b0a1686f02ac7bc553024d7ead8d251a061ead3f
[openpower-isa.git] / src / openpower / sv / trans / svp64.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Funded by NLnet http://nlnet.nl
4
5 """SVP64 OpenPOWER v3.0B assembly translator
6
7 This class takes raw svp64 assembly mnemonics (aliases excluded) and creates
8 an EXT001-encoded "svp64 prefix" (as a .long) followed by a v3.0B opcode.
9
10 It is very simple and straightforward, the only weirdness being the
11 extraction of the register information and conversion to v3.0B numbering.
12
13 Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
14 Encoding format of arithmetic: https://libre-soc.org/openpower/sv/normal/
15 Encoding format of LDST: https://libre-soc.org/openpower/sv/ldst/
16 **TODO format of branches: https://libre-soc.org/openpower/sv/branches/**
17 **TODO format of CRs: https://libre-soc.org/openpower/sv/cr_ops/**
18 Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
19 """
20
21 import os
22 import sys
23 from collections import OrderedDict
24
25 from openpower.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
26 SV64P_PID_SIZE, SVP64RMFields,
27 SVP64RM_EXTRA2_SPEC_SIZE,
28 SVP64RM_EXTRA3_SPEC_SIZE,
29 SVP64RM_MODE_SIZE, SVP64RM_SMASK_SIZE,
30 SVP64RM_MMODE_SIZE, SVP64RM_MASK_SIZE,
31 SVP64RM_SUBVL_SIZE, SVP64RM_EWSRC_SIZE,
32 SVP64RM_ELWIDTH_SIZE)
33 from openpower.decoder.pseudo.pagereader import ISA
34 from openpower.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
35 from openpower.decoder.selectable_int import SelectableInt
36 from openpower.consts import SVP64MODE
37
38 # for debug logging
39 from openpower.util import log
40
41
42 # decode GPR into sv extra
43 def get_extra_gpr(etype, regmode, field):
44 if regmode == 'scalar':
45 # cut into 2-bits 5-bits SS FFFFF
46 sv_extra = field >> 5
47 field = field & 0b11111
48 else:
49 # cut into 5-bits 2-bits FFFFF SS
50 sv_extra = field & 0b11
51 field = field >> 2
52 return sv_extra, field
53
54
55 # decode 3-bit CR into sv extra
56 def get_extra_cr_3bit(etype, regmode, field):
57 if regmode == 'scalar':
58 # cut into 2-bits 3-bits SS FFF
59 sv_extra = field >> 3
60 field = field & 0b111
61 else:
62 # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
63 sv_extra = field & 0b1111
64 field = field >> 4
65 return sv_extra, field
66
67
68 # decodes SUBVL
69 def decode_subvl(encoding):
70 pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
71 assert encoding in pmap, \
72 "encoding %s for SUBVL not recognised" % encoding
73 return pmap[encoding]
74
75
76 # decodes elwidth
77 def decode_elwidth(encoding):
78 pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
79 assert encoding in pmap, \
80 "encoding %s for elwidth not recognised" % encoding
81 return pmap[encoding]
82
83
84 # decodes predicate register encoding
85 def decode_predicate(encoding):
86 pmap = { # integer
87 '1<<r3': (0, 0b001),
88 'r3': (0, 0b010),
89 '~r3': (0, 0b011),
90 'r10': (0, 0b100),
91 '~r10': (0, 0b101),
92 'r30': (0, 0b110),
93 '~r30': (0, 0b111),
94 # CR
95 'lt': (1, 0b000),
96 'nl': (1, 0b001), 'ge': (1, 0b001), # same value
97 'gt': (1, 0b010),
98 'ng': (1, 0b011), 'le': (1, 0b011), # same value
99 'eq': (1, 0b100),
100 'ne': (1, 0b101),
101 'so': (1, 0b110), 'un': (1, 0b110), # same value
102 'ns': (1, 0b111), 'nu': (1, 0b111), # same value
103 }
104 assert encoding in pmap, \
105 "encoding %s for predicate not recognised" % encoding
106 return pmap[encoding]
107
108
109 # decodes "Mode" in similar way to BO field (supposed to, anyway)
110 def decode_bo(encoding):
111 pmap = { # TODO: double-check that these are the same as Branch BO
112 'lt': 0b000,
113 'nl': 0b001, 'ge': 0b001, # same value
114 'gt': 0b010,
115 'ng': 0b011, 'le': 0b011, # same value
116 'eq': 0b100,
117 'ne': 0b101,
118 'so': 0b110, 'un': 0b110, # same value
119 'ns': 0b111, 'nu': 0b111, # same value
120 }
121 assert encoding in pmap, \
122 "encoding %s for BO Mode not recognised" % encoding
123 return pmap[encoding]
124
125 # partial-decode fail-first mode
126
127
128 def decode_ffirst(encoding):
129 if encoding in ['RC1', '~RC1']:
130 return encoding
131 return decode_bo(encoding)
132
133
134 def decode_reg(field):
135 # decode the field number. "5.v" or "3.s" or "9"
136 field = field.split(".")
137 regmode = 'scalar' # default
138 if len(field) == 2:
139 if field[1] == 's':
140 regmode = 'scalar'
141 elif field[1] == 'v':
142 regmode = 'vector'
143 field = int(field[0]) # actual register number
144 return field, regmode
145
146
147 def decode_imm(field):
148 ldst_imm = "(" in field and field[-1] == ')'
149 if ldst_imm:
150 return field[:-1].split("(")
151 else:
152 return None, field
153
154
155 def crf_extra(etype, regmode, field, extras):
156 """takes a CR Field number (CR0-CR127), splits into EXTRA2/3 and v3.0
157 the scalar/vector mode (crNN.v or crNN.s) changes both the format
158 of the EXTRA2/3 encoding as well as what range of registers is possible.
159 this function can be used for both BF/BFA and BA/BB/BT by first removing
160 the bottom 2 bits of BA/BB/BT then re-instating them after encoding.
161 see https://libre-soc.org/openpower/sv/svp64/appendix/#cr_extra
162 for specification
163 """
164 sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
165 # now sanity-check (and shrink afterwards)
166 if etype == 'EXTRA2':
167 # 3-bit CR Field (BF, BFA) EXTRA2 encoding
168 if regmode == 'scalar':
169 # range is CR0-CR15 in increments of 1
170 assert (sv_extra >> 1) == 0, \
171 "scalar CR %s cannot fit into EXTRA2 %s" % \
172 (rname, str(extras[extra_idx]))
173 # all good: encode as scalar
174 sv_extra = sv_extra & 0b01
175 else: # vector
176 # range is CR0-CR127 in increments of 16
177 assert sv_extra & 0b111 == 0, \
178 "vector CR %s cannot fit into EXTRA2 %s" % \
179 (rname, str(extras[extra_idx]))
180 # all good: encode as vector (bit 2 set)
181 sv_extra = 0b10 | (sv_extra >> 3)
182 else:
183 # 3-bit CR Field (BF, BFA) EXTRA3 encoding
184 if regmode == 'scalar':
185 # range is CR0-CR31 in increments of 1
186 assert (sv_extra >> 2) == 0, \
187 "scalar CR %s cannot fit into EXTRA3 %s" % \
188 (rname, str(extras[extra_idx]))
189 # all good: encode as scalar
190 sv_extra = sv_extra & 0b11
191 else: # vector
192 # range is CR0-CR127 in increments of 8
193 assert sv_extra & 0b11 == 0, \
194 "vector CR %s cannot fit into EXTRA3 %s" % \
195 (rname, str(extras[extra_idx]))
196 # all good: encode as vector (bit 3 set)
197 sv_extra = 0b100 | (sv_extra >> 2)
198 return sv_extra, field
199
200
201 # decodes svp64 assembly listings and creates EXT001 svp64 prefixes
202 class SVP64Asm:
203 def __init__(self, lst, bigendian=False, macros=None):
204 if macros is None:
205 macros = {}
206 self.macros = macros
207 self.lst = lst
208 self.trans = self.translate(lst)
209 self.isa = ISA() # reads the v3.0B pseudo-code markdown files
210 self.svp64 = SVP64RM() # reads the svp64 Remap entries for registers
211 assert bigendian == False, "error, bigendian not supported yet"
212
213 def __iter__(self):
214 yield from self.trans
215
216 def translate_one(self, insn, macros=None):
217 if macros is None:
218 macros = {}
219 macros.update(self.macros)
220 isa = self.isa
221 svp64 = self.svp64
222 # find first space, to get opcode
223 ls = insn.split(' ')
224 opcode = ls[0]
225 # now find opcode fields
226 fields = ''.join(ls[1:]).split(',')
227 mfields = list(map(str.strip, fields))
228 log("opcode, fields", ls, opcode, mfields)
229 fields = []
230 # macro substitution
231 for field in mfields:
232 fields.append(macro_subst(macros, field))
233 log("opcode, fields substed", ls, opcode, fields)
234
235 # this is a *32-bit-only* instruction. it controls SVSTATE.
236 # it is *not* a 64-bit-prefixed Vector instruction (no sv.setvl),
237 # it is a Vector *control* instruction.
238 # note: EXT022 is the "sandbox" major opcode so it's fine to add
239
240 # sigh have to do setvl here manually for now...
241 # note the subtract one from SVi.
242 if opcode in ["setvl", "setvl."]:
243 # 1.6.28 SVL-FORM - from fields.txt
244 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
245 # | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
246 insn = 22 << (31-5) # opcode 22, bits 0-5
247 fields = list(map(int, fields))
248 insn |= fields[0] << (31-10) # RT , bits 6-10
249 insn |= fields[1] << (31-15) # RA , bits 11-15
250 insn |= (fields[2]-1) << (31-22) # SVi , bits 16-22
251 insn |= fields[3] << (31-25) # vf , bit 25
252 insn |= fields[4] << (31-24) # vs , bit 24
253 insn |= fields[5] << (31-23) # ms , bit 23
254 insn |= 0b11011 << (31-30) # XO , bits 26..30
255 if opcode == 'setvl.':
256 insn |= 1 << (31-31) # Rc=1 , bit 31
257 log("setvl", bin(insn))
258 yield ".long 0x%x" % insn
259 return
260
261 # this is a 32-bit instruction. it updates SVSTATE.
262 # it *can* be SVP64-prefixed, to indicate that its registers
263 # are Vectorised.
264 # note: EXT022 is the "sandbox" major opcode so it's fine to add
265
266 # sigh have to do setvl here manually for now...
267 # note the subtract one from SVi.
268 if opcode in ["svstep", "svstep."]:
269 # 1.6.28 SVL-FORM - from fields.txt
270 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
271 # | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
272 insn = 22 << (31-5) # opcode 22, bits 0-5
273 fields = list(map(int, fields))
274 insn |= fields[0] << (31-10) # RT , bits 6-10
275 insn |= (fields[1]-1) << (31-22) # SVi , bits 16-22
276 insn |= fields[2] << (31-25) # vf , bit 25
277 insn |= 0b10011 << (31-30) # XO , bits 26..30
278 if opcode == 'svstep.':
279 insn |= 1 << (31-31) # Rc=1 , bit 31
280 log("svstep", bin(insn))
281 yield ".long 0x%x" % insn
282 return
283
284 # this is a *32-bit-only* instruction. it updates SVSHAPE and SVSTATE.
285 # it is *not* a 64-bit-prefixed Vector instruction (no sv.svshape),
286 # it is a Vector *control* instruction.
287 # note: EXT022 is the "sandbox" major opcode so it's fine to add
288
289 # and svshape. note that the dimension fields one subtracted from each
290 if opcode == 'svshape':
291 # 1.6.33 SVM-FORM from fields.txt
292 # |0 |6 |11 |16 |21 |25 |26 |31 |
293 # |PO | SVxd | SVyd | SVzd | SVRM |vf | XO | / |
294 insn = 22 << (31-5) # opcode 22, bits 0-5
295 fields = list(map(int, fields))
296 insn |= (fields[0]-1) << (31-10) # SVxd , bits 6-10
297 insn |= (fields[1]-1) << (31-15) # SVyd , bits 11-15
298 insn |= (fields[2]-1) << (31-20) # SVzd , bits 16-20
299 insn |= (fields[3]) << (31-24) # SVRM , bits 21-24
300 insn |= (fields[4]) << (31-25) # vf , bits 25
301 insn |= 0b011001 << (31-31) # XO , bits 26..31
302 #insn &= ((1<<32)-1)
303 log("svshape", bin(insn))
304 yield ".long 0x%x" % insn
305 return
306
307 # this is a *32-bit-only* instruction. it updates the SVSHAPE SPR
308 # it is *not* a 64-bit-prefixed Vector instruction (no sv.svremap),
309 # it is a Vector *control* instruction.
310 # note: EXT022 is the "sandbox" major opcode so it's fine to add
311
312 # and svremap
313 if opcode == 'svremap':
314 # 1.6.34 SVRM-FORM from fields.txt
315 # |0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
316 # |PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO | / |
317 insn = 22 << (31-5) # opcode 22, bits 0-5
318 fields = list(map(int, fields))
319 insn |= fields[0] << (31-10) # SVme , bits 6-10
320 insn |= fields[1] << (31-12) # mi0 , bits 11-12
321 insn |= fields[2] << (31-14) # mi1 , bits 13-14
322 insn |= fields[3] << (31-16) # mi2 , bits 15-16
323 insn |= fields[4] << (31-18) # m00 , bits 17-18
324 insn |= fields[5] << (31-20) # m01 , bits 19-20
325 insn |= fields[6] << (31-21) # pst , bit 21
326 insn |= 0b111001 << (31-31) # XO , bits 26..31
327 log("svremap", bin(insn))
328 yield ".long 0x%x" % insn
329 return
330
331 # ok from here-on down these are added as 32-bit instructions
332 # and are here only because binutils (at present) doesn't have
333 # them (that's being fixed!)
334 # they can - if implementations then choose - be Vectorised
335 # (sv.fsins) because they are general-purpose scalar instructions
336
337 # 1.6.2.2 BM2-FORM
338 # |0 |6 |11 |16 |21 |26 |27 31|
339 # | PO | RT | RA | RB |bm |L | XO |
340 if opcode == ('bmask'):
341 fields = list(map(int, fields))
342 insn = 22 << (31-5) # opcode 22, bits 0-5
343 insn |= fields[0] << (31-10) # RT , bits 6-10
344 insn |= fields[1] << (31-15) # RA , bits 11-15
345 insn |= fields[2] << (31-20) # RB , bits 16-20
346 insn |= fields[3] << (31-25) # mask , bits 21-25
347 insn |= fields[4] << (31-26) # L , bit 26
348 insn |= 0b010001 << (31-31) # XO , bits 26..31
349 log("bmask", bin(insn))
350 yield ".long 0x%x" % insn
351 return
352
353
354 # and fsins
355 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
356 # however we are out of space with opcode 22
357 if opcode.startswith('fsins'):
358 fields = list(map(int, fields))
359 insn = 59 << (31-5) # opcode 59, bits 0-5
360 insn |= fields[0] << (31-10) # RT , bits 6-10
361 insn |= fields[1] << (31-20) # RB , bits 16-20
362 insn |= 0b1000001110 << (31-30) # XO , bits 21..30
363 if opcode == 'fsins.':
364 insn |= 1 << (31-31) # Rc=1 , bit 31
365 log("fsins", bin(insn))
366 yield ".long 0x%x" % insn
367 return
368
369 # and fcoss
370 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
371 # however we are out of space with opcode 22
372 if opcode.startswith('fcoss'):
373 fields = list(map(int, fields))
374 insn = 59 << (31-5) # opcode 59, bits 0-5
375 insn |= fields[0] << (31-10) # RT , bits 6-10
376 insn |= fields[1] << (31-20) # RB , bits 16-20
377 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
378 if opcode == 'fcoss.':
379 insn |= 1 << (31-31) # Rc=1 , bit 31
380 log("fcoss", bin(insn))
381 yield ".long 0x%x" % insn
382 return
383
384 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
385 # however we are out of space with opcode 22
386 if opcode in ('ternlogi', 'ternlogi.'):
387 po = 5
388 xo = 0
389 rt = int(fields[0])
390 ra = int(fields[1])
391 rb = int(fields[2])
392 imm = int(fields[3])
393 rc = '.' in opcode
394 instr = po
395 instr = (instr << 5) | rt
396 instr = (instr << 5) | ra
397 instr = (instr << 5) | rb
398 instr = (instr << 8) | imm
399 instr = (instr << 2) | xo
400 instr = (instr << 1) | rc
401 asm = f"{opcode} {rt}, {ra}, {rb}, {imm}"
402 yield f".4byte {hex(instr)} # {asm}"
403 return
404
405 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
406 # however we are out of space with opcode 22
407 if opcode in ('grev', 'grevi', 'grevw', 'grevwi',
408 'grev.', 'grevi.', 'grevw.', 'grevwi.'):
409 po = 5
410 # _ matches fields in table at:
411 # https://libre-soc.org/openpower/sv/bitmanip/
412 xo = 0b1_0010_110
413 if 'w' in opcode:
414 xo |= 0b100_000
415 if 'i' in opcode:
416 xo |= 0b1000_000
417 Rc = 1 if '.' in opcode else 0
418 rt = int(fields[0])
419 ra = int(fields[1])
420 rb_imm = int(fields[2])
421 instr = po
422 instr = (instr << 5) | rt
423 instr = (instr << 5) | ra
424 if opcode == 'grevi' or opcode == 'grevi.':
425 assert 0 <= rb_imm < 64
426 instr = (instr << 6) | rb_imm
427 instr = (instr << 9) | xo
428 else:
429 assert 0 <= rb_imm < 32
430 instr = (instr << 5) | rb_imm
431 instr = (instr << 10) | xo
432 instr = (instr << 1) | Rc
433 asm = f"{opcode} {rt}, {ra}, {rb_imm}"
434 yield f".4byte {hex(instr)} # {asm}"
435 return
436
437 # and min/max
438 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
439 # 1.6.7 X-FORM
440 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
441 # | PO | RT | RA | RB | XO |Rc |
442 if opcode in ['mins', 'maxs', 'minu', 'maxu',
443 'mins.', 'maxs.', 'minu.', 'maxu.']:
444 if opcode[:4] == 'maxs':
445 XO = 0b0111001110
446 if opcode[:4] == 'maxu':
447 XO = 0b0011001110
448 if opcode[:4] == 'mins':
449 XO = 0b0101001110
450 if opcode[:4] == 'minu':
451 XO = 0b0001001110
452 fields = list(map(int, fields))
453 insn = 22 << (31-5) # opcode 22, bits 0-5
454 insn |= fields[0] << (31-10) # RT , bits 6-10
455 insn |= fields[1] << (31-15) # RA , bits 11-15
456 insn |= fields[2] << (31-20) # RB , bits 16-20
457 insn |= XO << (31-30) # XO , bits 21..30
458 if opcode.endswith('.'):
459 insn |= 1 << (31-31) # Rc=1 , bit 31
460 log("maxs", bin(insn))
461 yield ".long 0x%x" % insn
462 return
463
464 # and avgadd, absdu, absdacu, absdacs
465 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
466 # 1.6.7 X-FORM
467 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
468 # | PO | RT | RA | RB | XO |Rc |
469 if opcode in ['avgadd', 'absdu', 'absds', 'absdacu', 'absdacs',
470 'cprop']:
471 if opcode[:5] == 'absdu':
472 XO = 0b1011110110
473 elif opcode[:5] == 'absds':
474 XO = 0b1001110110
475 elif opcode[:6] == 'avgadd':
476 XO = 0b1101001110
477 elif opcode[:7] == 'absdacu':
478 XO = 0b1111110110
479 elif opcode[:7] == 'absdacs':
480 XO = 0b0111110110
481 elif opcode[:7] == 'cprop':
482 XO = 0b0110001110
483 fields = list(map(int, fields))
484 insn = 22 << (31-5) # opcode 22, bits 0-5
485 insn |= fields[0] << (31-10) # RT , bits 6-10
486 insn |= fields[1] << (31-15) # RA , bits 11-15
487 insn |= fields[2] << (31-20) # RB , bits 16-20
488 insn |= XO << (31-30) # XO , bits 21..30
489 if opcode.endswith('.'):
490 insn |= 1 << (31-31) # Rc=1 , bit 31
491 log(opcode, bin(insn))
492 yield ".long 0x%x" % insn
493 return
494
495 # identify if is a svp64 mnemonic
496 if not opcode.startswith('sv.'):
497 yield insn # unaltered
498 return
499 opcode = opcode[3:] # strip leading "sv"
500
501 # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
502 opmodes = opcode.split("/") # split at "/"
503 v30b_op = opmodes.pop(0) # first is the v3.0B
504 # check instruction ends with dot
505 rc_mode = v30b_op.endswith('.')
506 if rc_mode:
507 v30b_op = v30b_op[:-1]
508
509 # sigh again, have to recognised LD/ST bit-reverse instructions
510 # this has to be "processed" to fit into a v3.0B without the "sh"
511 # e.g. ldsh is actually ld
512 ldst_shift = v30b_op.startswith("l") and v30b_op.endswith("sh")
513
514 if v30b_op not in isa.instr:
515 raise Exception("opcode %s of '%s' not supported" %
516 (v30b_op, insn))
517
518 if ldst_shift:
519 # okaay we need to process the fields and make this:
520 # ldsh RT, SVD(RA), RC - 11 bits for SVD, 5 for RC
521 # into this:
522 # ld RT, D(RA) - 16 bits
523 # likewise same for SVDS (9 bits for SVDS, 5 for RC, 14 bits for DS)
524 form = isa.instr[v30b_op].form # get form (SVD-Form, SVDS-Form)
525
526 newfields = []
527 for field in fields:
528 # identify if this is a ld/st immediate(reg) thing
529 ldst_imm = "(" in field and field[-1] == ')'
530 if ldst_imm:
531 newfields.append(field[:-1].split("("))
532 else:
533 newfields.append(field)
534
535 immed, RA = newfields[1]
536 immed = int(immed)
537 RC = int(newfields.pop(2)) # better be an integer number!
538 if form == 'SVD': # 16 bit: immed 11 bits, RC shift up 11
539 immed = (immed & 0b11111111111) | (RC << 11)
540 if immed & (1 << 15): # should be negative
541 immed -= 1 << 16
542 if form == 'SVDS': # 14 bit: immed 9 bits, RC shift up 9
543 immed = (immed & 0b111111111) | (RC << 9)
544 if immed & (1 << 13): # should be negative
545 immed -= 1 << 14
546 newfields[1] = "%d(%s)" % (immed, RA)
547 fields = newfields
548
549 # and strip off "sh" from end, and add "sh" to opmodes, instead
550 v30b_op = v30b_op[:-2]
551 opmodes.append("sh")
552 log("rewritten", v30b_op, opmodes, fields)
553
554 if v30b_op not in svp64.instrs:
555 raise Exception("opcode %s of '%s' not an svp64 instruction" %
556 (v30b_op, insn))
557 v30b_regs = isa.instr[v30b_op].regs[0] # get regs info "RT, RA, RB"
558 rm = svp64.instrs[v30b_op] # one row of the svp64 RM CSV
559 log("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
560 log("v3.0B regs", opcode, v30b_regs)
561 log("RM", rm)
562
563 # right. the first thing to do is identify the ordering of
564 # the registers, by name. the EXTRA2/3 ordering is in
565 # rm['0']..rm['3'] but those fields contain the names RA, BB
566 # etc. we have to read the pseudocode to understand which
567 # reg is which in our instruction. sigh.
568
569 # first turn the svp64 rm into a "by name" dict, recording
570 # which position in the RM EXTRA it goes into
571 # also: record if the src or dest was a CR, for sanity-checking
572 # (elwidth overrides on CRs are banned)
573 decode = decode_extra(rm)
574 dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
575
576 log("EXTRA field index, src", svp64_src)
577 log("EXTRA field index, dest", svp64_dest)
578
579 # okaaay now we identify the field value (opcode N,N,N) with
580 # the pseudo-code info (opcode RT, RA, RB)
581 assert len(fields) == len(v30b_regs), \
582 "length of fields %s must match insn `%s` fields %s" % \
583 (str(v30b_regs), insn, str(fields))
584 opregfields = zip(fields, v30b_regs) # err that was easy
585
586 # now for each of those find its place in the EXTRA encoding
587 # note there is the possibility (for LD/ST-with-update) of
588 # RA occurring **TWICE**. to avoid it getting added to the
589 # v3.0B suffix twice, we spot it as a duplicate, here
590 extras = OrderedDict()
591 for idx, (field, regname) in enumerate(opregfields):
592 imm, regname = decode_imm(regname)
593 rtype = get_regtype(regname)
594 log(" idx find", rtype, idx, field, regname, imm)
595 if rtype is None:
596 # probably an immediate field, append it straight
597 extras[('imm', idx, False)] = (idx, field, None, None, None)
598 continue
599 extra = svp64_src.get(regname, None)
600 if extra is not None:
601 extra = ('s', extra, False) # not a duplicate
602 extras[extra] = (idx, field, regname, rtype, imm)
603 log(" idx src", idx, extra, extras[extra])
604 dextra = svp64_dest.get(regname, None)
605 log("regname in", regname, dextra)
606 if dextra is not None:
607 is_a_duplicate = extra is not None # duplicate spotted
608 dextra = ('d', dextra, is_a_duplicate)
609 extras[dextra] = (idx, field, regname, rtype, imm)
610 log(" idx dst", idx, extra, extras[dextra])
611
612 # great! got the extra fields in their associated positions:
613 # also we know the register type. now to create the EXTRA encodings
614 etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
615 ptype = rm['Ptype'] # Predication type: Twin / Single
616 extra_bits = 0
617 v30b_newfields = []
618 for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
619 # is it a field we don't alter/examine? if so just put it
620 # into newfields
621 if rtype is None:
622 v30b_newfields.append(field)
623 continue
624
625 # identify if this is a ld/st immediate(reg) thing
626 ldst_imm = "(" in field and field[-1] == ')'
627 if ldst_imm:
628 immed, field = field[:-1].split("(")
629
630 field, regmode = decode_reg(field)
631 log(" ", extra_idx, rname, rtype,
632 regmode, iname, field, end=" ")
633
634 # see Mode field https://libre-soc.org/openpower/sv/svp64/
635 # XXX TODO: the following is a bit of a laborious repeated
636 # mess, which could (and should) easily be parameterised.
637 # XXX also TODO: the LD/ST modes which are different
638 # https://libre-soc.org/openpower/sv/ldst/
639
640 # rright. SVP64 register numbering is from 0 to 127
641 # for GPRs, FPRs *and* CR Fields, where for v3.0 the GPRs and RPFs
642 # are 0-31 and CR Fields are only 0-7. the SVP64 RM "Extra"
643 # area is used to extend the numbering from the 32-bit
644 # instruction, and also to record whether the register
645 # is scalar or vector. on a per-operand basis. this
646 # results in a slightly finnicky encoding: here we go...
647
648 # encode SV-GPR and SV-FPR field into extra, v3.0field
649 if rtype in ['GPR', 'FPR']:
650 sv_extra, field = get_extra_gpr(etype, regmode, field)
651 # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
652 # (and shrink to a single bit if ok)
653 if etype == 'EXTRA2':
654 if regmode == 'scalar':
655 # range is r0-r63 in increments of 1
656 assert (sv_extra >> 1) == 0, \
657 "scalar GPR %s cannot fit into EXTRA2 %s" % \
658 (rname, str(extras[extra_idx]))
659 # all good: encode as scalar
660 sv_extra = sv_extra & 0b01
661 else:
662 # range is r0-r127 in increments of 2 (r0 r2 ... r126)
663 assert sv_extra & 0b01 == 0, \
664 "%s: vector field %s cannot fit " \
665 "into EXTRA2 %s" % \
666 (insn, rname, str(extras[extra_idx]))
667 # all good: encode as vector (bit 2 set)
668 sv_extra = 0b10 | (sv_extra >> 1)
669 elif regmode == 'vector':
670 # EXTRA3 vector bit needs marking
671 sv_extra |= 0b100
672
673 # encode SV-CR 3-bit field into extra, v3.0field.
674 # 3-bit is for things like BF and BFA
675 elif rtype == 'CR_3bit':
676 sv_extra, field = crf_extra(etype, regmode, field, extras)
677
678 # encode SV-CR 5-bit field into extra, v3.0field
679 # 5-bit is for things like BA BB BC BT etc.
680 # *sigh* this is the same as 3-bit except the 2 LSBs of the
681 # 5-bit field are passed through unaltered.
682 elif rtype == 'CR_5bit':
683 cr_subfield = field & 0b11 # record bottom 2 bits for later
684 field = field >> 2 # strip bottom 2 bits
685 # use the exact same 3-bit function for the top 3 bits
686 sv_extra, field = crf_extra(etype, regmode, field, extras)
687 # reconstruct the actual 5-bit CR field (preserving the
688 # bottom 2 bits, unaltered)
689 field = (field << 2) | cr_subfield
690
691 else:
692 raise Exception("no type match: %s" % rtype)
693
694 # capture the extra field info
695 log("=>", "%5s" % bin(sv_extra), field)
696 extras[extra_idx] = sv_extra
697
698 # append altered field value to v3.0b, differs for LDST
699 # note that duplicates are skipped e.g. EXTRA2 contains
700 # *BOTH* s:RA *AND* d:RA which happens on LD/ST-with-update
701 srcdest, idx, duplicate = extra_idx
702 if duplicate: # skip adding to v3.0b fields, already added
703 continue
704 if ldst_imm:
705 v30b_newfields.append(("%s(%s)" % (immed, str(field))))
706 else:
707 v30b_newfields.append(str(field))
708
709 log("new v3.0B fields", v30b_op, v30b_newfields)
710 log("extras", extras)
711
712 # rright. now we have all the info. start creating SVP64 RM
713 svp64_rm = SVP64RMFields()
714
715 # begin with EXTRA fields
716 for idx, sv_extra in extras.items():
717 log(idx)
718 if idx is None:
719 continue
720 if idx[0] == 'imm':
721 continue
722 srcdest, idx, duplicate = idx
723 if etype == 'EXTRA2':
724 svp64_rm.extra2[idx].eq(
725 SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
726 else:
727 svp64_rm.extra3[idx].eq(
728 SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
729
730 # identify if the op is a LD/ST. the "blegh" way. copied
731 # from power_enums. TODO, split the list _insns down.
732 is_ld = v30b_op in [
733 "lbarx", "lbz", "lbzu", "lbzux", "lbzx", # load byte
734 "ld", "ldarx", "ldbrx", "ldu", "ldux", "ldx", # load double
735 "lfs", "lfsx", "lfsu", "lfsux", # FP load single
736 "lfd", "lfdx", "lfdu", "lfdux", "lfiwzx", "lfiwax", # FP load dbl
737 "lha", "lharx", "lhau", "lhaux", "lhax", # load half
738 "lhbrx", "lhz", "lhzu", "lhzux", "lhzx", # more load half
739 "lwa", "lwarx", "lwaux", "lwax", "lwbrx", # load word
740 "lwz", "lwzcix", "lwzu", "lwzux", "lwzx", # more load word
741 ]
742 is_st = v30b_op in [
743 "stb", "stbcix", "stbcx", "stbu", "stbux", "stbx",
744 "std", "stdbrx", "stdcx", "stdu", "stdux", "stdx",
745 "stfs", "stfsx", "stfsu", "stfux", # FP store sgl
746 "stfd", "stfdx", "stfdu", "stfdux", "stfiwx", # FP store dbl
747 "sth", "sthbrx", "sthcx", "sthu", "sthux", "sthx",
748 "stw", "stwbrx", "stwcx", "stwu", "stwux", "stwx",
749 ]
750 # use this to determine if the SVP64 RM format is different.
751 # see https://libre-soc.org/openpower/sv/ldst/
752 is_ldst = is_ld or is_st
753
754 # branch-conditional detection
755 is_bc = v30b_op in [
756 "bc", "bclr",
757 ]
758
759 # parts of svp64_rm
760 mmode = 0 # bit 0
761 pmask = 0 # bits 1-3
762 destwid = 0 # bits 4-5
763 srcwid = 0 # bits 6-7
764 subvl = 0 # bits 8-9
765 smask = 0 # bits 16-18 but only for twin-predication
766 mode = 0 # bits 19-23
767
768 mask_m_specified = False
769 has_pmask = False
770 has_smask = False
771
772 saturation = None
773 src_zero = 0
774 dst_zero = 0
775 sv_mode = None
776
777 mapreduce = False
778 reverse_gear = False
779 mapreduce_crm = False
780 mapreduce_svm = False
781
782 predresult = False
783 failfirst = False
784 ldst_elstride = 0
785
786 # branch-conditional bits
787 bc_all = 0
788 bc_lru = 0
789 bc_brc = 0
790 bc_svstep = 0
791 bc_vsb = 0
792 bc_vlset = 0
793 bc_vli = 0
794 bc_snz = 0
795
796 # ok let's start identifying opcode augmentation fields
797 for encmode in opmodes:
798 # predicate mask (src and dest)
799 if encmode.startswith("m="):
800 pme = encmode
801 pmmode, pmask = decode_predicate(encmode[2:])
802 smmode, smask = pmmode, pmask
803 mmode = pmmode
804 mask_m_specified = True
805 # predicate mask (dest)
806 elif encmode.startswith("dm="):
807 pme = encmode
808 pmmode, pmask = decode_predicate(encmode[3:])
809 mmode = pmmode
810 has_pmask = True
811 # predicate mask (src, twin-pred)
812 elif encmode.startswith("sm="):
813 sme = encmode
814 smmode, smask = decode_predicate(encmode[3:])
815 mmode = smmode
816 has_smask = True
817 # shifted LD/ST
818 elif encmode.startswith("sh"):
819 ldst_shift = True
820 # vec2/3/4
821 elif encmode.startswith("vec"):
822 subvl = decode_subvl(encmode[3:])
823 # elwidth
824 elif encmode.startswith("ew="):
825 destwid = decode_elwidth(encmode[3:])
826 elif encmode.startswith("sw="):
827 srcwid = decode_elwidth(encmode[3:])
828 # element-strided LD/ST
829 elif encmode == 'els':
830 ldst_elstride = 1
831 # saturation
832 elif encmode == 'sats':
833 assert sv_mode is None
834 saturation = 1
835 sv_mode = 0b10
836 elif encmode == 'satu':
837 assert sv_mode is None
838 sv_mode = 0b10
839 saturation = 0
840 # predicate zeroing
841 elif encmode == 'sz':
842 src_zero = 1
843 elif encmode == 'dz':
844 dst_zero = 1
845 # failfirst
846 elif encmode.startswith("ff="):
847 assert sv_mode is None
848 sv_mode = 0b01
849 failfirst = decode_ffirst(encmode[3:])
850 # predicate-result, interestingly same as fail-first
851 elif encmode.startswith("pr="):
852 assert sv_mode is None
853 sv_mode = 0b11
854 predresult = decode_ffirst(encmode[3:])
855 # map-reduce mode, reverse-gear
856 elif encmode == 'mrr':
857 assert sv_mode is None
858 sv_mode = 0b00
859 mapreduce = True
860 reverse_gear = True
861 # map-reduce mode
862 elif encmode == 'mr':
863 assert sv_mode is None
864 sv_mode = 0b00
865 mapreduce = True
866 elif encmode == 'crm': # CR on map-reduce
867 assert sv_mode is None
868 sv_mode = 0b00
869 mapreduce_crm = True
870 elif encmode == 'svm': # sub-vector mode
871 mapreduce_svm = True
872 elif is_bc:
873 if encmode == 'all':
874 bc_all = 1
875 elif encmode == 'st': # svstep mode
876 bc_step = 1
877 elif encmode == 'sr': # svstep BRc mode
878 bc_step = 1
879 bc_brc = 1
880 elif encmode == 'vs': # VLSET mode
881 bc_vlset = 1
882 elif encmode == 'vsi': # VLSET mode with VLI (VL inclusives)
883 bc_vlset = 1
884 bc_vli = 1
885 elif encmode == 'vsb': # VLSET mode with VSb
886 bc_vlset = 1
887 bc_vsb = 1
888 elif encmode == 'vsbi': # VLSET mode with VLI and VSb
889 bc_vlset = 1
890 bc_vli = 1
891 bc_vsb = 1
892 elif encmode == 'snz': # sz (only) already set above
893 src_zero = 1
894 bc_snz = 1
895 elif encmode == 'lu': # LR update mode
896 bc_lru = 1
897 else:
898 raise AssertionError("unknown encmode %s" % encmode)
899 else:
900 raise AssertionError("unknown encmode %s" % encmode)
901
902 if ptype == '2P':
903 # since m=xx takes precedence (overrides) sm=xx and dm=xx,
904 # treat them as mutually exclusive
905 if mask_m_specified:
906 assert not has_smask,\
907 "cannot have both source-mask and predicate mask"
908 assert not has_pmask,\
909 "cannot have both dest-mask and predicate mask"
910 # since the default is INT predication (ALWAYS), if you
911 # specify one CR mask, you must specify both, to avoid
912 # mixing INT and CR reg types
913 if has_pmask and pmmode == 1:
914 assert has_smask, \
915 "need explicit source-mask in CR twin predication"
916 if has_smask and smmode == 1:
917 assert has_pmask, \
918 "need explicit dest-mask in CR twin predication"
919 # sanity-check that 2Pred mask is same mode
920 if has_pmask and has_smask:
921 assert smmode == pmmode, \
922 "predicate masks %s and %s must be same reg type" % \
923 (pme, sme)
924
925 # sanity-check that twin-predication mask only specified in 2P mode
926 if ptype == '1P':
927 assert not has_smask, \
928 "source-mask can only be specified on Twin-predicate ops"
929 assert not has_pmask, \
930 "dest-mask can only be specified on Twin-predicate ops"
931
932 # construct the mode field, doing sanity-checking along the way
933 if mapreduce_svm:
934 assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
935 assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
936
937 if src_zero:
938 assert has_smask or mask_m_specified, \
939 "src zeroing requires a source predicate"
940 if dst_zero:
941 assert has_pmask or mask_m_specified, \
942 "dest zeroing requires a dest predicate"
943
944 # check LDST shifted, only available in "normal" mode
945 if is_ldst and ldst_shift:
946 assert sv_mode is None, \
947 "LD shift cannot have modes (%s) applied" % sv_mode
948
949 # okaaay, so there are 4 different modes, here, which will be
950 # partly-merged-in: is_ldst is merged in with "normal", but
951 # is_bc is so different it's done separately. likewise is_cr
952 # (when it is done). here are the maps:
953
954 # for "normal" arithmetic: https://libre-soc.org/openpower/sv/normal/
955 """
956 | 0-1 | 2 | 3 4 | description |
957 | --- | --- |---------|-------------------------- |
958 | 00 | 0 | dz sz | normal mode |
959 | 00 | 1 | 0 RG | scalar reduce mode (mapreduce), SUBVL=1 |
960 | 00 | 1 | 1 / | parallel reduce mode (mapreduce), SUBVL=1 |
961 | 00 | 1 | SVM RG | subvector reduce mode, SUBVL>1 |
962 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
963 | 01 | inv | VLi RC1 | Rc=0: ffirst z/nonz |
964 | 10 | N | dz sz | sat mode: N=0/1 u/s |
965 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
966 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
967 """
968
969 # https://libre-soc.org/openpower/sv/ldst/
970 # for LD/ST-immediate:
971 """
972 | 0-1 | 2 | 3 4 | description |
973 | --- | --- |---------|--------------------------- |
974 | 00 | 0 | dz els | normal mode |
975 | 00 | 1 | dz shf | shift mode |
976 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
977 | 01 | inv | els RC1 | Rc=0: ffirst z/nonz |
978 | 10 | N | dz els | sat mode: N=0/1 u/s |
979 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
980 | 11 | inv | els RC1 | Rc=0: pred-result z/nonz |
981 """
982
983 # for LD/ST-indexed (RA+RB):
984 """
985 | 0-1 | 2 | 3 4 | description |
986 | --- | --- |---------|-------------------------- |
987 | 00 | SEA | dz sz | normal mode |
988 | 01 | SEA | dz sz | Strided (scalar only source) |
989 | 10 | N | dz sz | sat mode: N=0/1 u/s |
990 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
991 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
992 """
993
994 # and leaving out branches and cr_ops for now because they're
995 # under development
996 """ TODO branches and cr_ops
997 """
998
999 # now create mode and (overridden) src/dst widths
1000 # XXX TODO: sanity-check bc modes
1001 if is_bc:
1002 sv_mode = ((bc_svstep << SVP64MODE.MOD2_MSB) |
1003 (bc_vlset << SVP64MODE.MOD2_LSB) |
1004 (bc_snz << SVP64MODE.BC_SNZ))
1005 srcwid = (bc_vsb << 1) | bc_lru
1006 destwid = (bc_lru << 1) | bc_all
1007
1008 else:
1009
1010 ######################################
1011 # "normal" mode
1012 if sv_mode is None:
1013 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1014 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1015 if is_ldst:
1016 # TODO: for now, LD/ST-indexed is ignored.
1017 mode |= ldst_elstride << SVP64MODE.ELS_NORMAL # el-strided
1018 # shifted mode
1019 if ldst_shift:
1020 mode |= 1 << SVP64MODE.LDST_SHIFT
1021 else:
1022 # TODO, reduce and subvector mode
1023 # 00 1 dz CRM reduce mode (mapreduce), SUBVL=1
1024 # 00 1 SVM CRM subvector reduce mode, SUBVL>1
1025 pass
1026 sv_mode = 0b00
1027
1028 ######################################
1029 # "mapreduce" modes
1030 elif sv_mode == 0b00:
1031 mode |= (0b1 << SVP64MODE.REDUCE) # sets mapreduce
1032 assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
1033 if reverse_gear:
1034 mode |= (0b1 << SVP64MODE.RG) # sets Reverse-gear mode
1035 if mapreduce_crm:
1036 mode |= (0b1 << SVP64MODE.CRM) # sets CRM mode
1037 assert rc_mode, "CRM only allowed when Rc=1"
1038 # bit of weird encoding to jam zero-pred or SVM mode in.
1039 # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
1040 if subvl == 0:
1041 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1042 elif mapreduce_svm:
1043 mode |= (0b1 << SVP64MODE.SVM) # sets SVM mode
1044
1045 ######################################
1046 # "failfirst" modes
1047 elif sv_mode == 0b01:
1048 assert src_zero == 0, "dest-zero not allowed in failfirst mode"
1049 if failfirst == 'RC1':
1050 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1051 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1052 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1053 elif failfirst == '~RC1':
1054 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1055 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1056 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1057 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1058 else:
1059 assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
1060 assert rc_mode, "ffirst BO only possible when Rc=1"
1061 mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
1062
1063 ######################################
1064 # "saturation" modes
1065 elif sv_mode == 0b10:
1066 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1067 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1068 mode |= (saturation << SVP64MODE.N) # signed/us saturation
1069
1070 ######################################
1071 # "predicate-result" modes. err... code-duplication from ffirst
1072 elif sv_mode == 0b11:
1073 assert src_zero == 0, "dest-zero not allowed in predresult mode"
1074 if predresult == 'RC1':
1075 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1076 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1077 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1078 elif predresult == '~RC1':
1079 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1080 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1081 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1082 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1083 else:
1084 assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
1085 assert rc_mode, "pr-mode BO only possible when Rc=1"
1086 mode |= (predresult << SVP64MODE.BO_LSB) # set BO
1087
1088 # whewww.... modes all done :)
1089 # now put into svp64_rm
1090 mode |= sv_mode
1091 # mode: bits 19-23
1092 svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
1093
1094 # put in predicate masks into svp64_rm
1095 if ptype == '2P':
1096 # source pred: bits 16-18
1097 svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
1098 # mask mode: bit 0
1099 svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
1100 # 1-pred: bits 1-3
1101 svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
1102
1103 # and subvl: bits 8-9
1104 svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
1105
1106 # put in elwidths
1107 # srcwid: bits 6-7
1108 svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
1109 # destwid: bits 4-5
1110 svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
1111
1112 # nice debug printout. (and now for something completely different)
1113 # https://youtu.be/u0WOIwlXE9g?t=146
1114 svp64_rm_value = svp64_rm.spr.value
1115 log("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
1116 log(" mmode 0 :", bin(mmode))
1117 log(" pmask 1-3 :", bin(pmask))
1118 log(" dstwid 4-5 :", bin(destwid))
1119 log(" srcwid 6-7 :", bin(srcwid))
1120 log(" subvl 8-9 :", bin(subvl))
1121 log(" mode 19-23:", bin(mode))
1122 offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
1123 for idx, sv_extra in extras.items():
1124 if idx is None:
1125 continue
1126 if idx[0] == 'imm':
1127 continue
1128 srcdest, idx, duplicate = idx
1129 start = (10+idx*offs)
1130 end = start + offs-1
1131 log(" extra%d %2d-%2d:" % (idx, start, end),
1132 bin(sv_extra))
1133 if ptype == '2P':
1134 log(" smask 16-17:", bin(smask))
1135 log()
1136
1137 # first, construct the prefix from its subfields
1138 svp64_prefix = SVP64PrefixFields()
1139 svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
1140 svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
1141 svp64_prefix.rm.eq(svp64_rm.spr)
1142
1143 # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
1144 rc = '.' if rc_mode else ''
1145 yield ".long 0x%08x" % svp64_prefix.insn.value
1146 log(v30b_newfields)
1147 # argh, sv.fmadds etc. need to be done manually
1148 if v30b_op == 'ffmadds':
1149 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1150 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1151 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1152 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1153 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1154 opcode |= 0b00101 << (32-31) # bits 26-30
1155 if rc:
1156 opcode |= 1 # Rc, bit 31.
1157 yield ".long 0x%x" % opcode
1158 # argh, sv.fdmadds need to be done manually
1159 elif v30b_op == 'fdmadds':
1160 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1161 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1162 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1163 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1164 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1165 opcode |= 0b01111 << (32-31) # bits 26-30
1166 if rc:
1167 opcode |= 1 # Rc, bit 31.
1168 yield ".long 0x%x" % opcode
1169 # argh, sv.ffadds etc. need to be done manually
1170 elif v30b_op == 'ffadds':
1171 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1172 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1173 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1174 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1175 opcode |= 0b01101 << (32-31) # bits 26-30
1176 if rc:
1177 opcode |= 1 # Rc, bit 31.
1178 yield ".long 0x%x" % opcode
1179 # sigh have to do svstep here manually for now...
1180 elif opcode in ["svstep", "svstep."]:
1181 insn = 22 << (31-5) # opcode 22, bits 0-5
1182 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1183 insn |= int(v30b_newfields[1]) << (31-22) # SVi , bits 16-22
1184 insn |= int(v30b_newfields[2]) << (31-25) # vf , bit 25
1185 insn |= 0b10011 << (31-30) # XO , bits 26..30
1186 if opcode == 'svstep.':
1187 insn |= 1 << (31-31) # Rc=1 , bit 31
1188 log("svstep", bin(insn))
1189 yield ".long 0x%x" % insn
1190 # argh, sv.fcoss etc. need to be done manually
1191 elif v30b_op in ["fcoss", "fcoss."]:
1192 insn = 59 << (31-5) # opcode 59, bits 0-5
1193 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1194 insn |= int(v30b_newfields[1]) << (31-20) # RB , bits 16-20
1195 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
1196 if opcode == 'fcoss.':
1197 insn |= 1 << (31-31) # Rc=1 , bit 31
1198 log("fcoss", bin(insn))
1199 yield ".long 0x%x" % insn
1200
1201 else:
1202 yield "%s %s" % (v30b_op+rc, ", ".join(v30b_newfields))
1203 log("new v3.0B fields", v30b_op, v30b_newfields)
1204
1205 def translate(self, lst):
1206 for insn in lst:
1207 yield from self.translate_one(insn)
1208
1209
1210 def macro_subst(macros, txt):
1211 again = True
1212 log("subst", txt, macros)
1213 while again:
1214 again = False
1215 for macro, value in macros.items():
1216 if macro == txt:
1217 again = True
1218 replaced = txt.replace(macro, value)
1219 log("macro", txt, "replaced", replaced, macro, value)
1220 txt = replaced
1221 continue
1222 toreplace = '%s.s' % macro
1223 if toreplace == txt:
1224 again = True
1225 replaced = txt.replace(toreplace, "%s.s" % value)
1226 log("macro", txt, "replaced", replaced, toreplace, value)
1227 txt = replaced
1228 continue
1229 toreplace = '%s.v' % macro
1230 if toreplace == txt:
1231 again = True
1232 replaced = txt.replace(toreplace, "%s.v" % value)
1233 log("macro", txt, "replaced", replaced, toreplace, value)
1234 txt = replaced
1235 continue
1236 toreplace = '(%s)' % macro
1237 if toreplace in txt:
1238 again = True
1239 replaced = txt.replace(toreplace, '(%s)' % value)
1240 log("macro", txt, "replaced", replaced, toreplace, value)
1241 txt = replaced
1242 continue
1243 log(" processed", txt)
1244 return txt
1245
1246
1247 def get_ws(line):
1248 # find whitespace
1249 ws = ''
1250 while line:
1251 if not line[0].isspace():
1252 break
1253 ws += line[0]
1254 line = line[1:]
1255 return ws, line
1256
1257
1258 def asm_process():
1259 # get an input file and an output file
1260 args = sys.argv[1:]
1261 if len(args) == 0:
1262 infile = sys.stdin
1263 outfile = sys.stdout
1264 # read the whole lot in advance in case of in-place
1265 lines = list(infile.readlines())
1266 elif len(args) != 2:
1267 print("pysvp64asm [infile | -] [outfile | -]", file=sys.stderr)
1268 exit(0)
1269 else:
1270 if args[0] == '--':
1271 infile = sys.stdin
1272 else:
1273 infile = open(args[0], "r")
1274 # read the whole lot in advance in case of in-place overwrite
1275 lines = list(infile.readlines())
1276
1277 if args[1] == '--':
1278 outfile = sys.stdout
1279 else:
1280 outfile = open(args[1], "w")
1281
1282 # read the line, look for "sv", process it
1283 macros = {} # macros which start ".set"
1284 isa = SVP64Asm([])
1285 for line in lines:
1286 op = line.split("#")[0].strip()
1287 # identify macros
1288 if op.startswith(".set"):
1289 macro = op[4:].split(",")
1290 (macro, value) = map(str.strip, macro)
1291 macros[macro] = value
1292 if not (op.startswith("sv.") or
1293 op.startswith("setvl") or
1294 op.startswith("svshape")):
1295 outfile.write(line)
1296 continue
1297
1298 (ws, line) = get_ws(line)
1299 lst = isa.translate_one(op, macros)
1300 lst = '; '.join(lst)
1301 outfile.write("%s%s # %s\n" % (ws, lst, op))
1302
1303
1304 if __name__ == '__main__':
1305 lst = ['slw 3, 1, 4',
1306 'extsw 5, 3',
1307 'sv.extsw 5, 3',
1308 'sv.cmpi 5, 1, 3, 2',
1309 'sv.setb 5, 31',
1310 'sv.isel 64.v, 3, 2, 65.v',
1311 'sv.setb/dm=r3/sm=1<<r3 5, 31',
1312 'sv.setb/m=r3 5, 31',
1313 'sv.setb/vec2 5, 31',
1314 'sv.setb/sw=8/ew=16 5, 31',
1315 'sv.extsw./ff=eq 5, 31',
1316 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
1317 'sv.extsw./pr=eq 5.v, 31',
1318 'sv.add. 5.v, 2.v, 1.v',
1319 'sv.add./m=r3 5.v, 2.v, 1.v',
1320 ]
1321 lst += [
1322 'sv.stw 5.v, 4(1.v)',
1323 'sv.ld 5.v, 4(1.v)',
1324 'setvl. 2, 3, 4, 0, 1, 1',
1325 'sv.setvl. 2, 3, 4, 0, 1, 1',
1326 ]
1327 lst = [
1328 "sv.stfsu 0.v, 16(4.v)",
1329 ]
1330 lst = [
1331 "sv.stfsu/els 0.v, 16(4)",
1332 ]
1333 lst = [
1334 'sv.add./mr 5.v, 2.v, 1.v',
1335 ]
1336 macros = {'win2': '50', 'win': '60'}
1337 lst = [
1338 'sv.addi win2.v, win.v, -1',
1339 'sv.add./mrr 5.v, 2.v, 1.v',
1340 #'sv.lhzsh 5.v, 11(9.v), 15',
1341 #'sv.lwzsh 5.v, 11(9.v), 15',
1342 'sv.ffmadds 6.v, 2.v, 4.v, 6.v',
1343 ]
1344 lst = [
1345 #'sv.fmadds 0.v, 8.v, 16.v, 4.v',
1346 #'sv.ffadds 0.v, 8.v, 4.v',
1347 'svremap 11, 0, 1, 2, 3, 2, 1',
1348 'svshape 8, 1, 1, 1, 0',
1349 'svshape 8, 1, 1, 1, 1',
1350 ]
1351 lst = [
1352 #'sv.lfssh 4.v, 11(8.v), 15',
1353 #'sv.lwzsh 4.v, 11(8.v), 15',
1354 #'sv.svstep. 2.v, 4, 0',
1355 #'sv.fcfids. 48.v, 64.v',
1356 'sv.fcoss. 80.v, 0.v',
1357 'sv.fcoss. 20.v, 0.v',
1358 ]
1359 lst = [
1360 'sv.bc/all 3,12,192',
1361 'sv.bclr/vsbi 3,81.v,192',
1362 'sv.ld 5.v, 4(1.v)',
1363 'sv.svstep. 2.v, 4, 0',
1364 ]
1365 lst = [
1366 'maxs 3,12,5',
1367 'maxs. 3,12,5',
1368 'avgadd 3,12,5',
1369 'absdu 3,12,5',
1370 'absds 3,12,5',
1371 'absdacu 3,12,5',
1372 'absdacs 3,12,5',
1373 'cprop 3,12,5',
1374 ]
1375 isa = SVP64Asm(lst, macros=macros)
1376 log("list", list(isa))
1377 asm_process()