pan/bi: Flesh out BI_BLEND
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
106
107 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
108 /* Zero it out for direct */
109 ins.src[1] = BIR_INDEX_ZERO;
110 } else {
111 /* R61 contains sample mask stuff, TODO RA XXX */
112 ins.src[1] = BIR_INDEX_REGISTER | 61;
113 }
114
115 bi_emit(ctx, ins);
116 }
117
118 static void
119 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
120 {
121 if (!ctx->emitted_atest) {
122 bi_instruction ins = {
123 .type = BI_ATEST,
124 .src = {
125 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
126 bir_src_index(&instr->src[0])
127 },
128 .src_types = {
129 nir_type_uint32,
130 nir_type_float32
131 },
132 .swizzle = {
133 { 0 },
134 { 3, 0 } /* swizzle out the alpha */
135 },
136 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
137 .dest_type = nir_type_uint32,
138 .writemask = 0xF
139 };
140
141 bi_emit(ctx, ins);
142 bi_schedule_barrier(ctx);
143 ctx->emitted_atest = true;
144 }
145
146 bi_instruction blend = {
147 .type = BI_BLEND,
148 .blend_location = nir_intrinsic_base(instr),
149 .src = {
150 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
151 bir_src_index(&instr->src[0])
152 },
153 .src_types = {
154 nir_type_uint32,
155 nir_type_float32,
156 },
157 .swizzle = {
158 { 0 },
159 { 0, 1, 2, 3 }
160 },
161 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
162 .dest_type = nir_type_uint32,
163 .writemask = 0xF
164 };
165
166 bi_emit(ctx, blend);
167 bi_schedule_barrier(ctx);
168 }
169
170 static void
171 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
172 {
173 bi_instruction address = bi_load(BI_LOAD_VAR_ADDRESS, instr);
174 address.dest = bi_make_temp(ctx);
175 address.dest_type = nir_type_uint64;
176 address.writemask = (1 << 8) - 1;
177
178 bi_instruction st = {
179 .type = BI_STORE_VAR,
180 .src = {
181 address.dest,
182 bir_src_index(&instr->src[0])
183 },
184 .src_types = {
185 nir_type_uint64,
186 nir_type_uint32
187 },
188 .swizzle = {
189 { 0 },
190 { 0, 1, 2, 3 }
191 }
192 };
193
194 bi_emit(ctx, address);
195 bi_emit(ctx, st);
196 }
197
198 static void
199 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
200 {
201 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
202 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
203
204 /* TODO: Indirect access, since we need to multiply by the element
205 * size. I believe we can get this lowering automatically via
206 * nir_lower_io (as mul instructions) with the proper options, but this
207 * is TODO */
208 assert(ld.src[0] & BIR_INDEX_CONSTANT);
209 ld.constant.u64 += ctx->sysvals.sysval_count;
210 ld.constant.u64 *= 16;
211
212 bi_emit(ctx, ld);
213 }
214
215 static void
216 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
217 unsigned nr_components, unsigned offset)
218 {
219 nir_dest nir_dest;
220
221 /* Figure out which uniform this is */
222 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
223 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
224
225 /* Sysvals are prefix uniforms */
226 unsigned uniform = ((uintptr_t) val) - 1;
227
228 /* Emit the read itself -- this is never indirect */
229
230 bi_instruction load = {
231 .type = BI_LOAD_UNIFORM,
232 .writemask = (1 << (nr_components * 4)) - 1,
233 .src = { BIR_INDEX_CONSTANT},
234 .constant = { (uniform * 16) + offset },
235 .dest = bir_dest_index(&nir_dest),
236 .dest_type = nir_type_uint32, /* TODO */
237 };
238
239 bi_emit(ctx, load);
240 }
241
242 static void
243 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
244 {
245
246 switch (instr->intrinsic) {
247 case nir_intrinsic_load_barycentric_pixel:
248 /* stub */
249 break;
250 case nir_intrinsic_load_interpolated_input:
251 case nir_intrinsic_load_input:
252 if (ctx->stage == MESA_SHADER_FRAGMENT)
253 bi_emit_ld_vary(ctx, instr);
254 else if (ctx->stage == MESA_SHADER_VERTEX)
255 bi_emit(ctx, bi_load(BI_LOAD_ATTR, instr));
256 else {
257 unreachable("Unsupported shader stage");
258 }
259 break;
260
261 case nir_intrinsic_store_output:
262 if (ctx->stage == MESA_SHADER_FRAGMENT)
263 bi_emit_frag_out(ctx, instr);
264 else if (ctx->stage == MESA_SHADER_VERTEX)
265 bi_emit_st_vary(ctx, instr);
266 else
267 unreachable("Unsupported shader stage");
268 break;
269
270 case nir_intrinsic_load_uniform:
271 bi_emit_ld_uniform(ctx, instr);
272 break;
273
274 case nir_intrinsic_load_ssbo_address:
275 bi_emit_sysval(ctx, &instr->instr, 1, 0);
276 break;
277
278 case nir_intrinsic_get_buffer_size:
279 bi_emit_sysval(ctx, &instr->instr, 1, 8);
280 break;
281
282 case nir_intrinsic_load_viewport_scale:
283 case nir_intrinsic_load_viewport_offset:
284 case nir_intrinsic_load_num_work_groups:
285 case nir_intrinsic_load_sampler_lod_parameters_pan:
286 bi_emit_sysval(ctx, &instr->instr, 3, 0);
287 break;
288
289 default:
290 /* todo */
291 break;
292 }
293 }
294
295 static void
296 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
297 {
298 /* Make sure we've been lowered */
299 assert(instr->def.num_components == 1);
300
301 bi_instruction move = {
302 .type = BI_MOV,
303 .dest = bir_ssa_index(&instr->def),
304 .dest_type = instr->def.bit_size | nir_type_uint,
305 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
306 .src = {
307 BIR_INDEX_CONSTANT
308 },
309 .constant = {
310 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
311 }
312 };
313
314 bi_emit(ctx, move);
315 }
316
317 static enum bi_class
318 bi_class_for_nir_alu(nir_op op)
319 {
320 switch (op) {
321 case nir_op_iadd:
322 case nir_op_fadd:
323 case nir_op_fsub:
324 return BI_ADD;
325 case nir_op_isub:
326 return BI_ISUB;
327
328 case nir_op_flt:
329 case nir_op_fge:
330 case nir_op_feq:
331 case nir_op_fne:
332 case nir_op_ilt:
333 case nir_op_ige:
334 case nir_op_ieq:
335 case nir_op_ine:
336 return BI_CMP;
337
338 case nir_op_bcsel:
339 return BI_CSEL;
340
341 case nir_op_i2i8:
342 case nir_op_i2i16:
343 case nir_op_i2i32:
344 case nir_op_i2i64:
345 case nir_op_u2u8:
346 case nir_op_u2u16:
347 case nir_op_u2u32:
348 case nir_op_u2u64:
349 case nir_op_f2i16:
350 case nir_op_f2i32:
351 case nir_op_f2i64:
352 case nir_op_f2u16:
353 case nir_op_f2u32:
354 case nir_op_f2u64:
355 case nir_op_i2f16:
356 case nir_op_i2f32:
357 case nir_op_i2f64:
358 case nir_op_u2f16:
359 case nir_op_u2f32:
360 case nir_op_u2f64:
361 return BI_CONVERT;
362
363 case nir_op_ffma:
364 case nir_op_fmul:
365 return BI_FMA;
366
367 case nir_op_imin:
368 case nir_op_imax:
369 case nir_op_umin:
370 case nir_op_umax:
371 case nir_op_fmin:
372 case nir_op_fmax:
373 return BI_MINMAX;
374
375 case nir_op_fsat:
376 case nir_op_fneg:
377 case nir_op_fabs:
378 case nir_op_mov:
379 return BI_MOV;
380
381 case nir_op_frcp:
382 case nir_op_frsq:
383 case nir_op_fsin:
384 case nir_op_fcos:
385 return BI_SPECIAL;
386
387 default:
388 unreachable("Unknown ALU op");
389 }
390 }
391
392 static enum bi_cond
393 bi_cond_for_nir(nir_op op)
394 {
395 switch (op) {
396 case nir_op_flt:
397 case nir_op_ilt:
398 return BI_COND_LT;
399 case nir_op_fge:
400 case nir_op_ige:
401 return BI_COND_GE;
402 case nir_op_feq:
403 case nir_op_ieq:
404 return BI_COND_EQ;
405 case nir_op_fne:
406 case nir_op_ine:
407 return BI_COND_NE;
408 default:
409 unreachable("Invalid compare");
410 }
411 }
412
413 static void
414 emit_alu(bi_context *ctx, nir_alu_instr *instr)
415 {
416 /* Assume it's something we can handle normally */
417 bi_instruction alu = {
418 .type = bi_class_for_nir_alu(instr->op),
419 .dest = bir_dest_index(&instr->dest.dest),
420 .dest_type = nir_op_infos[instr->op].output_type
421 | nir_dest_bit_size(instr->dest.dest),
422 };
423
424 /* TODO: Implement lowering of special functions for older Bifrost */
425 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
426
427 if (instr->dest.dest.is_ssa) {
428 /* Construct a writemask */
429 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
430 unsigned comps = instr->dest.dest.ssa.num_components;
431 assert(comps == 1);
432 unsigned bits = bits_per_comp * comps;
433 unsigned bytes = MAX2(bits / 8, 1);
434 alu.writemask = (1 << bytes) - 1;
435 } else {
436 unsigned comp_mask = instr->dest.write_mask;
437
438 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
439 comp_mask);
440 }
441
442 /* We inline constants as we go. This tracks how many constants have
443 * been inlined, since we're limited to 64-bits of constants per
444 * instruction */
445
446 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
447 unsigned constants_left = (64 / dest_bits);
448 unsigned constant_shift = 0;
449
450 /* Copy sources */
451
452 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
453 assert(num_inputs <= ARRAY_SIZE(alu.src));
454
455 for (unsigned i = 0; i < num_inputs; ++i) {
456 unsigned bits = nir_src_bit_size(instr->src[i].src);
457 alu.src_types[i] = nir_op_infos[instr->op].input_types[i]
458 | bits;
459
460 /* Try to inline a constant */
461 if (nir_src_is_const(instr->src[i].src) && constants_left && (dest_bits == bits)) {
462 alu.constant.u64 |=
463 (nir_src_as_uint(instr->src[i].src)) << constant_shift;
464
465 alu.src[i] = BIR_INDEX_CONSTANT | constant_shift;
466 --constants_left;
467 constant_shift += dest_bits;
468 continue;
469 }
470
471 alu.src[i] = bir_src_index(&instr->src[i].src);
472
473 /* We assert scalarization above */
474 alu.swizzle[i][0] = instr->src[i].swizzle[0];
475 }
476
477 /* Op-specific fixup */
478 switch (instr->op) {
479 case nir_op_fmul:
480 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
481 break;
482 case nir_op_fsat:
483 alu.outmod = BIFROST_SAT; /* MOV */
484 break;
485 case nir_op_fneg:
486 alu.src_neg[0] = true; /* MOV */
487 break;
488 case nir_op_fabs:
489 alu.src_abs[0] = true; /* MOV */
490 break;
491 case nir_op_fsub:
492 alu.src_neg[1] = true; /* ADD */
493 break;
494 case nir_op_fmax:
495 case nir_op_imax:
496 case nir_op_umax:
497 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
498 break;
499 case nir_op_frcp:
500 alu.op.special = BI_SPECIAL_FRCP;
501 break;
502 case nir_op_frsq:
503 alu.op.special = BI_SPECIAL_FRSQ;
504 break;
505 case nir_op_fsin:
506 alu.op.special = BI_SPECIAL_FSIN;
507 break;
508 case nir_op_fcos:
509 alu.op.special = BI_SPECIAL_FCOS;
510 break;
511 case nir_op_flt:
512 case nir_op_ilt:
513 case nir_op_fge:
514 case nir_op_ige:
515 case nir_op_feq:
516 case nir_op_ieq:
517 case nir_op_fne:
518 case nir_op_ine:
519 alu.op.compare = bi_cond_for_nir(instr->op);
520 break;
521 default:
522 break;
523 }
524
525 bi_emit(ctx, alu);
526 }
527
528 static void
529 emit_instr(bi_context *ctx, struct nir_instr *instr)
530 {
531 switch (instr->type) {
532 case nir_instr_type_load_const:
533 emit_load_const(ctx, nir_instr_as_load_const(instr));
534 break;
535
536 case nir_instr_type_intrinsic:
537 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
538 break;
539
540 case nir_instr_type_alu:
541 emit_alu(ctx, nir_instr_as_alu(instr));
542 break;
543
544 #if 0
545 case nir_instr_type_tex:
546 emit_tex(ctx, nir_instr_as_tex(instr));
547 break;
548 #endif
549
550 case nir_instr_type_jump:
551 emit_jump(ctx, nir_instr_as_jump(instr));
552 break;
553
554 case nir_instr_type_ssa_undef:
555 /* Spurious */
556 break;
557
558 default:
559 //unreachable("Unhandled instruction type");
560 break;
561 }
562 }
563
564
565
566 static bi_block *
567 create_empty_block(bi_context *ctx)
568 {
569 bi_block *blk = rzalloc(ctx, bi_block);
570
571 blk->base.predecessors = _mesa_set_create(blk,
572 _mesa_hash_pointer,
573 _mesa_key_pointer_equal);
574
575 blk->base.name = ctx->block_name_count++;
576
577 return blk;
578 }
579
580 static void
581 bi_schedule_barrier(bi_context *ctx)
582 {
583 bi_block *temp = ctx->after_block;
584 ctx->after_block = create_empty_block(ctx);
585 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
586 list_inithead(&ctx->after_block->base.instructions);
587 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
588 ctx->current_block = ctx->after_block;
589 ctx->after_block = temp;
590 }
591
592 static bi_block *
593 emit_block(bi_context *ctx, nir_block *block)
594 {
595 if (ctx->after_block) {
596 ctx->current_block = ctx->after_block;
597 ctx->after_block = NULL;
598 } else {
599 ctx->current_block = create_empty_block(ctx);
600 }
601
602 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
603 list_inithead(&ctx->current_block->base.instructions);
604
605 nir_foreach_instr(instr, block) {
606 emit_instr(ctx, instr);
607 ++ctx->instruction_count;
608 }
609
610 return ctx->current_block;
611 }
612
613 /* Emits an unconditional branch to the end of the current block, returning a
614 * pointer so the user can fill in details */
615
616 static bi_instruction *
617 bi_emit_branch(bi_context *ctx)
618 {
619 bi_instruction branch = {
620 .type = BI_BRANCH,
621 .branch = {
622 .cond = BI_COND_ALWAYS
623 }
624 };
625
626 return bi_emit(ctx, branch);
627 }
628
629 /* Sets a condition for a branch by examing the NIR condition. If we're
630 * familiar with the condition, we unwrap it to fold it into the branch
631 * instruction. Otherwise, we consume the condition directly. We
632 * generally use 1-bit booleans which allows us to use small types for
633 * the conditions.
634 */
635
636 static void
637 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
638 {
639 /* TODO: Try to unwrap instead of always bailing */
640 branch->src[0] = bir_src_index(cond);
641 branch->src[1] = BIR_INDEX_ZERO;
642 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
643 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
644 }
645
646 static void
647 emit_if(bi_context *ctx, nir_if *nif)
648 {
649 bi_block *before_block = ctx->current_block;
650
651 /* Speculatively emit the branch, but we can't fill it in until later */
652 bi_instruction *then_branch = bi_emit_branch(ctx);
653 bi_set_branch_cond(then_branch, &nif->condition, true);
654
655 /* Emit the two subblocks. */
656 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
657 bi_block *end_then_block = ctx->current_block;
658
659 /* Emit a jump from the end of the then block to the end of the else */
660 bi_instruction *then_exit = bi_emit_branch(ctx);
661
662 /* Emit second block, and check if it's empty */
663
664 int count_in = ctx->instruction_count;
665 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
666 bi_block *end_else_block = ctx->current_block;
667 ctx->after_block = create_empty_block(ctx);
668
669 /* Now that we have the subblocks emitted, fix up the branches */
670
671 assert(then_block);
672 assert(else_block);
673
674 if (ctx->instruction_count == count_in) {
675 /* The else block is empty, so don't emit an exit jump */
676 bi_remove_instruction(then_exit);
677 then_branch->branch.target = ctx->after_block;
678 } else {
679 then_branch->branch.target = else_block;
680 then_exit->branch.target = ctx->after_block;
681 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
682 }
683
684 /* Wire up the successors */
685
686 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
687
688 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
689 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
690 }
691
692 static void
693 emit_loop(bi_context *ctx, nir_loop *nloop)
694 {
695 /* Remember where we are */
696 bi_block *start_block = ctx->current_block;
697
698 bi_block *saved_break = ctx->break_block;
699 bi_block *saved_continue = ctx->continue_block;
700
701 ctx->continue_block = create_empty_block(ctx);
702 ctx->break_block = create_empty_block(ctx);
703 ctx->after_block = ctx->continue_block;
704
705 /* Emit the body itself */
706 emit_cf_list(ctx, &nloop->body);
707
708 /* Branch back to loop back */
709 bi_instruction *br_back = bi_emit_branch(ctx);
710 br_back->branch.target = ctx->continue_block;
711 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
712 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
713
714 ctx->after_block = ctx->break_block;
715
716 /* Pop off */
717 ctx->break_block = saved_break;
718 ctx->continue_block = saved_continue;
719 ++ctx->loop_count;
720 }
721
722 static bi_block *
723 emit_cf_list(bi_context *ctx, struct exec_list *list)
724 {
725 bi_block *start_block = NULL;
726
727 foreach_list_typed(nir_cf_node, node, node, list) {
728 switch (node->type) {
729 case nir_cf_node_block: {
730 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
731
732 if (!start_block)
733 start_block = block;
734
735 break;
736 }
737
738 case nir_cf_node_if:
739 emit_if(ctx, nir_cf_node_as_if(node));
740 break;
741
742 case nir_cf_node_loop:
743 emit_loop(ctx, nir_cf_node_as_loop(node));
744 break;
745
746 default:
747 unreachable("Unknown control flow");
748 }
749 }
750
751 return start_block;
752 }
753
754 static int
755 glsl_type_size(const struct glsl_type *type, bool bindless)
756 {
757 return glsl_count_attribute_slots(type, false);
758 }
759
760 static void
761 bi_optimize_nir(nir_shader *nir)
762 {
763 bool progress;
764 unsigned lower_flrp = 16 | 32 | 64;
765
766 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
767 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
768
769 nir_lower_tex_options lower_tex_options = {
770 .lower_txs_lod = true,
771 .lower_txp = ~0,
772 .lower_tex_without_implicit_lod = true,
773 .lower_txd = true,
774 };
775
776 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
777 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
778 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
779
780 do {
781 progress = false;
782
783 NIR_PASS(progress, nir, nir_lower_var_copies);
784 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
785
786 NIR_PASS(progress, nir, nir_copy_prop);
787 NIR_PASS(progress, nir, nir_opt_remove_phis);
788 NIR_PASS(progress, nir, nir_opt_dce);
789 NIR_PASS(progress, nir, nir_opt_dead_cf);
790 NIR_PASS(progress, nir, nir_opt_cse);
791 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
792 NIR_PASS(progress, nir, nir_opt_algebraic);
793 NIR_PASS(progress, nir, nir_opt_constant_folding);
794
795 if (lower_flrp != 0) {
796 bool lower_flrp_progress = false;
797 NIR_PASS(lower_flrp_progress,
798 nir,
799 nir_lower_flrp,
800 lower_flrp,
801 false /* always_precise */,
802 nir->options->lower_ffma);
803 if (lower_flrp_progress) {
804 NIR_PASS(progress, nir,
805 nir_opt_constant_folding);
806 progress = true;
807 }
808
809 /* Nothing should rematerialize any flrps, so we only
810 * need to do this lowering once.
811 */
812 lower_flrp = 0;
813 }
814
815 NIR_PASS(progress, nir, nir_opt_undef);
816 NIR_PASS(progress, nir, nir_opt_loop_unroll,
817 nir_var_shader_in |
818 nir_var_shader_out |
819 nir_var_function_temp);
820 } while (progress);
821
822 NIR_PASS(progress, nir, nir_opt_algebraic_late);
823 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
824 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
825 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
826
827 /* Take us out of SSA */
828 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
829 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
830
831 /* We're a primary scalar architecture but there's enough vector that
832 * we use a vector IR so let's not also deal with scalar hacks on top
833 * of the vector hacks */
834
835 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
836 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
837 NIR_PASS(progress, nir, nir_opt_dce);
838 }
839
840 void
841 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
842 {
843 bi_context *ctx = rzalloc(NULL, bi_context);
844 ctx->nir = nir;
845 ctx->stage = nir->info.stage;
846 ctx->quirks = bifrost_get_quirks(product_id);
847 list_inithead(&ctx->blocks);
848
849 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
850 * (so we don't accidentally duplicate the epilogue since mesa/st has
851 * messed with our I/O quite a bit already) */
852
853 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
854
855 if (ctx->stage == MESA_SHADER_VERTEX) {
856 NIR_PASS_V(nir, nir_lower_viewport_transform);
857 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
858 }
859
860 NIR_PASS_V(nir, nir_split_var_copies);
861 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
862 NIR_PASS_V(nir, nir_lower_var_copies);
863 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
864 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
865 NIR_PASS_V(nir, nir_lower_ssbo);
866
867 bi_optimize_nir(nir);
868 nir_print_shader(nir, stdout);
869
870 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
871 program->sysval_count = ctx->sysvals.sysval_count;
872 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
873
874 nir_foreach_function(func, nir) {
875 if (!func->impl)
876 continue;
877
878 ctx->impl = func->impl;
879 emit_cf_list(ctx, &func->impl->body);
880 break; /* TODO: Multi-function shaders */
881 }
882
883 bool progress = false;
884
885 do {
886 progress = false;
887
888 bi_foreach_block(ctx, _block) {
889 bi_block *block = (bi_block *) _block;
890 progress |= bi_opt_dead_code_eliminate(ctx, block);
891 }
892 } while(progress);
893
894 bi_print_shader(ctx, stdout);
895 bi_schedule(ctx);
896 bi_register_allocate(ctx);
897 bi_print_shader(ctx, stdout);
898 bi_pack(ctx, &program->compiled);
899 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
900
901 ralloc_free(ctx);
902 }