pan/bi: Respect shift when printing immediates
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_CONVERT,
57 BI_CSEL,
58 BI_DISCARD,
59 BI_FMA,
60 BI_FMOV,
61 BI_FREXP,
62 BI_ISUB,
63 BI_LOAD,
64 BI_LOAD_UNIFORM,
65 BI_LOAD_ATTR,
66 BI_LOAD_VAR,
67 BI_LOAD_VAR_ADDRESS,
68 BI_MINMAX,
69 BI_MOV,
70 BI_SHIFT,
71 BI_STORE,
72 BI_STORE_VAR,
73 BI_SPECIAL, /* _FAST, _TABLE on supported GPUs */
74 BI_SWIZZLE,
75 BI_TEX,
76 BI_ROUND,
77 BI_NUM_CLASSES
78 };
79
80 /* Properties of a class... */
81 extern unsigned bi_class_props[BI_NUM_CLASSES];
82
83 /* abs/neg/outmod valid for a float op */
84 #define BI_MODS (1 << 0)
85
86 /* Generic enough that little class-specific information is required. In other
87 * words, it acts as a "normal" ALU op, even if the encoding ends up being
88 * irregular enough to warrant a separate class */
89 #define BI_GENERIC (1 << 1)
90
91 /* Accepts a bifrost_roundmode */
92 #define BI_ROUNDMODE (1 << 2)
93
94 /* Can be scheduled to FMA */
95 #define BI_SCHED_FMA (1 << 3)
96
97 /* Can be scheduled to ADD */
98 #define BI_SCHED_ADD (1 << 4)
99
100 /* Most ALU ops can do either, actually */
101 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
102
103 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
104 * nopped out. Used for _FAST operations. */
105 #define BI_SCHED_SLOW (1 << 5)
106
107 /* Swizzling allowed for the 8/16-bit source */
108 #define BI_SWIZZLABLE (1 << 6)
109
110 /* For scheduling purposes this is a high latency instruction and must be at
111 * the end of a clause. Implies ADD */
112 #define BI_SCHED_HI_LATENCY (1 << 7)
113
114 /* Intrinsic is vectorized and should read 4 components in the first source
115 * regardless of writemask */
116 #define BI_VECTOR (1 << 8)
117
118 /* Use a data register for src0/dest respectively, bypassing the usual
119 * register accessor. Mutually exclusive. */
120 #define BI_DATA_REG_SRC (1 << 9)
121 #define BI_DATA_REG_DEST (1 << 10)
122
123 /* It can't get any worse than csel4... can it? */
124 #define BIR_SRC_COUNT 4
125
126 /* BI_LD_VARY */
127 struct bi_load_vary {
128 enum bifrost_interp_mode interp_mode;
129 bool reuse;
130 bool flat;
131 };
132
133 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
134 * the target. We forward declare bi_block since this is mildly circular (not
135 * strictly, but this order of the file makes more sense I think)
136 *
137 * We define our own enum of conditions since the conditions in the hardware
138 * packed in crazy ways that would make manipulation unweildly (meaning changes
139 * based on port swapping, etc), so we defer dealing with that until emit time.
140 * Likewise, we expose NIR types instead of the crazy branch types, although
141 * the restrictions do eventually apply of course. */
142
143 struct bi_block;
144
145 enum bi_cond {
146 BI_COND_ALWAYS,
147 BI_COND_LT,
148 BI_COND_LE,
149 BI_COND_GE,
150 BI_COND_GT,
151 BI_COND_EQ,
152 BI_COND_NE,
153 };
154
155 struct bi_branch {
156 /* Types are specified in src_types and must be compatible (either both
157 * int, or both float, 16/32, and same size or 32/16 if float. Types
158 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
159
160 enum bi_cond cond;
161 struct bi_block *target;
162 };
163
164 /* Opcodes within a class */
165 enum bi_minmax_op {
166 BI_MINMAX_MIN,
167 BI_MINMAX_MAX
168 };
169
170 enum bi_bitwise_op {
171 BI_BITWISE_AND,
172 BI_BITWISE_OR,
173 BI_BITWISE_XOR
174 };
175
176 enum bi_round_op {
177 BI_ROUND_MODE, /* use round mode */
178 BI_ROUND_ROUND /* i.e.: fround() */
179 };
180
181 enum bi_special_op {
182 BI_SPECIAL_FRCP,
183 BI_SPECIAL_FRSQ,
184 BI_SPECIAL_FATAN,
185 BI_SPECIAL_FSIN,
186 BI_SPECIAL_FCOS,
187 BI_SPECIAL_FEXP,
188 BI_SPECIAL_FLOG2,
189 BI_SPECIAL_FLOGE
190 };
191
192 typedef struct {
193 struct list_head link; /* Must be first */
194 enum bi_class type;
195
196 /* Indices, see bir_ssa_index etc. Note zero is special cased
197 * to "no argument" */
198 unsigned dest;
199 unsigned src[BIR_SRC_COUNT];
200
201 /* If one of the sources has BIR_INDEX_CONSTANT */
202 union {
203 uint64_t u64;
204 uint32_t u32;
205 uint16_t u16[2];
206 uint8_t u8[4];
207 } constant;
208
209 /* Floating-point modifiers, type/class permitting. If not
210 * allowed for the type/class, these are ignored. */
211 enum bifrost_outmod outmod;
212 bool src_abs[BIR_SRC_COUNT];
213 bool src_neg[BIR_SRC_COUNT];
214
215 /* Round mode (requires BI_ROUNDMODE) */
216 enum bifrost_roundmode roundmode;
217
218 /* Writemask (bit for each affected byte). This is quite restricted --
219 * ALU ops can only write to a single channel (exception: <32 in which
220 * you can write to 32/N contiguous aligned channels). Load/store can
221 * only write to all channels at once, in a sense. But it's still
222 * better to use this generic form than have synthetic ops flying
223 * about, since we're not essentially vector for RA purposes. */
224 uint16_t writemask;
225
226 /* Destination type. Usually the type of the instruction
227 * itself, but if sources and destination have different
228 * types, the type of the destination wins (so f2i would be
229 * int). Zero if there is no destination. Bitsize included */
230 nir_alu_type dest_type;
231
232 /* Source types if required by the class */
233 nir_alu_type src_types[BIR_SRC_COUNT];
234
235 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
236 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
237 * sense. On non-SIMD instructions, it can be used for component
238 * selection, so we don't have to special case extraction. */
239 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
240
241 /* A class-specific op from which the actual opcode can be derived
242 * (along with the above information) */
243
244 union {
245 enum bi_minmax_op minmax;
246 enum bi_bitwise_op bitwise;
247 enum bi_round_op round;
248 enum bi_special_op special;
249 enum bi_cond compare;
250 } op;
251
252 /* Union for class-specific information */
253 union {
254 enum bifrost_minmax_mode minmax;
255 struct bi_load_vary load_vary;
256 struct bi_branch branch;
257
258 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
259 * sense here but you can always just use a move for that */
260 enum bi_cond csel_cond;
261
262 /* For BLEND -- the location 0-7 */
263 unsigned blend_location;
264
265 /* For STORE, STORE_VAR -- channel count */
266 unsigned store_channels;
267 };
268 } bi_instruction;
269
270 /* Scheduling takes place in two steps. Step 1 groups instructions within a
271 * block into distinct clauses (bi_clause). Step 2 schedules instructions
272 * within a clause into FMA/ADD pairs (bi_bundle).
273 *
274 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
275 * leave it NULL; the emitter will fill in a nop.
276 */
277
278 typedef struct {
279 bi_instruction *fma;
280 bi_instruction *add;
281 } bi_bundle;
282
283 typedef struct {
284 struct list_head link;
285
286 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
287 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
288 * so a clause can have up to 16 bi_instructions. Whether bundles or
289 * instructions are used depends on where in scheduling we are. */
290
291 unsigned instruction_count;
292 unsigned bundle_count;
293
294 union {
295 bi_instruction *instructions[16];
296 bi_bundle bundles[8];
297 };
298
299 /* For scoreboarding -- the clause ID (this is not globally unique!)
300 * and its dependencies in terms of other clauses, computed during
301 * scheduling and used when emitting code. Dependencies expressed as a
302 * bitfield matching the hardware, except shifted by a clause (the
303 * shift back to the ISA's off-by-one encoding is worked out when
304 * emitting clauses) */
305 unsigned scoreboard_id;
306 uint8_t dependencies;
307
308 /* Back-to-back corresponds directly to the back-to-back bit. Branch
309 * conditional corresponds to the branch conditional bit except that in
310 * the emitted code it's always set if back-to-bit is, whereas we use
311 * the actual value (without back-to-back so to speak) internally */
312 bool back_to_back;
313 bool branch_conditional;
314
315 /* Assigned data register */
316 unsigned data_register;
317
318 /* Corresponds to the usual bit but shifted by a clause */
319 bool data_register_write_barrier;
320
321 /* Constants read by this clause. ISA limit. */
322 uint64_t constants[8];
323 unsigned constant_count;
324
325 /* What type of high latency instruction is here, basically */
326 unsigned clause_type;
327 } bi_clause;
328
329 typedef struct bi_block {
330 pan_block base; /* must be first */
331
332 /* If true, uses clauses; if false, uses instructions */
333 bool scheduled;
334 struct list_head clauses; /* list of bi_clause */
335 } bi_block;
336
337 typedef struct {
338 nir_shader *nir;
339 gl_shader_stage stage;
340 struct list_head blocks; /* list of bi_block */
341 struct panfrost_sysvals sysvals;
342 uint32_t quirks;
343
344 /* During NIR->BIR */
345 nir_function_impl *impl;
346 bi_block *current_block;
347 unsigned block_name_count;
348 bi_block *after_block;
349 bi_block *break_block;
350 bi_block *continue_block;
351 bool emitted_atest;
352
353 /* For creating temporaries */
354 unsigned temp_alloc;
355
356 /* Analysis results */
357 bool has_liveness;
358
359 /* Stats for shader-db */
360 unsigned instruction_count;
361 unsigned loop_count;
362 } bi_context;
363
364 static inline bi_instruction *
365 bi_emit(bi_context *ctx, bi_instruction ins)
366 {
367 bi_instruction *u = rzalloc(ctx, bi_instruction);
368 memcpy(u, &ins, sizeof(ins));
369 list_addtail(&u->link, &ctx->current_block->base.instructions);
370 return u;
371 }
372
373 static inline bi_instruction *
374 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
375 {
376 bi_instruction *u = rzalloc(ctx, bi_instruction);
377 memcpy(u, &ins, sizeof(ins));
378 list_addtail(&u->link, &tag->link);
379 return u;
380 }
381
382 static inline void
383 bi_remove_instruction(bi_instruction *ins)
384 {
385 list_del(&ins->link);
386 }
387
388 /* So we can distinguish between SSA/reg/sentinel quickly */
389 #define BIR_NO_ARG (0)
390 #define BIR_IS_REG (1)
391
392 /* If high bits are set, instead of SSA/registers, we have specials indexed by
393 * the low bits if necessary.
394 *
395 * Fixed register: do not allocate register, do not collect $200.
396 * Uniform: access a uniform register given by low bits.
397 * Constant: access the specified constant (specifies a bit offset / shift)
398 * Zero: special cased to avoid wasting a constant
399 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
400 */
401
402 #define BIR_INDEX_REGISTER (1 << 31)
403 #define BIR_INDEX_UNIFORM (1 << 30)
404 #define BIR_INDEX_CONSTANT (1 << 29)
405 #define BIR_INDEX_ZERO (1 << 28)
406 #define BIR_INDEX_PASS (1 << 27)
407
408 /* Keep me synced please so we can check src & BIR_SPECIAL */
409
410 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
411 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
412
413 static inline unsigned
414 bi_max_temp(bi_context *ctx)
415 {
416 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
417 return ((alloc + 2 + ctx->temp_alloc) << 1);
418 }
419
420 static inline unsigned
421 bi_make_temp(bi_context *ctx)
422 {
423 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
424 }
425
426 static inline unsigned
427 bi_make_temp_reg(bi_context *ctx)
428 {
429 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
430 }
431
432 static inline unsigned
433 bir_ssa_index(nir_ssa_def *ssa)
434 {
435 /* Off-by-one ensures BIR_NO_ARG is skipped */
436 return ((ssa->index + 1) << 1) | 0;
437 }
438
439 static inline unsigned
440 bir_src_index(nir_src *src)
441 {
442 if (src->is_ssa)
443 return bir_ssa_index(src->ssa);
444 else {
445 assert(!src->reg.indirect);
446 return (src->reg.reg->index << 1) | BIR_IS_REG;
447 }
448 }
449
450 static inline unsigned
451 bir_dest_index(nir_dest *dst)
452 {
453 if (dst->is_ssa)
454 return bir_ssa_index(&dst->ssa);
455 else {
456 assert(!dst->reg.indirect);
457 return (dst->reg.reg->index << 1) | BIR_IS_REG;
458 }
459 }
460
461 /* Iterators for Bifrost IR */
462
463 #define bi_foreach_block(ctx, v) \
464 list_for_each_entry(pan_block, v, &ctx->blocks, link)
465
466 #define bi_foreach_block_from(ctx, from, v) \
467 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
468
469 #define bi_foreach_instr_in_block(block, v) \
470 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
471
472 #define bi_foreach_instr_in_block_rev(block, v) \
473 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
474
475 #define bi_foreach_instr_in_block_safe(block, v) \
476 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
477
478 #define bi_foreach_instr_in_block_safe_rev(block, v) \
479 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
480
481 #define bi_foreach_instr_in_block_from(block, v, from) \
482 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
483
484 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
485 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
486
487 #define bi_foreach_clause_in_block(block, v) \
488 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
489
490 #define bi_foreach_instr_global(ctx, v) \
491 bi_foreach_block(ctx, v_block) \
492 bi_foreach_instr_in_block((bi_block *) v_block, v)
493
494 #define bi_foreach_instr_global_safe(ctx, v) \
495 bi_foreach_block(ctx, v_block) \
496 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
497
498 /* Based on set_foreach, expanded with automatic type casts */
499
500 #define bi_foreach_predecessor(blk, v) \
501 struct set_entry *_entry_##v; \
502 bi_block *v; \
503 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
504 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
505 _entry_##v != NULL; \
506 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
507 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
508
509 #define bi_foreach_src(ins, v) \
510 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
511
512 static inline bi_instruction *
513 bi_prev_op(bi_instruction *ins)
514 {
515 return list_last_entry(&(ins->link), bi_instruction, link);
516 }
517
518 static inline bi_instruction *
519 bi_next_op(bi_instruction *ins)
520 {
521 return list_first_entry(&(ins->link), bi_instruction, link);
522 }
523
524 static inline pan_block *
525 pan_next_block(pan_block *block)
526 {
527 return list_first_entry(&(block->link), pan_block, link);
528 }
529
530 /* BIR manipulation */
531
532 bool bi_has_outmod(bi_instruction *ins);
533 bool bi_has_source_mods(bi_instruction *ins);
534 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
535 bool bi_has_arg(bi_instruction *ins, unsigned arg);
536 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
537 unsigned bi_get_component_count(bi_instruction *ins, unsigned s);
538 unsigned bi_load32_components(bi_instruction *ins);
539 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
540 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
541
542 /* BIR passes */
543
544 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
545 void bi_schedule(bi_context *ctx);
546 void bi_register_allocate(bi_context *ctx);
547
548 /* Liveness */
549
550 void bi_compute_liveness(bi_context *ctx);
551 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
552 void bi_invalidate_liveness(bi_context *ctx);
553 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
554
555 /* Code emit */
556
557 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
558
559 #endif