pan/bi: Fix SEL.16 swizzle
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_IMATH,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SELECT,
73 BI_SHIFT,
74 BI_STORE,
75 BI_STORE_VAR,
76 BI_SPECIAL, /* _FAST on supported GPUs */
77 BI_TABLE,
78 BI_TEX,
79 BI_ROUND,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* Accepts a bi_cond */
90 #define BI_CONDITIONAL (1 << 1)
91
92 /* Accepts a bifrost_roundmode */
93 #define BI_ROUNDMODE (1 << 2)
94
95 /* Can be scheduled to FMA */
96 #define BI_SCHED_FMA (1 << 3)
97
98 /* Can be scheduled to ADD */
99 #define BI_SCHED_ADD (1 << 4)
100
101 /* Most ALU ops can do either, actually */
102 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
103
104 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
105 * nopped out. Used for _FAST operations. */
106 #define BI_SCHED_SLOW (1 << 5)
107
108 /* Swizzling allowed for the 8/16-bit source */
109 #define BI_SWIZZLABLE (1 << 6)
110
111 /* For scheduling purposes this is a high latency instruction and must be at
112 * the end of a clause. Implies ADD */
113 #define BI_SCHED_HI_LATENCY (1 << 7)
114
115 /* Intrinsic is vectorized and acts with `vector_channels` components */
116 #define BI_VECTOR (1 << 8)
117
118 /* Use a data register for src0/dest respectively, bypassing the usual
119 * register accessor. Mutually exclusive. */
120 #define BI_DATA_REG_SRC (1 << 9)
121 #define BI_DATA_REG_DEST (1 << 10)
122
123 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
124 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
125
126 /* It can't get any worse than csel4... can it? */
127 #define BIR_SRC_COUNT 4
128
129 /* BI_LD_VARY */
130 struct bi_load_vary {
131 enum bifrost_interp_mode interp_mode;
132 bool reuse;
133 bool flat;
134 };
135
136 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
137 * the target. We forward declare bi_block since this is mildly circular (not
138 * strictly, but this order of the file makes more sense I think)
139 *
140 * We define our own enum of conditions since the conditions in the hardware
141 * packed in crazy ways that would make manipulation unweildly (meaning changes
142 * based on port swapping, etc), so we defer dealing with that until emit time.
143 * Likewise, we expose NIR types instead of the crazy branch types, although
144 * the restrictions do eventually apply of course. */
145
146 struct bi_block;
147
148 enum bi_cond {
149 BI_COND_ALWAYS,
150 BI_COND_LT,
151 BI_COND_LE,
152 BI_COND_GE,
153 BI_COND_GT,
154 BI_COND_EQ,
155 BI_COND_NE,
156 };
157
158 /* Opcodes within a class */
159 enum bi_minmax_op {
160 BI_MINMAX_MIN,
161 BI_MINMAX_MAX
162 };
163
164 enum bi_bitwise_op {
165 BI_BITWISE_AND,
166 BI_BITWISE_OR,
167 BI_BITWISE_XOR
168 };
169
170 enum bi_imath_op {
171 BI_IMATH_ADD,
172 BI_IMATH_SUB,
173 };
174
175 enum bi_table_op {
176 /* fp32 log2() with low precision, suitable for GL or half_log2() in
177 * CL. In the first argument, takes x. Letting u be such that x =
178 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
179 * log2(u) / (u - 1). */
180
181 BI_TABLE_LOG2_U_OVER_U_1_LOW,
182 };
183
184 enum bi_reduce_op {
185 /* Takes two fp32 arguments and returns x + frexp(y). Used in
186 * low-precision log2 argument reduction on newer models. */
187
188 BI_REDUCE_ADD_FREXPM,
189 };
190
191 enum bi_frexp_op {
192 BI_FREXPE_LOG,
193 };
194
195 enum bi_special_op {
196 BI_SPECIAL_FRCP,
197 BI_SPECIAL_FRSQ,
198
199 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
200 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
201 * the second, it takes x itself. */
202 BI_SPECIAL_EXP2_LOW,
203 };
204
205 enum bi_tex_op {
206 BI_TEX_NORMAL,
207 BI_TEX_COMPACT,
208 BI_TEX_DUAL
209 };
210
211 struct bi_bitwise {
212 bool src_invert[2];
213 bool rshift; /* false for lshift */
214 };
215
216 struct bi_texture {
217 /* Constant indices. Indirect would need to be in src[..] like normal,
218 * we can reserve some sentinels there for that for future. */
219 unsigned texture_index, sampler_index;
220 };
221
222 typedef struct {
223 struct list_head link; /* Must be first */
224 enum bi_class type;
225
226 /* Indices, see pan_ssa_index etc. Note zero is special cased
227 * to "no argument" */
228 unsigned dest;
229 unsigned src[BIR_SRC_COUNT];
230
231 /* 32-bit word offset for destination, added to the register number in
232 * RA when lowering combines */
233 unsigned dest_offset;
234
235 /* If one of the sources has BIR_INDEX_CONSTANT */
236 union {
237 uint64_t u64;
238 uint32_t u32;
239 uint16_t u16[2];
240 uint8_t u8[4];
241 } constant;
242
243 /* Floating-point modifiers, type/class permitting. If not
244 * allowed for the type/class, these are ignored. */
245 enum bifrost_outmod outmod;
246 bool src_abs[BIR_SRC_COUNT];
247 bool src_neg[BIR_SRC_COUNT];
248
249 /* Round mode (requires BI_ROUNDMODE) */
250 enum bifrost_roundmode roundmode;
251
252 /* Destination type. Usually the type of the instruction
253 * itself, but if sources and destination have different
254 * types, the type of the destination wins (so f2i would be
255 * int). Zero if there is no destination. Bitsize included */
256 nir_alu_type dest_type;
257
258 /* Source types if required by the class */
259 nir_alu_type src_types[BIR_SRC_COUNT];
260
261 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
262 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
263 * sense. On non-SIMD instructions, it can be used for component
264 * selection, so we don't have to special case extraction. */
265 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
266
267 /* For VECTOR ops, how many channels are written? */
268 unsigned vector_channels;
269
270 /* The comparison op. BI_COND_ALWAYS may not be valid. */
271 enum bi_cond cond;
272
273 /* A class-specific op from which the actual opcode can be derived
274 * (along with the above information) */
275
276 union {
277 enum bi_minmax_op minmax;
278 enum bi_bitwise_op bitwise;
279 enum bi_special_op special;
280 enum bi_reduce_op reduce;
281 enum bi_table_op table;
282 enum bi_frexp_op frexp;
283 enum bi_tex_op texture;
284 enum bi_imath_op imath;
285
286 /* For FMA/ADD, should we add a biased exponent? */
287 bool mscale;
288 } op;
289
290 /* Union for class-specific information */
291 union {
292 enum bifrost_minmax_mode minmax;
293 struct bi_load_vary load_vary;
294 struct bi_block *branch_target;
295
296 /* For BLEND -- the location 0-7 */
297 unsigned blend_location;
298
299 struct bi_bitwise bitwise;
300 struct bi_texture texture;
301 };
302 } bi_instruction;
303
304 /* Represents the assignment of ports for a given bi_bundle */
305
306 typedef struct {
307 /* Register to assign to each port */
308 unsigned port[4];
309
310 /* Read ports can be disabled */
311 bool enabled[2];
312
313 /* Should we write FMA? what about ADD? If only a single port is
314 * enabled it is in port 2, else ADD/FMA is 2/3 respectively */
315 bool write_fma, write_add;
316
317 /* Should we read with port 3? */
318 bool read_port3;
319
320 /* Packed uniform/constant */
321 uint8_t uniform_constant;
322
323 /* Whether writes are actually for the last instruction */
324 bool first_instruction;
325 } bi_registers;
326
327 /* A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
328 * leave it NULL; the emitter will fill in a nop. Instructions reference
329 * registers via ports which are assigned per bundle.
330 */
331
332 typedef struct {
333 bi_registers regs;
334 bi_instruction *fma;
335 bi_instruction *add;
336 } bi_bundle;
337
338 struct bi_block;
339
340 typedef struct {
341 struct list_head link;
342
343 /* Link back up for branch calculations */
344 struct bi_block *block;
345
346 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
347 * can be 8 bundles. */
348
349 unsigned bundle_count;
350 bi_bundle bundles[8];
351
352 /* For scoreboarding -- the clause ID (this is not globally unique!)
353 * and its dependencies in terms of other clauses, computed during
354 * scheduling and used when emitting code. Dependencies expressed as a
355 * bitfield matching the hardware, except shifted by a clause (the
356 * shift back to the ISA's off-by-one encoding is worked out when
357 * emitting clauses) */
358 unsigned scoreboard_id;
359 uint8_t dependencies;
360
361 /* Back-to-back corresponds directly to the back-to-back bit. Branch
362 * conditional corresponds to the branch conditional bit except that in
363 * the emitted code it's always set if back-to-bit is, whereas we use
364 * the actual value (without back-to-back so to speak) internally */
365 bool back_to_back;
366 bool branch_conditional;
367
368 /* Assigned data register */
369 unsigned data_register;
370
371 /* Corresponds to the usual bit but shifted by a clause */
372 bool data_register_write_barrier;
373
374 /* Constants read by this clause. ISA limit. Must satisfy:
375 *
376 * constant_count + bundle_count <= 13
377 *
378 * Also implicitly constant_count <= bundle_count since a bundle only
379 * reads a single constant.
380 */
381 uint64_t constants[8];
382 unsigned constant_count;
383
384 /* Branches encode a constant offset relative to the program counter
385 * with some magic flags. By convention, if there is a branch, its
386 * constant will be last. Set this flag to indicate this is required.
387 */
388 bool branch_constant;
389
390 /* What type of high latency instruction is here, basically */
391 unsigned clause_type;
392 } bi_clause;
393
394 typedef struct bi_block {
395 pan_block base; /* must be first */
396
397 /* If true, uses clauses; if false, uses instructions */
398 bool scheduled;
399 struct list_head clauses; /* list of bi_clause */
400 } bi_block;
401
402 typedef struct {
403 nir_shader *nir;
404 gl_shader_stage stage;
405 struct list_head blocks; /* list of bi_block */
406 struct panfrost_sysvals sysvals;
407 uint32_t quirks;
408
409 /* During NIR->BIR */
410 nir_function_impl *impl;
411 bi_block *current_block;
412 bi_block *after_block;
413 bi_block *break_block;
414 bi_block *continue_block;
415 bool emitted_atest;
416 nir_alu_type *blend_types;
417
418 /* For creating temporaries */
419 unsigned temp_alloc;
420
421 /* Analysis results */
422 bool has_liveness;
423
424 /* Stats for shader-db */
425 unsigned instruction_count;
426 unsigned loop_count;
427 } bi_context;
428
429 static inline bi_instruction *
430 bi_emit(bi_context *ctx, bi_instruction ins)
431 {
432 bi_instruction *u = rzalloc(ctx, bi_instruction);
433 memcpy(u, &ins, sizeof(ins));
434 list_addtail(&u->link, &ctx->current_block->base.instructions);
435 return u;
436 }
437
438 static inline bi_instruction *
439 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
440 {
441 bi_instruction *u = rzalloc(ctx, bi_instruction);
442 memcpy(u, &ins, sizeof(ins));
443 list_addtail(&u->link, &tag->link);
444 return u;
445 }
446
447 static inline void
448 bi_remove_instruction(bi_instruction *ins)
449 {
450 list_del(&ins->link);
451 }
452
453 /* If high bits are set, instead of SSA/registers, we have specials indexed by
454 * the low bits if necessary.
455 *
456 * Fixed register: do not allocate register, do not collect $200.
457 * Uniform: access a uniform register given by low bits.
458 * Constant: access the specified constant (specifies a bit offset / shift)
459 * Zero: special cased to avoid wasting a constant
460 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
461 */
462
463 #define BIR_INDEX_REGISTER (1 << 31)
464 #define BIR_INDEX_UNIFORM (1 << 30)
465 #define BIR_INDEX_CONSTANT (1 << 29)
466 #define BIR_INDEX_ZERO (1 << 28)
467 #define BIR_INDEX_PASS (1 << 27)
468
469 /* Keep me synced please so we can check src & BIR_SPECIAL */
470
471 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
472 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
473
474 static inline unsigned
475 bi_max_temp(bi_context *ctx)
476 {
477 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
478 return ((alloc + 2 + ctx->temp_alloc) << 1);
479 }
480
481 static inline unsigned
482 bi_make_temp(bi_context *ctx)
483 {
484 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
485 }
486
487 static inline unsigned
488 bi_make_temp_reg(bi_context *ctx)
489 {
490 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
491 }
492
493 /* Iterators for Bifrost IR */
494
495 #define bi_foreach_block(ctx, v) \
496 list_for_each_entry(pan_block, v, &ctx->blocks, link)
497
498 #define bi_foreach_block_from(ctx, from, v) \
499 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
500
501 #define bi_foreach_block_from_rev(ctx, from, v) \
502 list_for_each_entry_from_rev(pan_block, v, from, &ctx->blocks, link)
503
504 #define bi_foreach_instr_in_block(block, v) \
505 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
506
507 #define bi_foreach_instr_in_block_rev(block, v) \
508 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
509
510 #define bi_foreach_instr_in_block_safe(block, v) \
511 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
512
513 #define bi_foreach_instr_in_block_safe_rev(block, v) \
514 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
515
516 #define bi_foreach_instr_in_block_from(block, v, from) \
517 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
518
519 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
520 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
521
522 #define bi_foreach_clause_in_block(block, v) \
523 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
524
525 #define bi_foreach_clause_in_block_from(block, v, from) \
526 list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
527
528 #define bi_foreach_clause_in_block_from_rev(block, v, from) \
529 list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
530
531 #define bi_foreach_instr_global(ctx, v) \
532 bi_foreach_block(ctx, v_block) \
533 bi_foreach_instr_in_block((bi_block *) v_block, v)
534
535 #define bi_foreach_instr_global_safe(ctx, v) \
536 bi_foreach_block(ctx, v_block) \
537 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
538
539 /* Based on set_foreach, expanded with automatic type casts */
540
541 #define bi_foreach_predecessor(blk, v) \
542 struct set_entry *_entry_##v; \
543 bi_block *v; \
544 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
545 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
546 _entry_##v != NULL; \
547 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
548 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
549
550 #define bi_foreach_src(ins, v) \
551 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
552
553 static inline bi_instruction *
554 bi_prev_op(bi_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), bi_instruction, link);
557 }
558
559 static inline bi_instruction *
560 bi_next_op(bi_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), bi_instruction, link);
563 }
564
565 static inline pan_block *
566 pan_next_block(pan_block *block)
567 {
568 return list_first_entry(&(block->link), pan_block, link);
569 }
570
571 /* Special functions */
572
573 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
574 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
575
576 /* BIR manipulation */
577
578 bool bi_has_outmod(bi_instruction *ins);
579 bool bi_has_source_mods(bi_instruction *ins);
580 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
581 bool bi_has_arg(bi_instruction *ins, unsigned arg);
582 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
583 unsigned bi_get_component_count(bi_instruction *ins, signed s);
584 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
585 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
586 bool bi_writes_component(bi_instruction *ins, unsigned comp);
587 unsigned bi_writemask(bi_instruction *ins);
588
589 /* BIR passes */
590
591 void bi_lower_combine(bi_context *ctx, bi_block *block);
592 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
593 void bi_schedule(bi_context *ctx);
594 void bi_register_allocate(bi_context *ctx);
595
596 /* Liveness */
597
598 void bi_compute_liveness(bi_context *ctx);
599 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
600 void bi_invalidate_liveness(bi_context *ctx);
601 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
602
603 /* Layout */
604
605 bool bi_can_insert_bundle(bi_clause *clause, bool constant);
606 unsigned bi_clause_quadwords(bi_clause *clause);
607 signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
608
609 /* Code emit */
610
611 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
612
613 #endif