst BO only possible when Rc=1"
1159 mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
1160
1161 ######################################
1162 # "saturation" modes
1163 elif sv_mode == 0b10:
1164 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1165 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1166 mode |= (saturation << SVP64MODE.N) # signed/us saturation
1167
1168 ######################################
1169 # "predicate-result" modes. err... code-duplication from ffirst
1170 elif sv_mode == 0b11:
1171 assert src_zero == 0, "dest-zero not allowed in predresult mode"
1172 if predresult == 'RC1':
1173 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1174 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1175 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1176 elif predresult == '~RC1':
1177 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1178 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1179 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1180 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1181 else:
1182 assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
1183 assert rc_mode, "pr-mode BO only possible when Rc=1"
1184 mode |= (predresult << SVP64MODE.BO_LSB) # set BO
1185
1186 # whewww.... modes all done :)
1187 # now put into svp64_rm
1188 mode |= sv_mode
1189 # mode: bits 19-23
1190 svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
1191
1192 # put in predicate masks into svp64_rm
1193 if ptype == '2P':
1194 # source pred: bits 16-18
1195 svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
1196 # mask mode: bit 0
1197 svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
1198 # 1-pred: bits 1-3
1199 svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
1200
1201 # and subvl: bits 8-9
1202 svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
1203
1204 # put in elwidths
1205 # srcwid: bits 6-7
1206 svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
1207 # destwid: bits 4-5
1208 svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
1209
1210 # nice debug printout. (and now for something completely different)
1211 # https://youtu.be/u0WOIwlXE9g?t=146
1212 svp64_rm_value = svp64_rm.spr.value
1213 log("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
1214 log(" mmode 0 :", bin(mmode))
1215 log(" pmask 1-3 :", bin(pmask))
1216 log(" dstwid 4-5 :", bin(destwid))
1217 log(" srcwid 6-7 :", bin(srcwid))
1218 log(" subvl 8-9 :", bin(subvl))
1219 log(" mode 19-23:", bin(mode))
1220 offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
1221 for idx, sv_extra in extras.items():
1222 if idx is None:
1223 continue
1224 if idx[0] == 'imm':
1225 continue
1226 srcdest, idx, duplicate = idx
1227 start = (10+idx*offs)
1228 end = start + offs-1
1229 log(" extra%d %2d-%2d:" % (idx, start, end),
1230 bin(sv_extra))
1231 if ptype == '2P':
1232 log(" smask 16-17:", bin(smask))
1233 log()
1234
1235 # first, construct the prefix from its subfields
1236 svp64_prefix = SVP64PrefixFields()
1237 svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
1238 svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
1239 svp64_prefix.rm.eq(svp64_rm.spr)
1240
1241 # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
1242 rc = '.' if rc_mode else ''
1243 yield ".long 0x%08x" % svp64_prefix.insn.value
1244 log(v30b_op, v30b_newfields)
1245 # argh, sv.fmadds etc. need to be done manually
1246 if v30b_op == 'ffmadds':
1247 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1248 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1249 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1250 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1251 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1252 opcode |= 0b00101 << (32-31) # bits 26-30
1253 if rc:
1254 opcode |= 1 # Rc, bit 31.
1255 yield ".long 0x%x" % opcode
1256 # argh, sv.fdmadds need to be done manually
1257 elif v30b_op == 'fdmadds':
1258 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1259 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1260 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1261 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1262 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1263 opcode |= 0b01111 << (32-31) # bits 26-30
1264 if rc:
1265 opcode |= 1 # Rc, bit 31.
1266 yield ".long 0x%x" % opcode
1267 # argh, sv.ffadds etc. need to be done manually
1268 elif v30b_op == 'ffadds':
1269 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1270 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1271 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1272 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1273 opcode |= 0b01101 << (32-31) # bits 26-30
1274 if rc:
1275 opcode |= 1 # Rc, bit 31.
1276 yield ".long 0x%x" % opcode
1277 # sigh have to do svstep here manually for now...
1278 elif v30b_op in ["svstep", "svstep."]:
1279 insn = 22 << (31-5) # opcode 22, bits 0-5
1280 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1281 insn |= int(v30b_newfields[1]) << (31-22) # SVi , bits 16-22
1282 insn |= int(v30b_newfields[2]) << (31-25) # vf , bit 25
1283 insn |= 0b10011 << (31-30) # XO , bits 26..30
1284 if opcode == 'svstep.':
1285 insn |= 1 << (31-31) # Rc=1 , bit 31
1286 log("svstep", bin(insn))
1287 yield ".long 0x%x" % insn
1288 # argh, sv.fcoss etc. need to be done manually
1289 elif v30b_op in ["fcoss", "fcoss."]:
1290 insn = 59 << (31-5) # opcode 59, bits 0-5
1291 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1292 insn |= int(v30b_newfields[1]) << (31-20) # RB , bits 16-20
1293 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
1294 if opcode == 'fcoss.':
1295 insn |= 1 << (31-31) # Rc=1 , bit 31
1296 log("fcoss", bin(insn))
1297 yield ".long 0x%x" % insn
1298
1299 else:
1300 yield "%s %s" % (v30b_op+rc, ", ".join(v30b_newfields))
1301 log("new v3.0B fields", v30b_op, v30b_newfields)
1302
1303 def translate(self, lst):
1304 for insn in lst:
1305 yield from self.translate_one(insn)
1306
1307
1308 def macro_subst(macros, txt):
1309 again = True
1310 log("subst", txt, macros)
1311 while again:
1312 again = False
1313 for macro, value in macros.items():
1314 if macro == txt:
1315 again = True
1316 replaced = txt.replace(macro, value)
1317 log("macro", txt, "replaced", replaced, macro, value)
1318 txt = replaced
1319 continue
1320 toreplace = '%s.s' % macro
1321 if toreplace == txt:
1322 again = True
1323 replaced = txt.replace(toreplace, "%s.s" % value)
1324 log("macro", txt, "replaced", replaced, toreplace, value)
1325 txt = replaced
1326 continue
1327 toreplace = '%s.v' % macro
1328 if toreplace == txt:
1329 again = True
1330 replaced = txt.replace(toreplace, "%s.v" % value)
1331 log("macro", txt, "replaced", replaced, toreplace, value)
1332 txt = replaced
1333 continue
1334 toreplace = '(%s)' % macro
1335 if toreplace in txt:
1336 again = True
1337 replaced = txt.replace(toreplace, '(%s)' % value)
1338 log("macro", txt, "replaced", replaced, toreplace, value)
1339 txt = replaced
1340 continue
1341 log(" processed", txt)
1342 return txt
1343
1344
1345 def get_ws(line):
1346 # find whitespace
1347 ws = ''
1348 while line:
1349 if not line[0].isspace():
1350 break
1351 ws += line[0]
1352 line = line[1:]
1353 return ws, line
1354
1355
1356 def asm_process():
1357 # get an input file and an output file
1358 args = sys.argv[1:]
1359 if len(args) == 0:
1360 infile = sys.stdin
1361 outfile = sys.stdout
1362 # read the whole lot in advance in case of in-place
1363 lines = list(infile.readlines())
1364 elif len(args) != 2:
1365 print("pysvp64asm [infile | -] [outfile | -]", file=sys.stderr)
1366 exit(0)
1367 else:
1368 if args[0] == '--':
1369 infile = sys.stdin
1370 else:
1371 infile = open(args[0], "r")
1372 # read the whole lot in advance in case of in-place overwrite
1373 lines = list(infile.readlines())
1374
1375 if args[1] == '--':
1376 outfile = sys.stdout
1377 else:
1378 outfile = open(args[1], "w")
1379
1380 # read the line, look for custom insn, process it
1381 macros = {} # macros which start ".set"
1382 isa = SVP64Asm([])
1383 for line in lines:
1384 op = line.split("#")[0].strip()
1385 # identify macros
1386 if op.startswith(".set"):
1387 macro = op[4:].split(",")
1388 (macro, value) = map(str.strip, macro)
1389 macros[macro] = value
1390 if not op.startswith('sv.') and not op.startswith(tuple(CUSTOM_INSNS)):
1391 outfile.write(line)
1392 continue
1393
1394 (ws, line) = get_ws(line)
1395 lst = isa.translate_one(op, macros)
1396 lst = '; '.join(lst)
1397 outfile.write("%s%s # %s\n" % (ws, lst, op))
1398
1399
1400 if __name__ == '__main__':
1401 lst = ['slw 3, 1, 4',
1402 'extsw 5, 3',
1403 'sv.extsw 5, 3',
1404 'sv.cmpi 5, 1, 3, 2',
1405 'sv.setb 5, 31',
1406 'sv.isel 64.v, 3, 2, 65.v',
1407 'sv.setb/dm=r3/sm=1<<r3 5, 31',
1408 'sv.setb/m=r3 5, 31',
1409 'sv.setb/vec2 5, 31',
1410 'sv.setb/sw=8/ew=16 5, 31',
1411 'sv.extsw./ff=eq 5, 31',
1412 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
1413 'sv.extsw./pr=eq 5.v, 31',
1414 'sv.add. 5.v, 2.v, 1.v',
1415 'sv.add./m=r3 5.v, 2.v, 1.v',
1416 ]
1417 lst += [
1418 'sv.stw 5.v, 4(1.v)',
1419 'sv.ld 5.v, 4(1.v)',
1420 'setvl. 2, 3, 4, 0, 1, 1',
1421 'sv.setvl. 2, 3, 4, 0, 1, 1',
1422 ]
1423 lst = [
1424 "sv.stfsu 0.v, 16(4.v)",
1425 ]
1426 lst = [
1427 "sv.stfsu/els 0.v, 16(4)",
1428 ]
1429 lst = [
1430 'sv.add./mr 5.v, 2.v, 1.v',
1431 ]
1432 macros = {'win2': '50', 'win': '60'}
1433 lst = [
1434 'sv.addi win2.v, win.v, -1',
1435 'sv.add./mrr 5.v, 2.v, 1.v',
1436 #'sv.lhzsh 5.v, 11(9.v), 15',
1437 #'sv.lwzsh 5.v, 11(9.v), 15',
1438 'sv.ffmadds 6.v, 2.v, 4.v, 6.v',
1439 ]
1440 lst = [
1441 #'sv.fmadds 0.v, 8.v, 16.v, 4.v',
1442 #'sv.ffadds 0.v, 8.v, 4.v',
1443 'svremap 11, 0, 1, 2, 3, 2, 1',
1444 'svshape 8, 1, 1, 1, 0',
1445 'svshape 8, 1, 1, 1, 1',
1446 ]
1447 lst = [
1448 #'sv.lfssh 4.v, 11(8.v), 15',
1449 #'sv.lwzsh 4.v, 11(8.v), 15',
1450 #'sv.svstep. 2.v, 4, 0',
1451 #'sv.fcfids. 48.v, 64.v',
1452 'sv.fcoss. 80.v, 0.v',
1453 'sv.fcoss. 20.v, 0.v',
1454 ]
1455 lst = [
1456 'sv.bc/all 3,12,192',
1457 'sv.bclr/vsbi 3,81.v,192',
1458 'sv.ld 5.v, 4(1.v)',
1459 'sv.svstep. 2.v, 4, 0',
1460 ]
1461 lst = [
1462 'maxs 3,12,5',
1463 'maxs. 3,12,5',
1464 'avgadd 3,12,5',
1465 'absdu 3,12,5',
1466 'absds 3,12,5',
1467 'absdacu 3,12,5',
1468 'absdacs 3,12,5',
1469 'cprop 3,12,5',
1470 'svindex 0,0,1,0,0,0,0',
1471 ]
1472 lst = [
1473 'sv.svstep./m=r3 2.v, 4, 0',
1474 ]
1475 isa = SVP64Asm(lst, macros=macros)
1476 log("list", list(isa))
1477 asm_process()