bifrost: Add support for nir_op_imul
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_IMATH,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SELECT,
73 BI_STORE,
74 BI_STORE_VAR,
75 BI_SPECIAL, /* _FAST on supported GPUs */
76 BI_TABLE,
77 BI_TEX,
78 BI_ROUND,
79 BI_IMUL,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* Accepts a bi_cond */
90 #define BI_CONDITIONAL (1 << 1)
91
92 /* Accepts a bifrost_roundmode */
93 #define BI_ROUNDMODE (1 << 2)
94
95 /* Can be scheduled to FMA */
96 #define BI_SCHED_FMA (1 << 3)
97
98 /* Can be scheduled to ADD */
99 #define BI_SCHED_ADD (1 << 4)
100
101 /* Most ALU ops can do either, actually */
102 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
103
104 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
105 * nopped out. Used for _FAST operations. */
106 #define BI_SCHED_SLOW (1 << 5)
107
108 /* Swizzling allowed for the 8/16-bit source */
109 #define BI_SWIZZLABLE (1 << 6)
110
111 /* For scheduling purposes this is a high latency instruction and must be at
112 * the end of a clause. Implies ADD */
113 #define BI_SCHED_HI_LATENCY (1 << 7)
114
115 /* Intrinsic is vectorized and acts with `vector_channels` components */
116 #define BI_VECTOR (1 << 8)
117
118 /* Use a data register for src0/dest respectively, bypassing the usual
119 * register accessor. Mutually exclusive. */
120 #define BI_DATA_REG_SRC (1 << 9)
121 #define BI_DATA_REG_DEST (1 << 10)
122
123 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
124 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
125
126 /* It can't get any worse than csel4... can it? */
127 #define BIR_SRC_COUNT 4
128
129 /* BI_LD_VARY */
130 struct bi_load_vary {
131 enum bifrost_interp_mode interp_mode;
132 bool reuse;
133 bool flat;
134 };
135
136 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
137 * the target. We forward declare bi_block since this is mildly circular (not
138 * strictly, but this order of the file makes more sense I think)
139 *
140 * We define our own enum of conditions since the conditions in the hardware
141 * packed in crazy ways that would make manipulation unweildly (meaning changes
142 * based on port swapping, etc), so we defer dealing with that until emit time.
143 * Likewise, we expose NIR types instead of the crazy branch types, although
144 * the restrictions do eventually apply of course. */
145
146 struct bi_block;
147
148 enum bi_cond {
149 BI_COND_ALWAYS,
150 BI_COND_LT,
151 BI_COND_LE,
152 BI_COND_GE,
153 BI_COND_GT,
154 BI_COND_EQ,
155 BI_COND_NE,
156 };
157
158 /* Opcodes within a class */
159 enum bi_minmax_op {
160 BI_MINMAX_MIN,
161 BI_MINMAX_MAX
162 };
163
164 enum bi_bitwise_op {
165 BI_BITWISE_AND,
166 BI_BITWISE_OR,
167 BI_BITWISE_XOR
168 };
169
170 enum bi_imath_op {
171 BI_IMATH_ADD,
172 BI_IMATH_SUB,
173 };
174
175 enum bi_imul_op {
176 BI_IMUL_IMUL,
177 };
178
179 enum bi_table_op {
180 /* fp32 log2() with low precision, suitable for GL or half_log2() in
181 * CL. In the first argument, takes x. Letting u be such that x =
182 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
183 * log2(u) / (u - 1). */
184
185 BI_TABLE_LOG2_U_OVER_U_1_LOW,
186 };
187
188 enum bi_reduce_op {
189 /* Takes two fp32 arguments and returns x + frexp(y). Used in
190 * low-precision log2 argument reduction on newer models. */
191
192 BI_REDUCE_ADD_FREXPM,
193 };
194
195 enum bi_frexp_op {
196 BI_FREXPE_LOG,
197 };
198
199 enum bi_special_op {
200 BI_SPECIAL_FRCP,
201 BI_SPECIAL_FRSQ,
202
203 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
204 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
205 * the second, it takes x itself. */
206 BI_SPECIAL_EXP2_LOW,
207 };
208
209 enum bi_tex_op {
210 BI_TEX_NORMAL,
211 BI_TEX_COMPACT,
212 BI_TEX_DUAL
213 };
214
215 struct bi_bitwise {
216 bool src_invert[2];
217 bool rshift; /* false for lshift */
218 };
219
220 struct bi_texture {
221 /* Constant indices. Indirect would need to be in src[..] like normal,
222 * we can reserve some sentinels there for that for future. */
223 unsigned texture_index, sampler_index;
224 };
225
226 typedef struct {
227 struct list_head link; /* Must be first */
228 enum bi_class type;
229
230 /* Indices, see pan_ssa_index etc. Note zero is special cased
231 * to "no argument" */
232 unsigned dest;
233 unsigned src[BIR_SRC_COUNT];
234
235 /* 32-bit word offset for destination, added to the register number in
236 * RA when lowering combines */
237 unsigned dest_offset;
238
239 /* If one of the sources has BIR_INDEX_CONSTANT */
240 union {
241 uint64_t u64;
242 uint32_t u32;
243 uint16_t u16[2];
244 uint8_t u8[4];
245 } constant;
246
247 /* Floating-point modifiers, type/class permitting. If not
248 * allowed for the type/class, these are ignored. */
249 enum bifrost_outmod outmod;
250 bool src_abs[BIR_SRC_COUNT];
251 bool src_neg[BIR_SRC_COUNT];
252
253 /* Round mode (requires BI_ROUNDMODE) */
254 enum bifrost_roundmode roundmode;
255
256 /* Destination type. Usually the type of the instruction
257 * itself, but if sources and destination have different
258 * types, the type of the destination wins (so f2i would be
259 * int). Zero if there is no destination. Bitsize included */
260 nir_alu_type dest_type;
261
262 /* Source types if required by the class */
263 nir_alu_type src_types[BIR_SRC_COUNT];
264
265 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
266 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
267 * sense. On non-SIMD instructions, it can be used for component
268 * selection, so we don't have to special case extraction. */
269 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
270
271 /* For VECTOR ops, how many channels are written? */
272 unsigned vector_channels;
273
274 /* The comparison op. BI_COND_ALWAYS may not be valid. */
275 enum bi_cond cond;
276
277 /* A class-specific op from which the actual opcode can be derived
278 * (along with the above information) */
279
280 union {
281 enum bi_minmax_op minmax;
282 enum bi_bitwise_op bitwise;
283 enum bi_special_op special;
284 enum bi_reduce_op reduce;
285 enum bi_table_op table;
286 enum bi_frexp_op frexp;
287 enum bi_tex_op texture;
288 enum bi_imath_op imath;
289 enum bi_imul_op imul;
290
291 /* For FMA/ADD, should we add a biased exponent? */
292 bool mscale;
293 } op;
294
295 /* Union for class-specific information */
296 union {
297 enum bifrost_minmax_mode minmax;
298 struct bi_load_vary load_vary;
299 struct bi_block *branch_target;
300
301 /* For BLEND -- the location 0-7 */
302 unsigned blend_location;
303
304 struct bi_bitwise bitwise;
305 struct bi_texture texture;
306 };
307 } bi_instruction;
308
309 /* Represents the assignment of ports for a given bi_bundle */
310
311 typedef struct {
312 /* Register to assign to each port */
313 unsigned port[4];
314
315 /* Read ports can be disabled */
316 bool enabled[2];
317
318 /* Should we write FMA? what about ADD? If only a single port is
319 * enabled it is in port 2, else ADD/FMA is 2/3 respectively */
320 bool write_fma, write_add;
321
322 /* Should we read with port 3? */
323 bool read_port3;
324
325 /* Packed uniform/constant */
326 uint8_t uniform_constant;
327
328 /* Whether writes are actually for the last instruction */
329 bool first_instruction;
330 } bi_registers;
331
332 /* A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
333 * leave it NULL; the emitter will fill in a nop. Instructions reference
334 * registers via ports which are assigned per bundle.
335 */
336
337 typedef struct {
338 bi_registers regs;
339 bi_instruction *fma;
340 bi_instruction *add;
341 } bi_bundle;
342
343 struct bi_block;
344
345 typedef struct {
346 struct list_head link;
347
348 /* Link back up for branch calculations */
349 struct bi_block *block;
350
351 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
352 * can be 8 bundles. */
353
354 unsigned bundle_count;
355 bi_bundle bundles[8];
356
357 /* For scoreboarding -- the clause ID (this is not globally unique!)
358 * and its dependencies in terms of other clauses, computed during
359 * scheduling and used when emitting code. Dependencies expressed as a
360 * bitfield matching the hardware, except shifted by a clause (the
361 * shift back to the ISA's off-by-one encoding is worked out when
362 * emitting clauses) */
363 unsigned scoreboard_id;
364 uint8_t dependencies;
365
366 /* Back-to-back corresponds directly to the back-to-back bit. Branch
367 * conditional corresponds to the branch conditional bit except that in
368 * the emitted code it's always set if back-to-bit is, whereas we use
369 * the actual value (without back-to-back so to speak) internally */
370 bool back_to_back;
371 bool branch_conditional;
372
373 /* Assigned data register */
374 unsigned data_register;
375
376 /* Corresponds to the usual bit but shifted by a clause */
377 bool data_register_write_barrier;
378
379 /* Constants read by this clause. ISA limit. Must satisfy:
380 *
381 * constant_count + bundle_count <= 13
382 *
383 * Also implicitly constant_count <= bundle_count since a bundle only
384 * reads a single constant.
385 */
386 uint64_t constants[8];
387 unsigned constant_count;
388
389 /* Branches encode a constant offset relative to the program counter
390 * with some magic flags. By convention, if there is a branch, its
391 * constant will be last. Set this flag to indicate this is required.
392 */
393 bool branch_constant;
394
395 /* What type of high latency instruction is here, basically */
396 unsigned clause_type;
397 } bi_clause;
398
399 typedef struct bi_block {
400 pan_block base; /* must be first */
401
402 /* If true, uses clauses; if false, uses instructions */
403 bool scheduled;
404 struct list_head clauses; /* list of bi_clause */
405 } bi_block;
406
407 typedef struct {
408 nir_shader *nir;
409 gl_shader_stage stage;
410 struct list_head blocks; /* list of bi_block */
411 struct panfrost_sysvals sysvals;
412 uint32_t quirks;
413
414 /* During NIR->BIR */
415 nir_function_impl *impl;
416 bi_block *current_block;
417 bi_block *after_block;
418 bi_block *break_block;
419 bi_block *continue_block;
420 bool emitted_atest;
421 nir_alu_type *blend_types;
422
423 /* For creating temporaries */
424 unsigned temp_alloc;
425
426 /* Analysis results */
427 bool has_liveness;
428
429 /* Stats for shader-db */
430 unsigned instruction_count;
431 unsigned loop_count;
432 } bi_context;
433
434 static inline bi_instruction *
435 bi_emit(bi_context *ctx, bi_instruction ins)
436 {
437 bi_instruction *u = rzalloc(ctx, bi_instruction);
438 memcpy(u, &ins, sizeof(ins));
439 list_addtail(&u->link, &ctx->current_block->base.instructions);
440 return u;
441 }
442
443 static inline bi_instruction *
444 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
445 {
446 bi_instruction *u = rzalloc(ctx, bi_instruction);
447 memcpy(u, &ins, sizeof(ins));
448 list_addtail(&u->link, &tag->link);
449 return u;
450 }
451
452 static inline void
453 bi_remove_instruction(bi_instruction *ins)
454 {
455 list_del(&ins->link);
456 }
457
458 /* If high bits are set, instead of SSA/registers, we have specials indexed by
459 * the low bits if necessary.
460 *
461 * Fixed register: do not allocate register, do not collect $200.
462 * Uniform: access a uniform register given by low bits.
463 * Constant: access the specified constant (specifies a bit offset / shift)
464 * Zero: special cased to avoid wasting a constant
465 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
466 */
467
468 #define BIR_INDEX_REGISTER (1 << 31)
469 #define BIR_INDEX_UNIFORM (1 << 30)
470 #define BIR_INDEX_CONSTANT (1 << 29)
471 #define BIR_INDEX_ZERO (1 << 28)
472 #define BIR_INDEX_PASS (1 << 27)
473
474 /* Keep me synced please so we can check src & BIR_SPECIAL */
475
476 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
477 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
478
479 static inline unsigned
480 bi_max_temp(bi_context *ctx)
481 {
482 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
483 return ((alloc + 2 + ctx->temp_alloc) << 1);
484 }
485
486 static inline unsigned
487 bi_make_temp(bi_context *ctx)
488 {
489 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
490 }
491
492 static inline unsigned
493 bi_make_temp_reg(bi_context *ctx)
494 {
495 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
496 }
497
498 /* Iterators for Bifrost IR */
499
500 #define bi_foreach_block(ctx, v) \
501 list_for_each_entry(pan_block, v, &ctx->blocks, link)
502
503 #define bi_foreach_block_from(ctx, from, v) \
504 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
505
506 #define bi_foreach_block_from_rev(ctx, from, v) \
507 list_for_each_entry_from_rev(pan_block, v, from, &ctx->blocks, link)
508
509 #define bi_foreach_instr_in_block(block, v) \
510 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
511
512 #define bi_foreach_instr_in_block_rev(block, v) \
513 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
514
515 #define bi_foreach_instr_in_block_safe(block, v) \
516 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
517
518 #define bi_foreach_instr_in_block_safe_rev(block, v) \
519 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
520
521 #define bi_foreach_instr_in_block_from(block, v, from) \
522 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
523
524 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
525 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
526
527 #define bi_foreach_clause_in_block(block, v) \
528 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
529
530 #define bi_foreach_clause_in_block_from(block, v, from) \
531 list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
532
533 #define bi_foreach_clause_in_block_from_rev(block, v, from) \
534 list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
535
536 #define bi_foreach_instr_global(ctx, v) \
537 bi_foreach_block(ctx, v_block) \
538 bi_foreach_instr_in_block((bi_block *) v_block, v)
539
540 #define bi_foreach_instr_global_safe(ctx, v) \
541 bi_foreach_block(ctx, v_block) \
542 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
543
544 /* Based on set_foreach, expanded with automatic type casts */
545
546 #define bi_foreach_predecessor(blk, v) \
547 struct set_entry *_entry_##v; \
548 bi_block *v; \
549 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
550 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
551 _entry_##v != NULL; \
552 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
553 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
554
555 #define bi_foreach_src(ins, v) \
556 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
557
558 static inline bi_instruction *
559 bi_prev_op(bi_instruction *ins)
560 {
561 return list_last_entry(&(ins->link), bi_instruction, link);
562 }
563
564 static inline bi_instruction *
565 bi_next_op(bi_instruction *ins)
566 {
567 return list_first_entry(&(ins->link), bi_instruction, link);
568 }
569
570 static inline pan_block *
571 pan_next_block(pan_block *block)
572 {
573 return list_first_entry(&(block->link), pan_block, link);
574 }
575
576 /* Special functions */
577
578 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
579 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
580
581 /* BIR manipulation */
582
583 bool bi_has_outmod(bi_instruction *ins);
584 bool bi_has_source_mods(bi_instruction *ins);
585 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
586 bool bi_has_arg(bi_instruction *ins, unsigned arg);
587 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
588 unsigned bi_get_component_count(bi_instruction *ins, signed s);
589 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
590 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
591 bool bi_writes_component(bi_instruction *ins, unsigned comp);
592 unsigned bi_writemask(bi_instruction *ins);
593
594 /* BIR passes */
595
596 void bi_lower_combine(bi_context *ctx, bi_block *block);
597 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
598 void bi_schedule(bi_context *ctx);
599 void bi_register_allocate(bi_context *ctx);
600
601 /* Liveness */
602
603 void bi_compute_liveness(bi_context *ctx);
604 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
605 void bi_invalidate_liveness(bi_context *ctx);
606 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
607
608 /* Layout */
609
610 bool bi_can_insert_bundle(bi_clause *clause, bool constant);
611 unsigned bi_clause_quadwords(bi_clause *clause);
612 signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
613
614 /* Code emit */
615
616 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
617
618 #endif