pan/bi: Abort on unhandled intrinsics
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "compiler/nir/nir_builder.h"
31 #include "util/u_debug.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static const struct debug_named_value debug_options[] = {
41 {"msgs", BIFROST_DBG_MSGS, "Print debug messages"},
42 {"shaders", BIFROST_DBG_SHADERS, "Dump shaders in NIR and MIR"},
43 DEBUG_NAMED_VALUE_END
44 };
45
46 DEBUG_GET_ONCE_FLAGS_OPTION(bifrost_debug, "BIFROST_MESA_DEBUG", debug_options, 0)
47
48 int bifrost_debug = 0;
49
50 #define DBG(fmt, ...) \
51 do { if (bifrost_debug & BIFROST_DBG_MSGS) \
52 fprintf(stderr, "%s:%d: "fmt, \
53 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
54
55 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
56 static bi_instruction *bi_emit_branch(bi_context *ctx);
57 static void bi_schedule_barrier(bi_context *ctx);
58
59 static void
60 emit_jump(bi_context *ctx, nir_jump_instr *instr)
61 {
62 bi_instruction *branch = bi_emit_branch(ctx);
63
64 switch (instr->type) {
65 case nir_jump_break:
66 branch->branch.target = ctx->break_block;
67 break;
68 case nir_jump_continue:
69 branch->branch.target = ctx->continue_block;
70 break;
71 default:
72 unreachable("Unhandled jump type");
73 }
74
75 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
76 }
77
78 static bi_instruction
79 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
80 {
81 bi_instruction load = {
82 .type = T,
83 .vector_channels = instr->num_components,
84 .src = { BIR_INDEX_CONSTANT },
85 .src_types = { nir_type_uint32 },
86 .constant = { .u64 = nir_intrinsic_base(instr) },
87 };
88
89 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
90
91 if (info->has_dest)
92 load.dest = pan_dest_index(&instr->dest);
93
94 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
95 load.dest_type = nir_intrinsic_type(instr);
96
97 nir_src *offset = nir_get_io_offset_src(instr);
98
99 if (nir_src_is_const(*offset))
100 load.constant.u64 += nir_src_as_uint(*offset);
101 else
102 load.src[0] = pan_src_index(offset);
103
104 return load;
105 }
106
107 static void
108 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
109 {
110 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
111 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
112 ins.load_vary.reuse = false; /* TODO */
113 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
114 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
115
116 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
117 /* Zero it out for direct */
118 ins.src[1] = BIR_INDEX_ZERO;
119 } else {
120 /* R61 contains sample mask stuff, TODO RA XXX */
121 ins.src[1] = BIR_INDEX_REGISTER | 61;
122 }
123
124 bi_emit(ctx, ins);
125 }
126
127 static void
128 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
129 {
130 if (!ctx->emitted_atest) {
131 bi_instruction ins = {
132 .type = BI_ATEST,
133 .src = {
134 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
135 pan_src_index(&instr->src[0])
136 },
137 .src_types = {
138 nir_type_uint32,
139 nir_intrinsic_type(instr)
140 },
141 .swizzle = {
142 { 0 },
143 { 3, 0 } /* swizzle out the alpha */
144 },
145 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
146 .dest_type = nir_type_uint32,
147 };
148
149 bi_emit(ctx, ins);
150 bi_schedule_barrier(ctx);
151 ctx->emitted_atest = true;
152 }
153
154 bi_instruction blend = {
155 .type = BI_BLEND,
156 .blend_location = nir_intrinsic_base(instr),
157 .src = {
158 pan_src_index(&instr->src[0]),
159 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
160 },
161 .src_types = {
162 nir_intrinsic_type(instr),
163 nir_type_uint32
164 },
165 .swizzle = {
166 { 0, 1, 2, 3 },
167 { 0 }
168 },
169 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
170 .dest_type = nir_type_uint32,
171 .vector_channels = 4
172 };
173
174 assert(blend.blend_location < BIFROST_MAX_RENDER_TARGET_COUNT);
175 assert(ctx->blend_types);
176 assert(blend.src_types[0]);
177 ctx->blend_types[blend.blend_location] = blend.src_types[0];
178
179 bi_emit(ctx, blend);
180 bi_schedule_barrier(ctx);
181 }
182
183 static bi_instruction
184 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
185 {
186 bi_instruction ld = bi_load(T, instr);
187 ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
188 ld.src[2] = BIR_INDEX_REGISTER | 62;
189 ld.src[3] = 0;
190 ld.src_types[1] = nir_type_uint32;
191 ld.src_types[2] = nir_type_uint32;
192 ld.src_types[3] = nir_intrinsic_type(instr);
193 return ld;
194 }
195
196 static void
197 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
198 {
199 bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
200 address.dest = bi_make_temp(ctx);
201 address.dest_type = nir_type_uint32;
202 address.vector_channels = 3;
203
204 unsigned nr = nir_intrinsic_src_components(instr, 0);
205 assert(nir_intrinsic_write_mask(instr) == ((1 << nr) - 1));
206
207 bi_instruction st = {
208 .type = BI_STORE_VAR,
209 .src = {
210 pan_src_index(&instr->src[0]),
211 address.dest, address.dest, address.dest,
212 },
213 .src_types = {
214 nir_type_uint32,
215 nir_type_uint32, nir_type_uint32, nir_type_uint32,
216 },
217 .swizzle = {
218 { 0 },
219 { 0 }, { 1 }, { 2}
220 },
221 .vector_channels = nr,
222 };
223
224 for (unsigned i = 0; i < nr; ++i)
225 st.swizzle[0][i] = i;
226
227 bi_emit(ctx, address);
228 bi_emit(ctx, st);
229 }
230
231 static void
232 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
233 {
234 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
235 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
236
237 /* TODO: Indirect access, since we need to multiply by the element
238 * size. I believe we can get this lowering automatically via
239 * nir_lower_io (as mul instructions) with the proper options, but this
240 * is TODO */
241 assert(ld.src[0] & BIR_INDEX_CONSTANT);
242 ld.constant.u64 += ctx->sysvals.sysval_count;
243 ld.constant.u64 *= 16;
244
245 bi_emit(ctx, ld);
246 }
247
248 static void
249 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
250 unsigned nr_components, unsigned offset)
251 {
252 nir_dest nir_dest;
253
254 /* Figure out which uniform this is */
255 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
256 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
257
258 /* Sysvals are prefix uniforms */
259 unsigned uniform = ((uintptr_t) val) - 1;
260
261 /* Emit the read itself -- this is never indirect */
262
263 bi_instruction load = {
264 .type = BI_LOAD_UNIFORM,
265 .vector_channels = nr_components,
266 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
267 .src_types = { nir_type_uint32, nir_type_uint32 },
268 .constant = { (uniform * 16) + offset },
269 .dest = pan_dest_index(&nir_dest),
270 .dest_type = nir_type_uint32, /* TODO */
271 };
272
273 bi_emit(ctx, load);
274 }
275
276 static void
277 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
278 {
279
280 switch (instr->intrinsic) {
281 case nir_intrinsic_load_barycentric_pixel:
282 /* stub */
283 break;
284 case nir_intrinsic_load_interpolated_input:
285 case nir_intrinsic_load_input:
286 if (ctx->stage == MESA_SHADER_FRAGMENT)
287 bi_emit_ld_vary(ctx, instr);
288 else if (ctx->stage == MESA_SHADER_VERTEX)
289 bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
290 else {
291 unreachable("Unsupported shader stage");
292 }
293 break;
294
295 case nir_intrinsic_store_output:
296 if (ctx->stage == MESA_SHADER_FRAGMENT)
297 bi_emit_frag_out(ctx, instr);
298 else if (ctx->stage == MESA_SHADER_VERTEX)
299 bi_emit_st_vary(ctx, instr);
300 else
301 unreachable("Unsupported shader stage");
302 break;
303
304 case nir_intrinsic_load_uniform:
305 bi_emit_ld_uniform(ctx, instr);
306 break;
307
308 case nir_intrinsic_load_ssbo_address:
309 bi_emit_sysval(ctx, &instr->instr, 1, 0);
310 break;
311
312 case nir_intrinsic_get_buffer_size:
313 bi_emit_sysval(ctx, &instr->instr, 1, 8);
314 break;
315
316 case nir_intrinsic_load_viewport_scale:
317 case nir_intrinsic_load_viewport_offset:
318 case nir_intrinsic_load_num_work_groups:
319 case nir_intrinsic_load_sampler_lod_parameters_pan:
320 bi_emit_sysval(ctx, &instr->instr, 3, 0);
321 break;
322
323 default:
324 unreachable("Unknown intrinsic");
325 break;
326 }
327 }
328
329 static void
330 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
331 {
332 /* Make sure we've been lowered */
333 assert(instr->def.num_components == 1);
334
335 bi_instruction move = {
336 .type = BI_MOV,
337 .dest = pan_ssa_index(&instr->def),
338 .dest_type = instr->def.bit_size | nir_type_uint,
339 .src = {
340 BIR_INDEX_CONSTANT
341 },
342 .src_types = {
343 instr->def.bit_size | nir_type_uint,
344 },
345 .constant = {
346 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
347 }
348 };
349
350 bi_emit(ctx, move);
351 }
352
353 #define BI_CASE_CMP(op) \
354 case op##8: \
355 case op##16: \
356 case op##32: \
357
358 static enum bi_class
359 bi_class_for_nir_alu(nir_op op)
360 {
361 switch (op) {
362 case nir_op_iadd:
363 case nir_op_fadd:
364 case nir_op_fsub:
365 return BI_ADD;
366 case nir_op_isub:
367 return BI_ISUB;
368
369 case nir_op_iand:
370 case nir_op_ior:
371 case nir_op_ixor:
372 return BI_BITWISE;
373
374 BI_CASE_CMP(nir_op_flt)
375 BI_CASE_CMP(nir_op_fge)
376 BI_CASE_CMP(nir_op_feq)
377 BI_CASE_CMP(nir_op_fne)
378 BI_CASE_CMP(nir_op_ilt)
379 BI_CASE_CMP(nir_op_ige)
380 BI_CASE_CMP(nir_op_ieq)
381 BI_CASE_CMP(nir_op_ine)
382 return BI_CMP;
383
384 case nir_op_b8csel:
385 case nir_op_b16csel:
386 case nir_op_b32csel:
387 return BI_CSEL;
388
389 case nir_op_i2i8:
390 case nir_op_i2i16:
391 case nir_op_i2i32:
392 case nir_op_i2i64:
393 case nir_op_u2u8:
394 case nir_op_u2u16:
395 case nir_op_u2u32:
396 case nir_op_u2u64:
397 case nir_op_f2i16:
398 case nir_op_f2i32:
399 case nir_op_f2i64:
400 case nir_op_f2u16:
401 case nir_op_f2u32:
402 case nir_op_f2u64:
403 case nir_op_i2f16:
404 case nir_op_i2f32:
405 case nir_op_i2f64:
406 case nir_op_u2f16:
407 case nir_op_u2f32:
408 case nir_op_u2f64:
409 case nir_op_f2f16:
410 case nir_op_f2f32:
411 case nir_op_f2f64:
412 case nir_op_f2fmp:
413 return BI_CONVERT;
414
415 case nir_op_vec2:
416 case nir_op_vec3:
417 case nir_op_vec4:
418 return BI_COMBINE;
419
420 case nir_op_vec8:
421 case nir_op_vec16:
422 unreachable("should've been lowered");
423
424 case nir_op_ffma:
425 case nir_op_fmul:
426 return BI_FMA;
427
428 case nir_op_imin:
429 case nir_op_imax:
430 case nir_op_umin:
431 case nir_op_umax:
432 case nir_op_fmin:
433 case nir_op_fmax:
434 return BI_MINMAX;
435
436 case nir_op_fsat:
437 case nir_op_fneg:
438 case nir_op_fabs:
439 return BI_FMOV;
440 case nir_op_mov:
441 return BI_MOV;
442
443 case nir_op_fround_even:
444 case nir_op_fceil:
445 case nir_op_ffloor:
446 case nir_op_ftrunc:
447 return BI_ROUND;
448
449 case nir_op_frcp:
450 case nir_op_frsq:
451 return BI_SPECIAL;
452
453 default:
454 unreachable("Unknown ALU op");
455 }
456 }
457
458 /* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
459 * return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
460 * optimizations). Otherwise it will bail (when used for primary code
461 * generation). */
462
463 static enum bi_cond
464 bi_cond_for_nir(nir_op op, bool soft)
465 {
466 switch (op) {
467 BI_CASE_CMP(nir_op_flt)
468 BI_CASE_CMP(nir_op_ilt)
469 return BI_COND_LT;
470
471 BI_CASE_CMP(nir_op_fge)
472 BI_CASE_CMP(nir_op_ige)
473 return BI_COND_GE;
474
475 BI_CASE_CMP(nir_op_feq)
476 BI_CASE_CMP(nir_op_ieq)
477 return BI_COND_EQ;
478
479 BI_CASE_CMP(nir_op_fne)
480 BI_CASE_CMP(nir_op_ine)
481 return BI_COND_NE;
482 default:
483 if (soft)
484 return BI_COND_ALWAYS;
485 else
486 unreachable("Invalid compare");
487 }
488 }
489
490 static void
491 bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
492 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
493 {
494 unsigned bits = nir_src_bit_size(instr->src[i].src);
495 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
496
497 alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
498 | bits;
499
500 /* Try to inline a constant */
501 if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
502 uint64_t mask = (1ull << dest_bits) - 1;
503 uint64_t cons = nir_src_as_uint(instr->src[i].src);
504
505 /* Try to reuse a constant */
506 for (unsigned i = 0; i < (*constant_shift); i += dest_bits) {
507 if (((alu->constant.u64 >> i) & mask) == cons) {
508 alu->src[to] = BIR_INDEX_CONSTANT | i;
509 return;
510 }
511 }
512
513 alu->constant.u64 |= cons << *constant_shift;
514 alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
515 --(*constants_left);
516 (*constant_shift) += MAX2(dest_bits, 32); /* lo/hi */
517 return;
518 }
519
520 alu->src[to] = pan_src_index(&instr->src[i].src);
521
522 /* Copy swizzle for all vectored components, replicating last component
523 * to fill undersized */
524
525 unsigned vec = alu->type == BI_COMBINE ? 1 :
526 MAX2(1, 32 / dest_bits);
527
528 for (unsigned j = 0; j < vec; ++j)
529 alu->swizzle[to][j] = instr->src[i].swizzle[MIN2(j, comps - 1)];
530 }
531
532 static void
533 bi_fuse_csel_cond(bi_instruction *csel, nir_alu_src cond,
534 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
535 {
536 /* Bail for vector weirdness */
537 if (cond.swizzle[0] != 0)
538 return;
539
540 if (!cond.src.is_ssa)
541 return;
542
543 nir_ssa_def *def = cond.src.ssa;
544 nir_instr *parent = def->parent_instr;
545
546 if (parent->type != nir_instr_type_alu)
547 return;
548
549 nir_alu_instr *alu = nir_instr_as_alu(parent);
550
551 /* Try to match a condition */
552 enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
553
554 if (bcond == BI_COND_ALWAYS)
555 return;
556
557 /* We found one, let's fuse it in */
558 csel->cond = bcond;
559 bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift, comps);
560 bi_copy_src(csel, alu, 1, 1, constants_left, constant_shift, comps);
561 }
562
563 static void
564 emit_alu(bi_context *ctx, nir_alu_instr *instr)
565 {
566 /* Try some special functions */
567 switch (instr->op) {
568 case nir_op_fexp2:
569 bi_emit_fexp2(ctx, instr);
570 return;
571 case nir_op_flog2:
572 bi_emit_flog2(ctx, instr);
573 return;
574 default:
575 break;
576 }
577
578 /* Otherwise, assume it's something we can handle normally */
579 bi_instruction alu = {
580 .type = bi_class_for_nir_alu(instr->op),
581 .dest = pan_dest_index(&instr->dest.dest),
582 .dest_type = nir_op_infos[instr->op].output_type
583 | nir_dest_bit_size(instr->dest.dest),
584 };
585
586 /* TODO: Implement lowering of special functions for older Bifrost */
587 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
588
589 unsigned comps = nir_dest_num_components(instr->dest.dest);
590
591 if (alu.type != BI_COMBINE)
592 assert(comps <= MAX2(1, 32 / comps));
593
594 if (!instr->dest.dest.is_ssa) {
595 for (unsigned i = 0; i < comps; ++i)
596 assert(instr->dest.write_mask);
597 }
598
599 /* We inline constants as we go. This tracks how many constants have
600 * been inlined, since we're limited to 64-bits of constants per
601 * instruction */
602
603 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
604 unsigned constants_left = (64 / dest_bits);
605 unsigned constant_shift = 0;
606
607 if (alu.type == BI_COMBINE)
608 constants_left = 0;
609
610 /* Copy sources */
611
612 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
613 assert(num_inputs <= ARRAY_SIZE(alu.src));
614
615 for (unsigned i = 0; i < num_inputs; ++i) {
616 unsigned f = 0;
617
618 if (i && alu.type == BI_CSEL)
619 f++;
620
621 bi_copy_src(&alu, instr, i, i + f, &constants_left, &constant_shift, comps);
622 }
623
624 /* Op-specific fixup */
625 switch (instr->op) {
626 case nir_op_fmul:
627 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
628 alu.src_types[2] = alu.src_types[1];
629 break;
630 case nir_op_fsat:
631 alu.outmod = BIFROST_SAT; /* FMOV */
632 break;
633 case nir_op_fneg:
634 alu.src_neg[0] = true; /* FMOV */
635 break;
636 case nir_op_fabs:
637 alu.src_abs[0] = true; /* FMOV */
638 break;
639 case nir_op_fsub:
640 alu.src_neg[1] = true; /* FADD */
641 break;
642 case nir_op_fmax:
643 case nir_op_imax:
644 case nir_op_umax:
645 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
646 break;
647 case nir_op_frcp:
648 alu.op.special = BI_SPECIAL_FRCP;
649 break;
650 case nir_op_frsq:
651 alu.op.special = BI_SPECIAL_FRSQ;
652 break;
653 BI_CASE_CMP(nir_op_flt)
654 BI_CASE_CMP(nir_op_ilt)
655 BI_CASE_CMP(nir_op_fge)
656 BI_CASE_CMP(nir_op_ige)
657 BI_CASE_CMP(nir_op_feq)
658 BI_CASE_CMP(nir_op_ieq)
659 BI_CASE_CMP(nir_op_fne)
660 BI_CASE_CMP(nir_op_ine)
661 alu.cond = bi_cond_for_nir(instr->op, false);
662 break;
663 case nir_op_fround_even:
664 alu.roundmode = BIFROST_RTE;
665 break;
666 case nir_op_fceil:
667 alu.roundmode = BIFROST_RTP;
668 break;
669 case nir_op_ffloor:
670 alu.roundmode = BIFROST_RTN;
671 break;
672 case nir_op_ftrunc:
673 alu.roundmode = BIFROST_RTZ;
674 break;
675 case nir_op_iand:
676 alu.op.bitwise = BI_BITWISE_AND;
677 break;
678 case nir_op_ior:
679 alu.op.bitwise = BI_BITWISE_OR;
680 break;
681 case nir_op_ixor:
682 alu.op.bitwise = BI_BITWISE_XOR;
683 break;
684 default:
685 break;
686 }
687
688 if (alu.type == BI_CSEL) {
689 /* Default to csel3 */
690 alu.cond = BI_COND_NE;
691 alu.src[1] = BIR_INDEX_ZERO;
692 alu.src_types[1] = alu.src_types[0];
693
694 bi_fuse_csel_cond(&alu, instr->src[0],
695 &constants_left, &constant_shift, comps);
696 } else if (alu.type == BI_BITWISE) {
697 /* Implicit shift argument... at some point we should fold */
698 alu.src[2] = BIR_INDEX_ZERO;
699 alu.src_types[2] = alu.src_types[1];
700 }
701
702 bi_emit(ctx, alu);
703 }
704
705 /* TEX_COMPACT instructions assume normal 2D f32 operation but are more
706 * space-efficient and with simpler RA/scheduling requirements*/
707
708 static void
709 emit_tex_compact(bi_context *ctx, nir_tex_instr *instr)
710 {
711 bi_instruction tex = {
712 .type = BI_TEX,
713 .op = { .texture = BI_TEX_COMPACT },
714 .texture = {
715 .texture_index = instr->texture_index,
716 .sampler_index = instr->sampler_index,
717 },
718 .dest = pan_dest_index(&instr->dest),
719 .dest_type = instr->dest_type,
720 .src_types = { nir_type_float32, nir_type_float32 },
721 .vector_channels = 4
722 };
723
724 for (unsigned i = 0; i < instr->num_srcs; ++i) {
725 int index = pan_src_index(&instr->src[i].src);
726 assert (instr->src[i].src_type == nir_tex_src_coord);
727
728 tex.src[0] = index;
729 tex.src[1] = index;
730 tex.swizzle[0][0] = 0;
731 tex.swizzle[1][0] = 1;
732 }
733
734 bi_emit(ctx, tex);
735 }
736
737 static void
738 emit_tex_full(bi_context *ctx, nir_tex_instr *instr)
739 {
740 unreachable("stub");
741 }
742
743 static void
744 emit_tex(bi_context *ctx, nir_tex_instr *instr)
745 {
746 nir_alu_type base = nir_alu_type_get_base_type(instr->dest_type);
747 unsigned sz = nir_dest_bit_size(instr->dest);
748 instr->dest_type = base | sz;
749
750 bool is_normal = instr->op == nir_texop_tex;
751 bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
752 instr->sampler_dim == GLSL_SAMPLER_DIM_EXTERNAL;
753 bool is_f = base == nir_type_float && (sz == 16 || sz == 32);
754
755 bool is_compact = is_normal && is_2d && is_f && !instr->is_shadow;
756
757 if (is_compact)
758 emit_tex_compact(ctx, instr);
759 else
760 emit_tex_full(ctx, instr);
761 }
762
763 static void
764 emit_instr(bi_context *ctx, struct nir_instr *instr)
765 {
766 switch (instr->type) {
767 case nir_instr_type_load_const:
768 emit_load_const(ctx, nir_instr_as_load_const(instr));
769 break;
770
771 case nir_instr_type_intrinsic:
772 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
773 break;
774
775 case nir_instr_type_alu:
776 emit_alu(ctx, nir_instr_as_alu(instr));
777 break;
778
779 case nir_instr_type_tex:
780 emit_tex(ctx, nir_instr_as_tex(instr));
781 break;
782
783 case nir_instr_type_jump:
784 emit_jump(ctx, nir_instr_as_jump(instr));
785 break;
786
787 case nir_instr_type_ssa_undef:
788 /* Spurious */
789 break;
790
791 default:
792 unreachable("Unhandled instruction type");
793 break;
794 }
795 }
796
797
798
799 static bi_block *
800 create_empty_block(bi_context *ctx)
801 {
802 bi_block *blk = rzalloc(ctx, bi_block);
803
804 blk->base.predecessors = _mesa_set_create(blk,
805 _mesa_hash_pointer,
806 _mesa_key_pointer_equal);
807
808 blk->base.name = ctx->block_name_count++;
809
810 return blk;
811 }
812
813 static void
814 bi_schedule_barrier(bi_context *ctx)
815 {
816 bi_block *temp = ctx->after_block;
817 ctx->after_block = create_empty_block(ctx);
818 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
819 list_inithead(&ctx->after_block->base.instructions);
820 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
821 ctx->current_block = ctx->after_block;
822 ctx->after_block = temp;
823 }
824
825 static bi_block *
826 emit_block(bi_context *ctx, nir_block *block)
827 {
828 if (ctx->after_block) {
829 ctx->current_block = ctx->after_block;
830 ctx->after_block = NULL;
831 } else {
832 ctx->current_block = create_empty_block(ctx);
833 }
834
835 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
836 list_inithead(&ctx->current_block->base.instructions);
837
838 nir_foreach_instr(instr, block) {
839 emit_instr(ctx, instr);
840 ++ctx->instruction_count;
841 }
842
843 return ctx->current_block;
844 }
845
846 /* Emits an unconditional branch to the end of the current block, returning a
847 * pointer so the user can fill in details */
848
849 static bi_instruction *
850 bi_emit_branch(bi_context *ctx)
851 {
852 bi_instruction branch = {
853 .type = BI_BRANCH,
854 .branch = {
855 .cond = BI_COND_ALWAYS
856 }
857 };
858
859 return bi_emit(ctx, branch);
860 }
861
862 /* Sets a condition for a branch by examing the NIR condition. If we're
863 * familiar with the condition, we unwrap it to fold it into the branch
864 * instruction. Otherwise, we consume the condition directly. We
865 * generally use 1-bit booleans which allows us to use small types for
866 * the conditions.
867 */
868
869 static void
870 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
871 {
872 /* TODO: Try to unwrap instead of always bailing */
873 branch->src[0] = pan_src_index(cond);
874 branch->src[1] = BIR_INDEX_ZERO;
875 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
876 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
877 }
878
879 static void
880 emit_if(bi_context *ctx, nir_if *nif)
881 {
882 bi_block *before_block = ctx->current_block;
883
884 /* Speculatively emit the branch, but we can't fill it in until later */
885 bi_instruction *then_branch = bi_emit_branch(ctx);
886 bi_set_branch_cond(then_branch, &nif->condition, true);
887
888 /* Emit the two subblocks. */
889 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
890 bi_block *end_then_block = ctx->current_block;
891
892 /* Emit a jump from the end of the then block to the end of the else */
893 bi_instruction *then_exit = bi_emit_branch(ctx);
894
895 /* Emit second block, and check if it's empty */
896
897 int count_in = ctx->instruction_count;
898 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
899 bi_block *end_else_block = ctx->current_block;
900 ctx->after_block = create_empty_block(ctx);
901
902 /* Now that we have the subblocks emitted, fix up the branches */
903
904 assert(then_block);
905 assert(else_block);
906
907 if (ctx->instruction_count == count_in) {
908 /* The else block is empty, so don't emit an exit jump */
909 bi_remove_instruction(then_exit);
910 then_branch->branch.target = ctx->after_block;
911 } else {
912 then_branch->branch.target = else_block;
913 then_exit->branch.target = ctx->after_block;
914 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
915 }
916
917 /* Wire up the successors */
918
919 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
920
921 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
922 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
923 }
924
925 static void
926 emit_loop(bi_context *ctx, nir_loop *nloop)
927 {
928 /* Remember where we are */
929 bi_block *start_block = ctx->current_block;
930
931 bi_block *saved_break = ctx->break_block;
932 bi_block *saved_continue = ctx->continue_block;
933
934 ctx->continue_block = create_empty_block(ctx);
935 ctx->break_block = create_empty_block(ctx);
936 ctx->after_block = ctx->continue_block;
937
938 /* Emit the body itself */
939 emit_cf_list(ctx, &nloop->body);
940
941 /* Branch back to loop back */
942 bi_instruction *br_back = bi_emit_branch(ctx);
943 br_back->branch.target = ctx->continue_block;
944 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
945 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
946
947 ctx->after_block = ctx->break_block;
948
949 /* Pop off */
950 ctx->break_block = saved_break;
951 ctx->continue_block = saved_continue;
952 ++ctx->loop_count;
953 }
954
955 static bi_block *
956 emit_cf_list(bi_context *ctx, struct exec_list *list)
957 {
958 bi_block *start_block = NULL;
959
960 foreach_list_typed(nir_cf_node, node, node, list) {
961 switch (node->type) {
962 case nir_cf_node_block: {
963 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
964
965 if (!start_block)
966 start_block = block;
967
968 break;
969 }
970
971 case nir_cf_node_if:
972 emit_if(ctx, nir_cf_node_as_if(node));
973 break;
974
975 case nir_cf_node_loop:
976 emit_loop(ctx, nir_cf_node_as_loop(node));
977 break;
978
979 default:
980 unreachable("Unknown control flow");
981 }
982 }
983
984 return start_block;
985 }
986
987 static int
988 glsl_type_size(const struct glsl_type *type, bool bindless)
989 {
990 return glsl_count_attribute_slots(type, false);
991 }
992
993 static void
994 bi_optimize_nir(nir_shader *nir)
995 {
996 bool progress;
997 unsigned lower_flrp = 16 | 32 | 64;
998
999 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
1000 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
1001
1002 nir_lower_tex_options lower_tex_options = {
1003 .lower_txs_lod = true,
1004 .lower_txp = ~0,
1005 .lower_tex_without_implicit_lod = true,
1006 .lower_txd = true,
1007 };
1008
1009 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
1010 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
1011 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
1012
1013 do {
1014 progress = false;
1015
1016 NIR_PASS(progress, nir, nir_lower_var_copies);
1017 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
1018
1019 NIR_PASS(progress, nir, nir_copy_prop);
1020 NIR_PASS(progress, nir, nir_opt_remove_phis);
1021 NIR_PASS(progress, nir, nir_opt_dce);
1022 NIR_PASS(progress, nir, nir_opt_dead_cf);
1023 NIR_PASS(progress, nir, nir_opt_cse);
1024 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
1025 NIR_PASS(progress, nir, nir_opt_algebraic);
1026 NIR_PASS(progress, nir, nir_opt_constant_folding);
1027
1028 if (lower_flrp != 0) {
1029 bool lower_flrp_progress = false;
1030 NIR_PASS(lower_flrp_progress,
1031 nir,
1032 nir_lower_flrp,
1033 lower_flrp,
1034 false /* always_precise */,
1035 nir->options->lower_ffma);
1036 if (lower_flrp_progress) {
1037 NIR_PASS(progress, nir,
1038 nir_opt_constant_folding);
1039 progress = true;
1040 }
1041
1042 /* Nothing should rematerialize any flrps, so we only
1043 * need to do this lowering once.
1044 */
1045 lower_flrp = 0;
1046 }
1047
1048 NIR_PASS(progress, nir, nir_opt_undef);
1049 NIR_PASS(progress, nir, nir_opt_loop_unroll,
1050 nir_var_shader_in |
1051 nir_var_shader_out |
1052 nir_var_function_temp);
1053 } while (progress);
1054
1055 NIR_PASS(progress, nir, nir_opt_algebraic_late);
1056 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
1057 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
1058 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
1059 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
1060
1061 /* Take us out of SSA */
1062 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
1063 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
1064 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
1065 }
1066
1067 void
1068 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
1069 {
1070 bifrost_debug = debug_get_option_bifrost_debug();
1071
1072 bi_context *ctx = rzalloc(NULL, bi_context);
1073 ctx->nir = nir;
1074 ctx->stage = nir->info.stage;
1075 ctx->quirks = bifrost_get_quirks(product_id);
1076 list_inithead(&ctx->blocks);
1077
1078 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
1079 * (so we don't accidentally duplicate the epilogue since mesa/st has
1080 * messed with our I/O quite a bit already) */
1081
1082 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1083
1084 if (ctx->stage == MESA_SHADER_VERTEX) {
1085 NIR_PASS_V(nir, nir_lower_viewport_transform);
1086 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
1087 }
1088
1089 NIR_PASS_V(nir, nir_split_var_copies);
1090 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
1091 NIR_PASS_V(nir, nir_lower_var_copies);
1092 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1093 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
1094 NIR_PASS_V(nir, nir_lower_ssbo);
1095 NIR_PASS_V(nir, nir_lower_mediump_outputs);
1096
1097 bi_optimize_nir(nir);
1098
1099 if (bifrost_debug & BIFROST_DBG_SHADERS) {
1100 nir_print_shader(nir, stdout);
1101 }
1102
1103 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
1104 program->sysval_count = ctx->sysvals.sysval_count;
1105 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
1106 ctx->blend_types = program->blend_types;
1107
1108 nir_foreach_function(func, nir) {
1109 if (!func->impl)
1110 continue;
1111
1112 ctx->impl = func->impl;
1113 emit_cf_list(ctx, &func->impl->body);
1114 break; /* TODO: Multi-function shaders */
1115 }
1116
1117 bi_foreach_block(ctx, _block) {
1118 bi_block *block = (bi_block *) _block;
1119 bi_lower_combine(ctx, block);
1120 }
1121
1122 bool progress = false;
1123
1124 do {
1125 progress = false;
1126
1127 bi_foreach_block(ctx, _block) {
1128 bi_block *block = (bi_block *) _block;
1129 progress |= bi_opt_dead_code_eliminate(ctx, block);
1130 }
1131 } while(progress);
1132
1133 if (bifrost_debug & BIFROST_DBG_SHADERS)
1134 bi_print_shader(ctx, stdout);
1135 bi_schedule(ctx);
1136 bi_register_allocate(ctx);
1137 if (bifrost_debug & BIFROST_DBG_SHADERS)
1138 bi_print_shader(ctx, stdout);
1139 bi_pack(ctx, &program->compiled);
1140
1141 if (bifrost_debug & BIFROST_DBG_SHADERS)
1142 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
1143
1144 ralloc_free(ctx);
1145 }