pan/midgard: Use ralloc on ctx/blocks
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 assert(block);
82 assert(successor);
83
84 /* Deduplicate */
85 for (unsigned i = 0; i < block->nr_successors; ++i) {
86 if (block->successors[i] == successor)
87 return;
88 }
89
90 block->successors[block->nr_successors++] = successor;
91 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
92 }
93
94 /* Helpers to generate midgard_instruction's using macro magic, since every
95 * driver seems to do it that way */
96
97 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
98
99 #define M_LOAD_STORE(name, store) \
100 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
101 midgard_instruction i = { \
102 .type = TAG_LOAD_STORE_4, \
103 .mask = 0xF, \
104 .ssa_args = { \
105 .dest = -1, \
106 .src = { -1, -1, -1 }, \
107 }, \
108 .load_store = { \
109 .op = midgard_op_##name, \
110 .swizzle = SWIZZLE_XYZW, \
111 .address = address \
112 } \
113 }; \
114 \
115 if (store) \
116 i.ssa_args.src[0] = ssa; \
117 else \
118 i.ssa_args.dest = ssa; \
119 \
120 return i; \
121 }
122
123 #define M_LOAD(name) M_LOAD_STORE(name, false)
124 #define M_STORE(name) M_LOAD_STORE(name, true)
125
126 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
127 * the corresponding Midgard source */
128
129 static midgard_vector_alu_src
130 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
131 bool half, bool sext)
132 {
133 if (!src) return blank_alu_src;
134
135 /* Figure out how many components there are so we can adjust the
136 * swizzle. Specifically we want to broadcast the last channel so
137 * things like ball2/3 work
138 */
139
140 if (broadcast_count) {
141 uint8_t last_component = src->swizzle[broadcast_count - 1];
142
143 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
144 src->swizzle[c] = last_component;
145 }
146 }
147
148 midgard_vector_alu_src alu_src = {
149 .rep_low = 0,
150 .rep_high = 0,
151 .half = half,
152 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
153 };
154
155 if (is_int) {
156 alu_src.mod = midgard_int_normal;
157
158 /* Sign/zero-extend if needed */
159
160 if (half) {
161 alu_src.mod = sext ?
162 midgard_int_sign_extend
163 : midgard_int_zero_extend;
164 }
165
166 /* These should have been lowered away */
167 assert(!(src->abs || src->negate));
168 } else {
169 alu_src.mod = (src->abs << 0) | (src->negate << 1);
170 }
171
172 return alu_src;
173 }
174
175 /* load/store instructions have both 32-bit and 16-bit variants, depending on
176 * whether we are using vectors composed of highp or mediump. At the moment, we
177 * don't support half-floats -- this requires changes in other parts of the
178 * compiler -- therefore the 16-bit versions are commented out. */
179
180 //M_LOAD(ld_attr_16);
181 M_LOAD(ld_attr_32);
182 //M_LOAD(ld_vary_16);
183 M_LOAD(ld_vary_32);
184 M_LOAD(ld_ubo_int4);
185 M_LOAD(ld_int4);
186 M_STORE(st_int4);
187 M_LOAD(ld_color_buffer_8);
188 //M_STORE(st_vary_16);
189 M_STORE(st_vary_32);
190 M_LOAD(st_cubemap_coords);
191 M_LOAD(ld_compute_id);
192
193 static midgard_instruction
194 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
195 {
196 midgard_branch_cond branch = {
197 .op = op,
198 .dest_tag = tag,
199 .offset = offset,
200 .cond = cond
201 };
202
203 uint16_t compact;
204 memcpy(&compact, &branch, sizeof(branch));
205
206 midgard_instruction ins = {
207 .type = TAG_ALU_4,
208 .unit = ALU_ENAB_BR_COMPACT,
209 .prepacked_branch = true,
210 .compact_branch = true,
211 .br_compact = compact,
212 .ssa_args = {
213 .dest = -1,
214 .src = { -1, -1, -1 },
215 }
216 };
217
218 if (op == midgard_jmp_writeout_op_writeout)
219 ins.writeout = true;
220
221 return ins;
222 }
223
224 static midgard_instruction
225 v_branch(bool conditional, bool invert)
226 {
227 midgard_instruction ins = {
228 .type = TAG_ALU_4,
229 .unit = ALU_ENAB_BRANCH,
230 .compact_branch = true,
231 .branch = {
232 .conditional = conditional,
233 .invert_conditional = invert
234 },
235 .ssa_args = {
236 .dest = -1,
237 .src = { -1, -1, -1 },
238 }
239 };
240
241 return ins;
242 }
243
244 static midgard_branch_extended
245 midgard_create_branch_extended( midgard_condition cond,
246 midgard_jmp_writeout_op op,
247 unsigned dest_tag,
248 signed quadword_offset)
249 {
250 /* The condition code is actually a LUT describing a function to
251 * combine multiple condition codes. However, we only support a single
252 * condition code at the moment, so we just duplicate over a bunch of
253 * times. */
254
255 uint16_t duplicated_cond =
256 (cond << 14) |
257 (cond << 12) |
258 (cond << 10) |
259 (cond << 8) |
260 (cond << 6) |
261 (cond << 4) |
262 (cond << 2) |
263 (cond << 0);
264
265 midgard_branch_extended branch = {
266 .op = op,
267 .dest_tag = dest_tag,
268 .offset = quadword_offset,
269 .cond = duplicated_cond
270 };
271
272 return branch;
273 }
274
275 static void
276 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
277 {
278 ins->has_constants = true;
279 memcpy(&ins->constants, constants, 16);
280 }
281
282 static int
283 glsl_type_size(const struct glsl_type *type, bool bindless)
284 {
285 return glsl_count_attribute_slots(type, false);
286 }
287
288 /* Lower fdot2 to a vector multiplication followed by channel addition */
289 static void
290 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
291 {
292 if (alu->op != nir_op_fdot2)
293 return;
294
295 b->cursor = nir_before_instr(&alu->instr);
296
297 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
298 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
299
300 nir_ssa_def *product = nir_fmul(b, src0, src1);
301
302 nir_ssa_def *sum = nir_fadd(b,
303 nir_channel(b, product, 0),
304 nir_channel(b, product, 1));
305
306 /* Replace the fdot2 with this sum */
307 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
308 }
309
310 static int
311 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
312 {
313 /* This is way too meta */
314 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
315 unsigned idx_idx = is_store ? 1 : 0;
316
317 nir_src index = instr->src[idx_idx];
318 assert(nir_src_is_const(index));
319 uint32_t uindex = nir_src_as_uint(index);
320
321 return PAN_SYSVAL(SSBO, uindex);
322 }
323
324 static int
325 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
326 {
327 switch (instr->intrinsic) {
328 case nir_intrinsic_load_viewport_scale:
329 return PAN_SYSVAL_VIEWPORT_SCALE;
330 case nir_intrinsic_load_viewport_offset:
331 return PAN_SYSVAL_VIEWPORT_OFFSET;
332 case nir_intrinsic_load_num_work_groups:
333 return PAN_SYSVAL_NUM_WORK_GROUPS;
334 case nir_intrinsic_load_ssbo:
335 case nir_intrinsic_store_ssbo:
336 return midgard_sysval_for_ssbo(instr);
337 default:
338 return -1;
339 }
340 }
341
342 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
343 unsigned *dest)
344 {
345 nir_intrinsic_instr *intr;
346 nir_dest *dst = NULL;
347 nir_tex_instr *tex;
348 int sysval = -1;
349
350 bool is_store = false;
351
352 switch (instr->type) {
353 case nir_instr_type_intrinsic:
354 intr = nir_instr_as_intrinsic(instr);
355 sysval = midgard_nir_sysval_for_intrinsic(intr);
356 dst = &intr->dest;
357 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
358 break;
359 case nir_instr_type_tex:
360 tex = nir_instr_as_tex(instr);
361 if (tex->op != nir_texop_txs)
362 break;
363
364 sysval = PAN_SYSVAL(TEXTURE_SIZE,
365 PAN_TXS_SYSVAL_ID(tex->texture_index,
366 nir_tex_instr_dest_size(tex) -
367 (tex->is_array ? 1 : 0),
368 tex->is_array));
369 dst = &tex->dest;
370 break;
371 default:
372 break;
373 }
374
375 if (dest && dst && !is_store)
376 *dest = nir_dest_index(ctx, dst);
377
378 return sysval;
379 }
380
381 static void
382 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
383 {
384 int sysval;
385
386 sysval = sysval_for_instr(ctx, instr, NULL);
387 if (sysval < 0)
388 return;
389
390 /* We have a sysval load; check if it's already been assigned */
391
392 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
393 return;
394
395 /* It hasn't -- so assign it now! */
396
397 unsigned id = ctx->sysval_count++;
398 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
399 ctx->sysvals[id] = sysval;
400 }
401
402 static void
403 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
404 {
405 ctx->sysval_count = 0;
406
407 nir_foreach_function(function, shader) {
408 if (!function->impl) continue;
409
410 nir_foreach_block(block, function->impl) {
411 nir_foreach_instr_safe(instr, block) {
412 midgard_nir_assign_sysval_body(ctx, instr);
413 }
414 }
415 }
416 }
417
418 static bool
419 midgard_nir_lower_fdot2(nir_shader *shader)
420 {
421 bool progress = false;
422
423 nir_foreach_function(function, shader) {
424 if (!function->impl) continue;
425
426 nir_builder _b;
427 nir_builder *b = &_b;
428 nir_builder_init(b, function->impl);
429
430 nir_foreach_block(block, function->impl) {
431 nir_foreach_instr_safe(instr, block) {
432 if (instr->type != nir_instr_type_alu) continue;
433
434 nir_alu_instr *alu = nir_instr_as_alu(instr);
435 midgard_nir_lower_fdot2_body(b, alu);
436
437 progress |= true;
438 }
439 }
440
441 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
442
443 }
444
445 return progress;
446 }
447
448 /* Flushes undefined values to zero */
449
450 static void
451 optimise_nir(nir_shader *nir)
452 {
453 bool progress;
454 unsigned lower_flrp =
455 (nir->options->lower_flrp16 ? 16 : 0) |
456 (nir->options->lower_flrp32 ? 32 : 0) |
457 (nir->options->lower_flrp64 ? 64 : 0);
458
459 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
460 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
461 NIR_PASS(progress, nir, nir_lower_idiv);
462
463 nir_lower_tex_options lower_tex_options = {
464 .lower_txs_lod = true,
465 .lower_txp = ~0
466 };
467
468 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
469
470 do {
471 progress = false;
472
473 NIR_PASS(progress, nir, nir_lower_var_copies);
474 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
475
476 NIR_PASS(progress, nir, nir_copy_prop);
477 NIR_PASS(progress, nir, nir_opt_dce);
478 NIR_PASS(progress, nir, nir_opt_dead_cf);
479 NIR_PASS(progress, nir, nir_opt_cse);
480 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
481 NIR_PASS(progress, nir, nir_opt_algebraic);
482 NIR_PASS(progress, nir, nir_opt_constant_folding);
483
484 if (lower_flrp != 0) {
485 bool lower_flrp_progress = false;
486 NIR_PASS(lower_flrp_progress,
487 nir,
488 nir_lower_flrp,
489 lower_flrp,
490 false /* always_precise */,
491 nir->options->lower_ffma);
492 if (lower_flrp_progress) {
493 NIR_PASS(progress, nir,
494 nir_opt_constant_folding);
495 progress = true;
496 }
497
498 /* Nothing should rematerialize any flrps, so we only
499 * need to do this lowering once.
500 */
501 lower_flrp = 0;
502 }
503
504 NIR_PASS(progress, nir, nir_opt_undef);
505 NIR_PASS(progress, nir, nir_undef_to_zero);
506
507 NIR_PASS(progress, nir, nir_opt_loop_unroll,
508 nir_var_shader_in |
509 nir_var_shader_out |
510 nir_var_function_temp);
511
512 NIR_PASS(progress, nir, nir_opt_vectorize);
513 } while (progress);
514
515 /* Must be run at the end to prevent creation of fsin/fcos ops */
516 NIR_PASS(progress, nir, midgard_nir_scale_trig);
517
518 do {
519 progress = false;
520
521 NIR_PASS(progress, nir, nir_opt_dce);
522 NIR_PASS(progress, nir, nir_opt_algebraic);
523 NIR_PASS(progress, nir, nir_opt_constant_folding);
524 NIR_PASS(progress, nir, nir_copy_prop);
525 } while (progress);
526
527 NIR_PASS(progress, nir, nir_opt_algebraic_late);
528
529 /* We implement booleans as 32-bit 0/~0 */
530 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
531
532 /* Now that booleans are lowered, we can run out late opts */
533 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
534
535 /* Lower mods for float ops only. Integer ops don't support modifiers
536 * (saturate doesn't make sense on integers, neg/abs require dedicated
537 * instructions) */
538
539 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
540 NIR_PASS(progress, nir, nir_copy_prop);
541 NIR_PASS(progress, nir, nir_opt_dce);
542
543 /* Take us out of SSA */
544 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
545 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
546
547 /* We are a vector architecture; write combine where possible */
548 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
549 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
550
551 NIR_PASS(progress, nir, nir_opt_dce);
552 }
553
554 /* Do not actually emit a load; instead, cache the constant for inlining */
555
556 static void
557 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
558 {
559 nir_ssa_def def = instr->def;
560
561 float *v = rzalloc_array(NULL, float, 4);
562 nir_const_load_to_arr(v, instr, f32);
563
564 /* Shifted for SSA, +1 for off-by-one */
565 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
566 }
567
568 /* Normally constants are embedded implicitly, but for I/O and such we have to
569 * explicitly emit a move with the constant source */
570
571 static void
572 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
573 {
574 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
575
576 if (constant_value) {
577 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
578 attach_constants(ctx, &ins, constant_value, node + 1);
579 emit_mir_instruction(ctx, ins);
580 }
581 }
582
583 static bool
584 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
585 {
586 unsigned comp = src->swizzle[0];
587
588 for (unsigned c = 1; c < nr_components; ++c) {
589 if (src->swizzle[c] != comp)
590 return true;
591 }
592
593 return false;
594 }
595
596 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
597 * output of a conditional test) into that register */
598
599 static void
600 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
601 {
602 int condition = nir_src_index(ctx, src);
603
604 /* Source to swizzle the desired component into w */
605
606 const midgard_vector_alu_src alu_src = {
607 .swizzle = SWIZZLE(component, component, component, component),
608 };
609
610 /* There is no boolean move instruction. Instead, we simulate a move by
611 * ANDing the condition with itself to get it into r31.w */
612
613 midgard_instruction ins = {
614 .type = TAG_ALU_4,
615
616 /* We need to set the conditional as close as possible */
617 .precede_break = true,
618 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
619 .mask = 1 << COMPONENT_W,
620
621 .ssa_args = {
622 .src = { condition, condition, -1 },
623 .dest = SSA_FIXED_REGISTER(31),
624 },
625
626 .alu = {
627 .op = midgard_alu_op_iand,
628 .outmod = midgard_outmod_int_wrap,
629 .reg_mode = midgard_reg_mode_32,
630 .dest_override = midgard_dest_override_none,
631 .src1 = vector_alu_srco_unsigned(alu_src),
632 .src2 = vector_alu_srco_unsigned(alu_src)
633 },
634 };
635
636 emit_mir_instruction(ctx, ins);
637 }
638
639 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
640 * r31 instead */
641
642 static void
643 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
644 {
645 int condition = nir_src_index(ctx, &src->src);
646
647 /* Source to swizzle the desired component into w */
648
649 const midgard_vector_alu_src alu_src = {
650 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
651 };
652
653 /* There is no boolean move instruction. Instead, we simulate a move by
654 * ANDing the condition with itself to get it into r31.w */
655
656 midgard_instruction ins = {
657 .type = TAG_ALU_4,
658 .precede_break = true,
659 .mask = mask_of(nr_comp),
660 .ssa_args = {
661 .src = { condition, condition, -1 },
662 .dest = SSA_FIXED_REGISTER(31),
663 },
664 .alu = {
665 .op = midgard_alu_op_iand,
666 .outmod = midgard_outmod_int_wrap,
667 .reg_mode = midgard_reg_mode_32,
668 .dest_override = midgard_dest_override_none,
669 .src1 = vector_alu_srco_unsigned(alu_src),
670 .src2 = vector_alu_srco_unsigned(alu_src)
671 },
672 };
673
674 emit_mir_instruction(ctx, ins);
675 }
676
677 #define ALU_CASE(nir, _op) \
678 case nir_op_##nir: \
679 op = midgard_alu_op_##_op; \
680 assert(src_bitsize == dst_bitsize); \
681 break;
682
683 #define ALU_CASE_BCAST(nir, _op, count) \
684 case nir_op_##nir: \
685 op = midgard_alu_op_##_op; \
686 broadcast_swizzle = count; \
687 assert(src_bitsize == dst_bitsize); \
688 break;
689 static bool
690 nir_is_fzero_constant(nir_src src)
691 {
692 if (!nir_src_is_const(src))
693 return false;
694
695 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
696 if (nir_src_comp_as_float(src, c) != 0.0)
697 return false;
698 }
699
700 return true;
701 }
702
703 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
704 * special treatment override this anyway. */
705
706 static midgard_reg_mode
707 reg_mode_for_nir(nir_alu_instr *instr)
708 {
709 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
710
711 switch (src_bitsize) {
712 case 8:
713 return midgard_reg_mode_8;
714 case 16:
715 return midgard_reg_mode_16;
716 case 32:
717 return midgard_reg_mode_32;
718 case 64:
719 return midgard_reg_mode_64;
720 default:
721 unreachable("Invalid bit size");
722 }
723 }
724
725 static void
726 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
727 {
728 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
729 * is handled elsewhere */
730
731 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
732 midgard_emit_derivatives(ctx, instr);
733 return;
734 }
735
736 bool is_ssa = instr->dest.dest.is_ssa;
737
738 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
739 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
740 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
741
742 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
743 * supported. A few do not and are commented for now. Also, there are a
744 * number of NIR ops which Midgard does not support and need to be
745 * lowered, also TODO. This switch block emits the opcode and calling
746 * convention of the Midgard instruction; actual packing is done in
747 * emit_alu below */
748
749 unsigned op;
750
751 /* Number of components valid to check for the instruction (the rest
752 * will be forced to the last), or 0 to use as-is. Relevant as
753 * ball-type instructions have a channel count in NIR but are all vec4
754 * in Midgard */
755
756 unsigned broadcast_swizzle = 0;
757
758 /* What register mode should we operate in? */
759 midgard_reg_mode reg_mode =
760 reg_mode_for_nir(instr);
761
762 /* Do we need a destination override? Used for inline
763 * type conversion */
764
765 midgard_dest_override dest_override =
766 midgard_dest_override_none;
767
768 /* Should we use a smaller respective source and sign-extend? */
769
770 bool half_1 = false, sext_1 = false;
771 bool half_2 = false, sext_2 = false;
772
773 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
774 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
775
776 switch (instr->op) {
777 ALU_CASE(fadd, fadd);
778 ALU_CASE(fmul, fmul);
779 ALU_CASE(fmin, fmin);
780 ALU_CASE(fmax, fmax);
781 ALU_CASE(imin, imin);
782 ALU_CASE(imax, imax);
783 ALU_CASE(umin, umin);
784 ALU_CASE(umax, umax);
785 ALU_CASE(ffloor, ffloor);
786 ALU_CASE(fround_even, froundeven);
787 ALU_CASE(ftrunc, ftrunc);
788 ALU_CASE(fceil, fceil);
789 ALU_CASE(fdot3, fdot3);
790 ALU_CASE(fdot4, fdot4);
791 ALU_CASE(iadd, iadd);
792 ALU_CASE(isub, isub);
793 ALU_CASE(imul, imul);
794
795 /* Zero shoved as second-arg */
796 ALU_CASE(iabs, iabsdiff);
797
798 ALU_CASE(mov, imov);
799
800 ALU_CASE(feq32, feq);
801 ALU_CASE(fne32, fne);
802 ALU_CASE(flt32, flt);
803 ALU_CASE(ieq32, ieq);
804 ALU_CASE(ine32, ine);
805 ALU_CASE(ilt32, ilt);
806 ALU_CASE(ult32, ult);
807
808 /* We don't have a native b2f32 instruction. Instead, like many
809 * GPUs, we exploit booleans as 0/~0 for false/true, and
810 * correspondingly AND
811 * by 1.0 to do the type conversion. For the moment, prime us
812 * to emit:
813 *
814 * iand [whatever], #0
815 *
816 * At the end of emit_alu (as MIR), we'll fix-up the constant
817 */
818
819 ALU_CASE(b2f32, iand);
820 ALU_CASE(b2i32, iand);
821
822 /* Likewise, we don't have a dedicated f2b32 instruction, but
823 * we can do a "not equal to 0.0" test. */
824
825 ALU_CASE(f2b32, fne);
826 ALU_CASE(i2b32, ine);
827
828 ALU_CASE(frcp, frcp);
829 ALU_CASE(frsq, frsqrt);
830 ALU_CASE(fsqrt, fsqrt);
831 ALU_CASE(fexp2, fexp2);
832 ALU_CASE(flog2, flog2);
833
834 ALU_CASE(f2i32, f2i_rtz);
835 ALU_CASE(f2u32, f2u_rtz);
836 ALU_CASE(i2f32, i2f_rtz);
837 ALU_CASE(u2f32, u2f_rtz);
838
839 ALU_CASE(f2i16, f2i_rtz);
840 ALU_CASE(f2u16, f2u_rtz);
841 ALU_CASE(i2f16, i2f_rtz);
842 ALU_CASE(u2f16, u2f_rtz);
843
844 ALU_CASE(fsin, fsin);
845 ALU_CASE(fcos, fcos);
846
847 /* We'll set invert */
848 ALU_CASE(inot, imov);
849 ALU_CASE(iand, iand);
850 ALU_CASE(ior, ior);
851 ALU_CASE(ixor, ixor);
852 ALU_CASE(ishl, ishl);
853 ALU_CASE(ishr, iasr);
854 ALU_CASE(ushr, ilsr);
855
856 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
857 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
858 ALU_CASE(b32all_fequal4, fball_eq);
859
860 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
861 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
862 ALU_CASE(b32any_fnequal4, fbany_neq);
863
864 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
865 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
866 ALU_CASE(b32all_iequal4, iball_eq);
867
868 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
869 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
870 ALU_CASE(b32any_inequal4, ibany_neq);
871
872 /* Source mods will be shoved in later */
873 ALU_CASE(fabs, fmov);
874 ALU_CASE(fneg, fmov);
875 ALU_CASE(fsat, fmov);
876
877 /* For size conversion, we use a move. Ideally though we would squash
878 * these ops together; maybe that has to happen after in NIR as part of
879 * propagation...? An earlier algebraic pass ensured we step down by
880 * only / exactly one size. If stepping down, we use a dest override to
881 * reduce the size; if stepping up, we use a larger-sized move with a
882 * half source and a sign/zero-extension modifier */
883
884 case nir_op_i2i8:
885 case nir_op_i2i16:
886 case nir_op_i2i32:
887 /* If we end up upscale, we'll need a sign-extend on the
888 * operand (the second argument) */
889
890 sext_2 = true;
891 case nir_op_u2u8:
892 case nir_op_u2u16:
893 case nir_op_u2u32: {
894 op = midgard_alu_op_imov;
895
896 if (dst_bitsize == (src_bitsize * 2)) {
897 /* Converting up */
898 half_2 = true;
899
900 /* Use a greater register mode */
901 reg_mode++;
902 } else if (src_bitsize == (dst_bitsize * 2)) {
903 /* Converting down */
904 dest_override = midgard_dest_override_lower;
905 }
906
907 break;
908 }
909
910 case nir_op_f2f16: {
911 assert(src_bitsize == 32);
912
913 op = midgard_alu_op_fmov;
914 dest_override = midgard_dest_override_lower;
915 break;
916 }
917
918 case nir_op_f2f32: {
919 assert(src_bitsize == 16);
920
921 op = midgard_alu_op_fmov;
922 half_2 = true;
923 reg_mode++;
924 break;
925 }
926
927
928 /* For greater-or-equal, we lower to less-or-equal and flip the
929 * arguments */
930
931 case nir_op_fge:
932 case nir_op_fge32:
933 case nir_op_ige32:
934 case nir_op_uge32: {
935 op =
936 instr->op == nir_op_fge ? midgard_alu_op_fle :
937 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
938 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
939 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
940 0;
941
942 /* Swap via temporary */
943 nir_alu_src temp = instr->src[1];
944 instr->src[1] = instr->src[0];
945 instr->src[0] = temp;
946
947 break;
948 }
949
950 case nir_op_b32csel: {
951 /* Midgard features both fcsel and icsel, depending on
952 * the type of the arguments/output. However, as long
953 * as we're careful we can _always_ use icsel and
954 * _never_ need fcsel, since the latter does additional
955 * floating-point-specific processing whereas the
956 * former just moves bits on the wire. It's not obvious
957 * why these are separate opcodes, save for the ability
958 * to do things like sat/pos/abs/neg for free */
959
960 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
961 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
962
963 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
964 nr_inputs = 2;
965
966 /* Emit the condition into r31 */
967
968 if (mixed)
969 emit_condition_mixed(ctx, &instr->src[0], nr_components);
970 else
971 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
972
973 /* The condition is the first argument; move the other
974 * arguments up one to be a binary instruction for
975 * Midgard */
976
977 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
978 break;
979 }
980
981 default:
982 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
983 assert(0);
984 return;
985 }
986
987 /* Midgard can perform certain modifiers on output of an ALU op */
988 unsigned outmod;
989
990 if (midgard_is_integer_out_op(op)) {
991 outmod = midgard_outmod_int_wrap;
992 } else {
993 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
994 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
995 }
996
997 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
998
999 if (instr->op == nir_op_fmax) {
1000 if (nir_is_fzero_constant(instr->src[0].src)) {
1001 op = midgard_alu_op_fmov;
1002 nr_inputs = 1;
1003 outmod = midgard_outmod_pos;
1004 instr->src[0] = instr->src[1];
1005 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1006 op = midgard_alu_op_fmov;
1007 nr_inputs = 1;
1008 outmod = midgard_outmod_pos;
1009 }
1010 }
1011
1012 /* Fetch unit, quirks, etc information */
1013 unsigned opcode_props = alu_opcode_props[op].props;
1014 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1015
1016 /* src0 will always exist afaik, but src1 will not for 1-argument
1017 * instructions. The latter can only be fetched if the instruction
1018 * needs it, or else we may segfault. */
1019
1020 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1021 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1022
1023 /* Rather than use the instruction generation helpers, we do it
1024 * ourselves here to avoid the mess */
1025
1026 midgard_instruction ins = {
1027 .type = TAG_ALU_4,
1028 .ssa_args = {
1029 .src = {
1030 quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1031 quirk_flipped_r24 ? src0 : src1,
1032 -1
1033 },
1034 .dest = dest,
1035 }
1036 };
1037
1038 nir_alu_src *nirmods[2] = { NULL };
1039
1040 if (nr_inputs == 2) {
1041 nirmods[0] = &instr->src[0];
1042 nirmods[1] = &instr->src[1];
1043 } else if (nr_inputs == 1) {
1044 nirmods[quirk_flipped_r24] = &instr->src[0];
1045 } else {
1046 assert(0);
1047 }
1048
1049 /* These were lowered to a move, so apply the corresponding mod */
1050
1051 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1052 nir_alu_src *s = nirmods[quirk_flipped_r24];
1053
1054 if (instr->op == nir_op_fneg)
1055 s->negate = !s->negate;
1056
1057 if (instr->op == nir_op_fabs)
1058 s->abs = !s->abs;
1059 }
1060
1061 bool is_int = midgard_is_integer_op(op);
1062
1063 ins.mask = mask_of(nr_components);
1064
1065 midgard_vector_alu alu = {
1066 .op = op,
1067 .reg_mode = reg_mode,
1068 .dest_override = dest_override,
1069 .outmod = outmod,
1070
1071 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1072 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1073 };
1074
1075 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1076
1077 if (!is_ssa)
1078 ins.mask &= instr->dest.write_mask;
1079
1080 ins.alu = alu;
1081
1082 /* Late fixup for emulated instructions */
1083
1084 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1085 /* Presently, our second argument is an inline #0 constant.
1086 * Switch over to an embedded 1.0 constant (that can't fit
1087 * inline, since we're 32-bit, not 16-bit like the inline
1088 * constants) */
1089
1090 ins.ssa_args.inline_constant = false;
1091 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1092 ins.has_constants = true;
1093
1094 if (instr->op == nir_op_b2f32) {
1095 ins.constants[0] = 1.0f;
1096 } else {
1097 /* Type pun it into place */
1098 uint32_t one = 0x1;
1099 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1100 }
1101
1102 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1103 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1104 /* Lots of instructions need a 0 plonked in */
1105 ins.ssa_args.inline_constant = false;
1106 ins.ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1107 ins.has_constants = true;
1108 ins.constants[0] = 0.0f;
1109 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1110 } else if (instr->op == nir_op_inot) {
1111 ins.invert = true;
1112 }
1113
1114 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1115 /* To avoid duplicating the lookup tables (probably), true LUT
1116 * instructions can only operate as if they were scalars. Lower
1117 * them here by changing the component. */
1118
1119 uint8_t original_swizzle[4];
1120 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1121 unsigned orig_mask = ins.mask;
1122
1123 for (int i = 0; i < nr_components; ++i) {
1124 /* Mask the associated component, dropping the
1125 * instruction if needed */
1126
1127 ins.mask = 1 << i;
1128 ins.mask &= orig_mask;
1129
1130 if (!ins.mask)
1131 continue;
1132
1133 for (int j = 0; j < 4; ++j)
1134 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1135
1136 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1137 emit_mir_instruction(ctx, ins);
1138 }
1139 } else {
1140 emit_mir_instruction(ctx, ins);
1141 }
1142 }
1143
1144 #undef ALU_CASE
1145
1146 static unsigned
1147 mir_mask_for_intr(nir_instr *instr, bool is_read)
1148 {
1149 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1150
1151 if (is_read)
1152 return mask_of(nir_intrinsic_dest_components(intr));
1153 else
1154 return nir_intrinsic_write_mask(intr);
1155 }
1156
1157 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1158 * optimized) versions of UBO #0 */
1159
1160 midgard_instruction *
1161 emit_ubo_read(
1162 compiler_context *ctx,
1163 nir_instr *instr,
1164 unsigned dest,
1165 unsigned offset,
1166 nir_src *indirect_offset,
1167 unsigned index)
1168 {
1169 /* TODO: half-floats */
1170
1171 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1172
1173 assert((offset & 0xF) == 0);
1174 offset /= 16;
1175
1176 /* TODO: Don't split */
1177 ins.load_store.varying_parameters = (offset & 7) << 7;
1178 ins.load_store.address = offset >> 3;
1179 ins.mask = mir_mask_for_intr(instr, true);
1180
1181 if (indirect_offset) {
1182 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1183 ins.load_store.arg_2 = 0x80;
1184 } else {
1185 ins.load_store.arg_2 = 0x1E;
1186 }
1187
1188 ins.load_store.arg_1 = index;
1189
1190 return emit_mir_instruction(ctx, ins);
1191 }
1192
1193 /* SSBO reads are like UBO reads if you squint */
1194
1195 static void
1196 emit_ssbo_access(
1197 compiler_context *ctx,
1198 nir_instr *instr,
1199 bool is_read,
1200 unsigned srcdest,
1201 unsigned offset,
1202 nir_src *indirect_offset,
1203 unsigned index)
1204 {
1205 /* TODO: types */
1206
1207 midgard_instruction ins;
1208
1209 if (is_read)
1210 ins = m_ld_int4(srcdest, offset);
1211 else
1212 ins = m_st_int4(srcdest, offset);
1213
1214 /* SSBO reads use a generic memory read interface, so we need the
1215 * address of the SSBO as the first argument. This is a sysval. */
1216
1217 unsigned addr = make_compiler_temp(ctx);
1218 emit_sysval_read(ctx, instr, addr, 2);
1219
1220 /* The source array is a bit of a leaky abstraction for SSBOs.
1221 * Nevertheless, for loads:
1222 *
1223 * src[0] = arg_1
1224 * src[1] = arg_2
1225 * src[2] = unused
1226 *
1227 * Whereas for stores:
1228 *
1229 * src[0] = value
1230 * src[1] = arg_1
1231 * src[2] = arg_2
1232 *
1233 * We would like arg_1 = the address and
1234 * arg_2 = the offset.
1235 */
1236
1237 ins.ssa_args.src[is_read ? 0 : 1] = addr;
1238
1239 /* TODO: What is this? It looks superficially like a shift << 5, but
1240 * arg_1 doesn't take a shift Should it be E0 or A0? */
1241 if (indirect_offset)
1242 ins.load_store.arg_1 |= 0xE0;
1243
1244 /* We also need to emit the indirect offset */
1245
1246 if (indirect_offset)
1247 ins.ssa_args.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1248 else
1249 ins.load_store.arg_2 = 0x7E;
1250
1251 /* TODO: Bounds check */
1252
1253 /* Finally, we emit the direct offset */
1254
1255 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1256 ins.load_store.address = (offset >> 9);
1257 ins.mask = mir_mask_for_intr(instr, is_read);
1258
1259 emit_mir_instruction(ctx, ins);
1260 }
1261
1262 static void
1263 emit_varying_read(
1264 compiler_context *ctx,
1265 unsigned dest, unsigned offset,
1266 unsigned nr_comp, unsigned component,
1267 nir_src *indirect_offset, nir_alu_type type)
1268 {
1269 /* XXX: Half-floats? */
1270 /* TODO: swizzle, mask */
1271
1272 midgard_instruction ins = m_ld_vary_32(dest, offset);
1273 ins.mask = mask_of(nr_comp);
1274 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1275
1276 midgard_varying_parameter p = {
1277 .is_varying = 1,
1278 .interpolation = midgard_interp_default,
1279 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1280 };
1281
1282 unsigned u;
1283 memcpy(&u, &p, sizeof(p));
1284 ins.load_store.varying_parameters = u;
1285
1286 if (indirect_offset)
1287 ins.ssa_args.src[1] = nir_src_index(ctx, indirect_offset);
1288 else
1289 ins.load_store.arg_2 = 0x1E;
1290
1291 ins.load_store.arg_1 = 0x9E;
1292
1293 /* Use the type appropriate load */
1294 switch (type) {
1295 case nir_type_uint:
1296 case nir_type_bool:
1297 ins.load_store.op = midgard_op_ld_vary_32u;
1298 break;
1299 case nir_type_int:
1300 ins.load_store.op = midgard_op_ld_vary_32i;
1301 break;
1302 case nir_type_float:
1303 ins.load_store.op = midgard_op_ld_vary_32;
1304 break;
1305 default:
1306 unreachable("Attempted to load unknown type");
1307 break;
1308 }
1309
1310 emit_mir_instruction(ctx, ins);
1311 }
1312
1313 void
1314 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1315 unsigned nr_components)
1316 {
1317 unsigned dest = 0;
1318
1319 /* Figure out which uniform this is */
1320 int sysval = sysval_for_instr(ctx, instr, &dest);
1321 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1322
1323 if (dest_override >= 0)
1324 dest = dest_override;
1325
1326 /* Sysvals are prefix uniforms */
1327 unsigned uniform = ((uintptr_t) val) - 1;
1328
1329 /* Emit the read itself -- this is never indirect */
1330 midgard_instruction *ins =
1331 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1332
1333 ins->mask = mask_of(nr_components);
1334 }
1335
1336 static unsigned
1337 compute_builtin_arg(nir_op op)
1338 {
1339 switch (op) {
1340 case nir_intrinsic_load_work_group_id:
1341 return 0x14;
1342 case nir_intrinsic_load_local_invocation_id:
1343 return 0x10;
1344 default:
1345 unreachable("Invalid compute paramater loaded");
1346 }
1347 }
1348
1349 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1350 * Handle MRT here */
1351
1352 static void
1353 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1354 {
1355 /* First, move in whatever we're outputting */
1356 midgard_instruction move = v_mov(src, blank_alu_src, SSA_FIXED_REGISTER(0));
1357 if (rt != 0) {
1358 /* Force a tight schedule. TODO: Make the scheduler MRT aware */
1359 move.unit = UNIT_VMUL;
1360 move.precede_break = true;
1361 move.dont_eliminate = true;
1362 }
1363
1364 emit_mir_instruction(ctx, move);
1365
1366 /* If we're doing MRT, we need to specify the render target */
1367
1368 midgard_instruction rt_move = {
1369 .ssa_args = {
1370 .dest = -1
1371 }
1372 };
1373
1374 if (rt != 0) {
1375 /* We'll write to r1.z */
1376 rt_move = v_mov(-1, blank_alu_src, SSA_FIXED_REGISTER(1));
1377 rt_move.mask = 1 << COMPONENT_Z;
1378 rt_move.unit = UNIT_SADD;
1379
1380 /* r1.z = (rt * 0x100) */
1381 rt_move.ssa_args.inline_constant = true;
1382 rt_move.inline_constant = (rt * 0x100);
1383
1384 /* r1 */
1385 ctx->work_registers = MAX2(ctx->work_registers, 1);
1386
1387 /* Do the write */
1388 emit_mir_instruction(ctx, rt_move);
1389 }
1390
1391 /* Next, generate the branch. For R render targets in the writeout, the
1392 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1393
1394 unsigned offset = (2 * (ctx->nir->num_outputs - 1)) + rt;
1395
1396 struct midgard_instruction ins =
1397 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1398
1399 /* Add dependencies */
1400 ins.ssa_args.src[0] = move.ssa_args.dest;
1401 ins.ssa_args.src[1] = rt_move.ssa_args.dest;
1402
1403 /* Emit the branch */
1404 emit_mir_instruction(ctx, ins);
1405 }
1406
1407 static void
1408 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1409 {
1410 unsigned reg = nir_dest_index(ctx, &instr->dest);
1411 midgard_instruction ins = m_ld_compute_id(reg, 0);
1412 ins.mask = mask_of(3);
1413 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1414 emit_mir_instruction(ctx, ins);
1415 }
1416 static void
1417 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1418 {
1419 unsigned offset = 0, reg;
1420
1421 switch (instr->intrinsic) {
1422 case nir_intrinsic_discard_if:
1423 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1424
1425 /* fallthrough */
1426
1427 case nir_intrinsic_discard: {
1428 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1429 struct midgard_instruction discard = v_branch(conditional, false);
1430 discard.branch.target_type = TARGET_DISCARD;
1431 emit_mir_instruction(ctx, discard);
1432 break;
1433 }
1434
1435 case nir_intrinsic_load_uniform:
1436 case nir_intrinsic_load_ubo:
1437 case nir_intrinsic_load_ssbo:
1438 case nir_intrinsic_load_input: {
1439 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1440 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1441 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1442
1443 /* Get the base type of the intrinsic */
1444 /* TODO: Infer type? Does it matter? */
1445 nir_alu_type t =
1446 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1447 t = nir_alu_type_get_base_type(t);
1448
1449 if (!(is_ubo || is_ssbo)) {
1450 offset = nir_intrinsic_base(instr);
1451 }
1452
1453 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1454
1455 nir_src *src_offset = nir_get_io_offset_src(instr);
1456
1457 bool direct = nir_src_is_const(*src_offset);
1458 nir_src *indirect_offset = direct ? NULL : src_offset;
1459
1460 if (direct)
1461 offset += nir_src_as_uint(*src_offset);
1462
1463 /* We may need to apply a fractional offset */
1464 int component = instr->intrinsic == nir_intrinsic_load_input ?
1465 nir_intrinsic_component(instr) : 0;
1466 reg = nir_dest_index(ctx, &instr->dest);
1467
1468 if (is_uniform && !ctx->is_blend) {
1469 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1470 } else if (is_ubo) {
1471 nir_src index = instr->src[0];
1472
1473 /* We don't yet support indirect UBOs. For indirect
1474 * block numbers (if that's possible), we don't know
1475 * enough about the hardware yet. For indirect sources,
1476 * we know what we need but we need to add some NIR
1477 * support for lowering correctly with respect to
1478 * 128-bit reads */
1479
1480 assert(nir_src_is_const(index));
1481 assert(nir_src_is_const(*src_offset));
1482
1483 uint32_t uindex = nir_src_as_uint(index) + 1;
1484 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1485 } else if (is_ssbo) {
1486 nir_src index = instr->src[0];
1487 assert(nir_src_is_const(index));
1488 uint32_t uindex = nir_src_as_uint(index);
1489
1490 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1491 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1492 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1493 } else if (ctx->is_blend) {
1494 /* For blend shaders, load the input color, which is
1495 * preloaded to r0 */
1496
1497 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1498 emit_mir_instruction(ctx, move);
1499 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1500 midgard_instruction ins = m_ld_attr_32(reg, offset);
1501 ins.load_store.arg_1 = 0x1E;
1502 ins.load_store.arg_2 = 0x1E;
1503 ins.mask = mask_of(nr_comp);
1504
1505 /* Use the type appropriate load */
1506 switch (t) {
1507 case nir_type_uint:
1508 case nir_type_bool:
1509 ins.load_store.op = midgard_op_ld_attr_32u;
1510 break;
1511 case nir_type_int:
1512 ins.load_store.op = midgard_op_ld_attr_32i;
1513 break;
1514 case nir_type_float:
1515 ins.load_store.op = midgard_op_ld_attr_32;
1516 break;
1517 default:
1518 unreachable("Attempted to load unknown type");
1519 break;
1520 }
1521
1522 emit_mir_instruction(ctx, ins);
1523 } else {
1524 DBG("Unknown load\n");
1525 assert(0);
1526 }
1527
1528 break;
1529 }
1530
1531 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1532
1533 case nir_intrinsic_load_raw_output_pan:
1534 reg = nir_dest_index(ctx, &instr->dest);
1535 assert(ctx->is_blend);
1536
1537 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1538 emit_mir_instruction(ctx, ins);
1539 break;
1540
1541 case nir_intrinsic_load_blend_const_color_rgba: {
1542 assert(ctx->is_blend);
1543 reg = nir_dest_index(ctx, &instr->dest);
1544
1545 /* Blend constants are embedded directly in the shader and
1546 * patched in, so we use some magic routing */
1547
1548 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1549 ins.has_constants = true;
1550 ins.has_blend_constant = true;
1551 emit_mir_instruction(ctx, ins);
1552 break;
1553 }
1554
1555 case nir_intrinsic_store_output:
1556 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1557
1558 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1559
1560 reg = nir_src_index(ctx, &instr->src[0]);
1561
1562 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1563 /* Determine number of render targets */
1564 emit_fragment_store(ctx, reg, offset);
1565 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1566 /* We should have been vectorized, though we don't
1567 * currently check that st_vary is emitted only once
1568 * per slot (this is relevant, since there's not a mask
1569 * parameter available on the store [set to 0 by the
1570 * blob]). We do respect the component by adjusting the
1571 * swizzle. If this is a constant source, we'll need to
1572 * emit that explicitly. */
1573
1574 emit_explicit_constant(ctx, reg, reg);
1575
1576 unsigned component = nir_intrinsic_component(instr);
1577
1578 midgard_instruction st = m_st_vary_32(reg, offset);
1579 st.load_store.arg_1 = 0x9E;
1580 st.load_store.arg_2 = 0x1E;
1581 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1582 emit_mir_instruction(ctx, st);
1583 } else {
1584 DBG("Unknown store\n");
1585 assert(0);
1586 }
1587
1588 break;
1589
1590 /* Special case of store_output for lowered blend shaders */
1591 case nir_intrinsic_store_raw_output_pan:
1592 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1593 reg = nir_src_index(ctx, &instr->src[0]);
1594 emit_fragment_store(ctx, reg, 0);
1595
1596 break;
1597
1598 case nir_intrinsic_store_ssbo:
1599 assert(nir_src_is_const(instr->src[1]));
1600
1601 bool direct_offset = nir_src_is_const(instr->src[2]);
1602 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1603 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1604 reg = nir_src_index(ctx, &instr->src[0]);
1605
1606 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1607
1608 emit_explicit_constant(ctx, reg, reg);
1609 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1610 break;
1611
1612 case nir_intrinsic_load_alpha_ref_float:
1613 assert(instr->dest.is_ssa);
1614
1615 float ref_value = ctx->alpha_ref;
1616
1617 /* See emit_load_const */
1618 float *v = ralloc_array(NULL, float, 4);
1619 memcpy(v, &ref_value, sizeof(float));
1620 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1621 break;
1622
1623 case nir_intrinsic_load_viewport_scale:
1624 case nir_intrinsic_load_viewport_offset:
1625 case nir_intrinsic_load_num_work_groups:
1626 emit_sysval_read(ctx, &instr->instr, -1, 3);
1627 break;
1628
1629 case nir_intrinsic_load_work_group_id:
1630 case nir_intrinsic_load_local_invocation_id:
1631 emit_compute_builtin(ctx, instr);
1632 break;
1633
1634 default:
1635 printf ("Unhandled intrinsic\n");
1636 assert(0);
1637 break;
1638 }
1639 }
1640
1641 static unsigned
1642 midgard_tex_format(enum glsl_sampler_dim dim)
1643 {
1644 switch (dim) {
1645 case GLSL_SAMPLER_DIM_1D:
1646 case GLSL_SAMPLER_DIM_BUF:
1647 return MALI_TEX_1D;
1648
1649 case GLSL_SAMPLER_DIM_2D:
1650 case GLSL_SAMPLER_DIM_EXTERNAL:
1651 case GLSL_SAMPLER_DIM_RECT:
1652 return MALI_TEX_2D;
1653
1654 case GLSL_SAMPLER_DIM_3D:
1655 return MALI_TEX_3D;
1656
1657 case GLSL_SAMPLER_DIM_CUBE:
1658 return MALI_TEX_CUBE;
1659
1660 default:
1661 DBG("Unknown sampler dim type\n");
1662 assert(0);
1663 return 0;
1664 }
1665 }
1666
1667 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1668 * was successful */
1669
1670 static bool
1671 pan_attach_constant_bias(
1672 compiler_context *ctx,
1673 nir_src lod,
1674 midgard_texture_word *word)
1675 {
1676 /* To attach as constant, it has to *be* constant */
1677
1678 if (!nir_src_is_const(lod))
1679 return false;
1680
1681 float f = nir_src_as_float(lod);
1682
1683 /* Break into fixed-point */
1684 signed lod_int = f;
1685 float lod_frac = f - lod_int;
1686
1687 /* Carry over negative fractions */
1688 if (lod_frac < 0.0) {
1689 lod_int--;
1690 lod_frac += 1.0;
1691 }
1692
1693 /* Encode */
1694 word->bias = float_to_ubyte(lod_frac);
1695 word->bias_int = lod_int;
1696
1697 return true;
1698 }
1699
1700 static enum mali_sampler_type
1701 midgard_sampler_type(nir_alu_type t) {
1702 switch (nir_alu_type_get_base_type(t))
1703 {
1704 case nir_type_float:
1705 return MALI_SAMPLER_FLOAT;
1706 case nir_type_int:
1707 return MALI_SAMPLER_SIGNED;
1708 case nir_type_uint:
1709 return MALI_SAMPLER_UNSIGNED;
1710 default:
1711 unreachable("Unknown sampler type");
1712 }
1713 }
1714
1715 static void
1716 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1717 unsigned midgard_texop)
1718 {
1719 /* TODO */
1720 //assert (!instr->sampler);
1721 //assert (!instr->texture_array_size);
1722
1723 int texture_index = instr->texture_index;
1724 int sampler_index = texture_index;
1725
1726 /* No helper to build texture words -- we do it all here */
1727 midgard_instruction ins = {
1728 .type = TAG_TEXTURE_4,
1729 .mask = 0xF,
1730 .ssa_args = {
1731 .dest = nir_dest_index(ctx, &instr->dest),
1732 .src = { -1, -1, -1 },
1733 },
1734 .texture = {
1735 .op = midgard_texop,
1736 .format = midgard_tex_format(instr->sampler_dim),
1737 .texture_handle = texture_index,
1738 .sampler_handle = sampler_index,
1739 .swizzle = SWIZZLE_XYZW,
1740 .in_reg_swizzle = SWIZZLE_XYZW,
1741
1742 /* TODO: half */
1743 .in_reg_full = 1,
1744 .out_full = 1,
1745
1746 .sampler_type = midgard_sampler_type(instr->dest_type),
1747 }
1748 };
1749
1750 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1751 int index = nir_src_index(ctx, &instr->src[i].src);
1752 midgard_vector_alu_src alu_src = blank_alu_src;
1753
1754 switch (instr->src[i].src_type) {
1755 case nir_tex_src_coord: {
1756 emit_explicit_constant(ctx, index, index);
1757
1758 /* Texelfetch coordinates uses all four elements
1759 * (xyz/index) regardless of texture dimensionality,
1760 * which means it's necessary to zero the unused
1761 * components to keep everything happy */
1762
1763 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1764 unsigned old_index = index;
1765
1766 index = make_compiler_temp(ctx);
1767
1768 /* mov index, old_index */
1769 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1770 mov.mask = 0x3;
1771 emit_mir_instruction(ctx, mov);
1772
1773 /* mov index.zw, #0 */
1774 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1775 blank_alu_src, index);
1776 mov.has_constants = true;
1777 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1778 emit_mir_instruction(ctx, mov);
1779 }
1780
1781 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1782 /* texelFetch is undefined on samplerCube */
1783 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1784
1785 /* For cubemaps, we use a special ld/st op to
1786 * select the face and copy the xy into the
1787 * texture register */
1788
1789 unsigned temp = make_compiler_temp(ctx);
1790 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1791 st.ssa_args.src[0] = index;
1792 st.mask = 0x3; /* xy */
1793 st.load_store.arg_1 = 0x20;
1794 st.load_store.swizzle = alu_src.swizzle;
1795 emit_mir_instruction(ctx, st);
1796
1797 ins.ssa_args.src[0] = temp;
1798 } else {
1799 ins.ssa_args.src[0] = index;
1800 }
1801
1802 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1803 /* Array component in w but NIR wants it in z */
1804 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1805 }
1806
1807 break;
1808 }
1809
1810 case nir_tex_src_bias:
1811 case nir_tex_src_lod: {
1812 /* Try as a constant if we can */
1813
1814 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1815 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1816 break;
1817
1818 ins.texture.lod_register = true;
1819 ins.ssa_args.src[1] = index;
1820 emit_explicit_constant(ctx, index, index);
1821
1822 break;
1823 };
1824
1825 default:
1826 unreachable("Unknown texture source type\n");
1827 }
1828 }
1829
1830 emit_mir_instruction(ctx, ins);
1831
1832 /* Used for .cont and .last hinting */
1833 ctx->texture_op_count++;
1834 }
1835
1836 static void
1837 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1838 {
1839 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1840 * generic tex in some cases (which confuses the hardware) */
1841
1842 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1843
1844 if (is_vertex && instr->op == nir_texop_tex)
1845 instr->op = nir_texop_txl;
1846
1847 switch (instr->op) {
1848 case nir_texop_tex:
1849 case nir_texop_txb:
1850 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1851 break;
1852 case nir_texop_txl:
1853 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1854 break;
1855 case nir_texop_txf:
1856 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1857 break;
1858 case nir_texop_txs:
1859 emit_sysval_read(ctx, &instr->instr, -1, 4);
1860 break;
1861 default:
1862 unreachable("Unhanlded texture op");
1863 }
1864 }
1865
1866 static void
1867 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1868 {
1869 switch (instr->type) {
1870 case nir_jump_break: {
1871 /* Emit a branch out of the loop */
1872 struct midgard_instruction br = v_branch(false, false);
1873 br.branch.target_type = TARGET_BREAK;
1874 br.branch.target_break = ctx->current_loop_depth;
1875 emit_mir_instruction(ctx, br);
1876 break;
1877 }
1878
1879 default:
1880 DBG("Unknown jump type %d\n", instr->type);
1881 break;
1882 }
1883 }
1884
1885 static void
1886 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1887 {
1888 switch (instr->type) {
1889 case nir_instr_type_load_const:
1890 emit_load_const(ctx, nir_instr_as_load_const(instr));
1891 break;
1892
1893 case nir_instr_type_intrinsic:
1894 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1895 break;
1896
1897 case nir_instr_type_alu:
1898 emit_alu(ctx, nir_instr_as_alu(instr));
1899 break;
1900
1901 case nir_instr_type_tex:
1902 emit_tex(ctx, nir_instr_as_tex(instr));
1903 break;
1904
1905 case nir_instr_type_jump:
1906 emit_jump(ctx, nir_instr_as_jump(instr));
1907 break;
1908
1909 case nir_instr_type_ssa_undef:
1910 /* Spurious */
1911 break;
1912
1913 default:
1914 DBG("Unhandled instruction type\n");
1915 break;
1916 }
1917 }
1918
1919
1920 /* ALU instructions can inline or embed constants, which decreases register
1921 * pressure and saves space. */
1922
1923 #define CONDITIONAL_ATTACH(src) { \
1924 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1925 \
1926 if (entry) { \
1927 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1928 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1929 } \
1930 }
1931
1932 static void
1933 inline_alu_constants(compiler_context *ctx)
1934 {
1935 mir_foreach_instr(ctx, alu) {
1936 /* Other instructions cannot inline constants */
1937 if (alu->type != TAG_ALU_4) continue;
1938
1939 /* If there is already a constant here, we can do nothing */
1940 if (alu->has_constants) continue;
1941
1942 CONDITIONAL_ATTACH(src[0]);
1943
1944 if (!alu->has_constants) {
1945 CONDITIONAL_ATTACH(src[1])
1946 } else if (!alu->inline_constant) {
1947 /* Corner case: _two_ vec4 constants, for instance with a
1948 * csel. For this case, we can only use a constant
1949 * register for one, we'll have to emit a move for the
1950 * other. Note, if both arguments are constants, then
1951 * necessarily neither argument depends on the value of
1952 * any particular register. As the destination register
1953 * will be wiped, that means we can spill the constant
1954 * to the destination register.
1955 */
1956
1957 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src[1] + 1);
1958 unsigned scratch = alu->ssa_args.dest;
1959
1960 if (entry) {
1961 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1962 attach_constants(ctx, &ins, entry, alu->ssa_args.src[1] + 1);
1963
1964 /* Force a break XXX Defer r31 writes */
1965 ins.unit = UNIT_VLUT;
1966
1967 /* Set the source */
1968 alu->ssa_args.src[1] = scratch;
1969
1970 /* Inject us -before- the last instruction which set r31 */
1971 mir_insert_instruction_before(mir_prev_op(alu), ins);
1972 }
1973 }
1974 }
1975 }
1976
1977 /* Being a little silly with the names, but returns the op that is the bitwise
1978 * inverse of the op with the argument switched. I.e. (f and g are
1979 * contrapositives):
1980 *
1981 * f(a, b) = ~g(b, a)
1982 *
1983 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1984 *
1985 * f(a, b) = ~g(b, a)
1986 * ~f(a, b) = g(b, a)
1987 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1988 * f(a, b) = h(a, b)
1989 *
1990 * Thus we define this function in pairs.
1991 */
1992
1993 static inline midgard_alu_op
1994 mir_contrapositive(midgard_alu_op op)
1995 {
1996 switch (op) {
1997 case midgard_alu_op_flt:
1998 return midgard_alu_op_fle;
1999 case midgard_alu_op_fle:
2000 return midgard_alu_op_flt;
2001
2002 case midgard_alu_op_ilt:
2003 return midgard_alu_op_ile;
2004 case midgard_alu_op_ile:
2005 return midgard_alu_op_ilt;
2006
2007 default:
2008 unreachable("No known contrapositive");
2009 }
2010 }
2011
2012 /* Midgard supports two types of constants, embedded constants (128-bit) and
2013 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2014 * constants can be demoted to inline constants, for space savings and
2015 * sometimes a performance boost */
2016
2017 static void
2018 embedded_to_inline_constant(compiler_context *ctx)
2019 {
2020 mir_foreach_instr(ctx, ins) {
2021 if (!ins->has_constants) continue;
2022
2023 if (ins->ssa_args.inline_constant) continue;
2024
2025 /* Blend constants must not be inlined by definition */
2026 if (ins->has_blend_constant) continue;
2027
2028 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2029 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2030 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2031
2032 if (!(is_16 || is_32))
2033 continue;
2034
2035 /* src1 cannot be an inline constant due to encoding
2036 * restrictions. So, if possible we try to flip the arguments
2037 * in that case */
2038
2039 int op = ins->alu.op;
2040
2041 if (ins->ssa_args.src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2042 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2043
2044 switch (op) {
2045 /* Conditionals can be inverted */
2046 case midgard_alu_op_flt:
2047 case midgard_alu_op_ilt:
2048 case midgard_alu_op_fle:
2049 case midgard_alu_op_ile:
2050 ins->alu.op = mir_contrapositive(ins->alu.op);
2051 ins->invert = true;
2052 flip = true;
2053 break;
2054
2055 case midgard_alu_op_fcsel:
2056 case midgard_alu_op_icsel:
2057 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2058 default:
2059 break;
2060 }
2061
2062 if (flip) {
2063 /* Flip the SSA numbers */
2064 ins->ssa_args.src[0] = ins->ssa_args.src[1];
2065 ins->ssa_args.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2066
2067 /* And flip the modifiers */
2068
2069 unsigned src_temp;
2070
2071 src_temp = ins->alu.src2;
2072 ins->alu.src2 = ins->alu.src1;
2073 ins->alu.src1 = src_temp;
2074 }
2075 }
2076
2077 if (ins->ssa_args.src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2078 /* Extract the source information */
2079
2080 midgard_vector_alu_src *src;
2081 int q = ins->alu.src2;
2082 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2083 src = m;
2084
2085 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2086 int component = src->swizzle & 3;
2087
2088 /* Scale constant appropriately, if we can legally */
2089 uint16_t scaled_constant = 0;
2090
2091 if (midgard_is_integer_op(op) || is_16) {
2092 unsigned int *iconstants = (unsigned int *) ins->constants;
2093 scaled_constant = (uint16_t) iconstants[component];
2094
2095 /* Constant overflow after resize */
2096 if (scaled_constant != iconstants[component])
2097 continue;
2098 } else {
2099 float original = (float) ins->constants[component];
2100 scaled_constant = _mesa_float_to_half(original);
2101
2102 /* Check for loss of precision. If this is
2103 * mediump, we don't care, but for a highp
2104 * shader, we need to pay attention. NIR
2105 * doesn't yet tell us which mode we're in!
2106 * Practically this prevents most constants
2107 * from being inlined, sadly. */
2108
2109 float fp32 = _mesa_half_to_float(scaled_constant);
2110
2111 if (fp32 != original)
2112 continue;
2113 }
2114
2115 /* We don't know how to handle these with a constant */
2116
2117 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2118 DBG("Bailing inline constant...\n");
2119 continue;
2120 }
2121
2122 /* Make sure that the constant is not itself a
2123 * vector by checking if all accessed values
2124 * (by the swizzle) are the same. */
2125
2126 uint32_t *cons = (uint32_t *) ins->constants;
2127 uint32_t value = cons[component];
2128
2129 bool is_vector = false;
2130 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2131
2132 for (int c = 1; c < 4; ++c) {
2133 /* We only care if this component is actually used */
2134 if (!(mask & (1 << c)))
2135 continue;
2136
2137 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2138
2139 if (test != value) {
2140 is_vector = true;
2141 break;
2142 }
2143 }
2144
2145 if (is_vector)
2146 continue;
2147
2148 /* Get rid of the embedded constant */
2149 ins->has_constants = false;
2150 ins->ssa_args.src[1] = -1;
2151 ins->ssa_args.inline_constant = true;
2152 ins->inline_constant = scaled_constant;
2153 }
2154 }
2155 }
2156
2157 /* Dead code elimination for branches at the end of a block - only one branch
2158 * per block is legal semantically */
2159
2160 static void
2161 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2162 {
2163 bool branched = false;
2164
2165 mir_foreach_instr_in_block_safe(block, ins) {
2166 if (!midgard_is_branch_unit(ins->unit)) continue;
2167
2168 /* We ignore prepacked branches since the fragment epilogue is
2169 * just generally special */
2170 if (ins->prepacked_branch) continue;
2171
2172 /* Discards are similarly special and may not correspond to the
2173 * end of a block */
2174
2175 if (ins->branch.target_type == TARGET_DISCARD) continue;
2176
2177 if (branched) {
2178 /* We already branched, so this is dead */
2179 mir_remove_instruction(ins);
2180 }
2181
2182 branched = true;
2183 }
2184 }
2185
2186 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2187 * the move can be propagated away entirely */
2188
2189 static bool
2190 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2191 {
2192 /* Nothing to do */
2193 if (comp == midgard_outmod_none)
2194 return true;
2195
2196 if (*outmod == midgard_outmod_none) {
2197 *outmod = comp;
2198 return true;
2199 }
2200
2201 /* TODO: Compose rules */
2202 return false;
2203 }
2204
2205 static bool
2206 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2207 {
2208 bool progress = false;
2209
2210 mir_foreach_instr_in_block_safe(block, ins) {
2211 if (ins->type != TAG_ALU_4) continue;
2212 if (ins->alu.op != midgard_alu_op_fmov) continue;
2213 if (ins->alu.outmod != midgard_outmod_pos) continue;
2214
2215 /* TODO: Registers? */
2216 unsigned src = ins->ssa_args.src[1];
2217 if (src & IS_REG) continue;
2218 assert(!mir_has_multiple_writes(ctx, src));
2219
2220 /* There might be a source modifier, too */
2221 if (mir_nontrivial_source2_mod(ins)) continue;
2222
2223 /* Backpropagate the modifier */
2224 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2225 if (v->type != TAG_ALU_4) continue;
2226 if (v->ssa_args.dest != src) continue;
2227
2228 /* Can we even take a float outmod? */
2229 if (midgard_is_integer_out_op(v->alu.op)) continue;
2230
2231 midgard_outmod_float temp = v->alu.outmod;
2232 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2233
2234 /* Throw in the towel.. */
2235 if (!progress) break;
2236
2237 /* Otherwise, transfer the modifier */
2238 v->alu.outmod = temp;
2239 ins->alu.outmod = midgard_outmod_none;
2240
2241 break;
2242 }
2243 }
2244
2245 return progress;
2246 }
2247
2248 static void
2249 emit_fragment_epilogue(compiler_context *ctx)
2250 {
2251 /* Just emit the last chunk with the branch */
2252 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2253 }
2254
2255 static midgard_block *
2256 emit_block(compiler_context *ctx, nir_block *block)
2257 {
2258 midgard_block *this_block = ctx->after_block;
2259 ctx->after_block = NULL;
2260
2261 if (!this_block)
2262 this_block = rzalloc(ctx, midgard_block);
2263
2264 list_addtail(&this_block->link, &ctx->blocks);
2265
2266 this_block->is_scheduled = false;
2267 ++ctx->block_count;
2268
2269 ctx->texture_index[0] = -1;
2270 ctx->texture_index[1] = -1;
2271
2272 /* Set up current block */
2273 list_inithead(&this_block->instructions);
2274 ctx->current_block = this_block;
2275
2276 nir_foreach_instr(instr, block) {
2277 emit_instr(ctx, instr);
2278 ++ctx->instruction_count;
2279 }
2280
2281 inline_alu_constants(ctx);
2282 embedded_to_inline_constant(ctx);
2283
2284 /* Append fragment shader epilogue (value writeout) */
2285 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2286 if (block == nir_impl_last_block(ctx->func->impl)) {
2287 emit_fragment_epilogue(ctx);
2288 }
2289 }
2290
2291 /* Allow the next control flow to access us retroactively, for
2292 * branching etc */
2293 ctx->current_block = this_block;
2294
2295 return this_block;
2296 }
2297
2298 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2299
2300 static void
2301 emit_if(struct compiler_context *ctx, nir_if *nif)
2302 {
2303 midgard_block *before_block = ctx->current_block;
2304
2305 /* Conditional branches expect the condition in r31.w; emit a move for
2306 * that in the _previous_ block (which is the current block). */
2307 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2308
2309 /* Speculatively emit the branch, but we can't fill it in until later */
2310 EMIT(branch, true, true);
2311 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2312
2313 /* Emit the two subblocks. */
2314 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2315 midgard_block *end_then_block = ctx->current_block;
2316
2317 /* Emit a jump from the end of the then block to the end of the else */
2318 EMIT(branch, false, false);
2319 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2320
2321 /* Emit second block, and check if it's empty */
2322
2323 int else_idx = ctx->block_count;
2324 int count_in = ctx->instruction_count;
2325 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2326 midgard_block *end_else_block = ctx->current_block;
2327 int after_else_idx = ctx->block_count;
2328
2329 /* Now that we have the subblocks emitted, fix up the branches */
2330
2331 assert(then_block);
2332 assert(else_block);
2333
2334 if (ctx->instruction_count == count_in) {
2335 /* The else block is empty, so don't emit an exit jump */
2336 mir_remove_instruction(then_exit);
2337 then_branch->branch.target_block = after_else_idx;
2338 } else {
2339 then_branch->branch.target_block = else_idx;
2340 then_exit->branch.target_block = after_else_idx;
2341 }
2342
2343 /* Wire up the successors */
2344
2345 ctx->after_block = rzalloc(ctx, midgard_block);
2346
2347 midgard_block_add_successor(before_block, then_block);
2348 midgard_block_add_successor(before_block, else_block);
2349
2350 midgard_block_add_successor(end_then_block, ctx->after_block);
2351 midgard_block_add_successor(end_else_block, ctx->after_block);
2352 }
2353
2354 static void
2355 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2356 {
2357 /* Remember where we are */
2358 midgard_block *start_block = ctx->current_block;
2359
2360 /* Allocate a loop number, growing the current inner loop depth */
2361 int loop_idx = ++ctx->current_loop_depth;
2362
2363 /* Get index from before the body so we can loop back later */
2364 int start_idx = ctx->block_count;
2365
2366 /* Emit the body itself */
2367 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2368
2369 /* Branch back to loop back */
2370 struct midgard_instruction br_back = v_branch(false, false);
2371 br_back.branch.target_block = start_idx;
2372 emit_mir_instruction(ctx, br_back);
2373
2374 /* Mark down that branch in the graph. */
2375 midgard_block_add_successor(start_block, loop_block);
2376 midgard_block_add_successor(ctx->current_block, loop_block);
2377
2378 /* Find the index of the block about to follow us (note: we don't add
2379 * one; blocks are 0-indexed so we get a fencepost problem) */
2380 int break_block_idx = ctx->block_count;
2381
2382 /* Fix up the break statements we emitted to point to the right place,
2383 * now that we can allocate a block number for them */
2384 ctx->after_block = rzalloc(ctx, midgard_block);
2385
2386 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2387 mir_foreach_instr_in_block(block, ins) {
2388 if (ins->type != TAG_ALU_4) continue;
2389 if (!ins->compact_branch) continue;
2390 if (ins->prepacked_branch) continue;
2391
2392 /* We found a branch -- check the type to see if we need to do anything */
2393 if (ins->branch.target_type != TARGET_BREAK) continue;
2394
2395 /* It's a break! Check if it's our break */
2396 if (ins->branch.target_break != loop_idx) continue;
2397
2398 /* Okay, cool, we're breaking out of this loop.
2399 * Rewrite from a break to a goto */
2400
2401 ins->branch.target_type = TARGET_GOTO;
2402 ins->branch.target_block = break_block_idx;
2403
2404 midgard_block_add_successor(block, ctx->after_block);
2405 }
2406 }
2407
2408 /* Now that we've finished emitting the loop, free up the depth again
2409 * so we play nice with recursion amid nested loops */
2410 --ctx->current_loop_depth;
2411
2412 /* Dump loop stats */
2413 ++ctx->loop_count;
2414 }
2415
2416 static midgard_block *
2417 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2418 {
2419 midgard_block *start_block = NULL;
2420
2421 foreach_list_typed(nir_cf_node, node, node, list) {
2422 switch (node->type) {
2423 case nir_cf_node_block: {
2424 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2425
2426 if (!start_block)
2427 start_block = block;
2428
2429 break;
2430 }
2431
2432 case nir_cf_node_if:
2433 emit_if(ctx, nir_cf_node_as_if(node));
2434 break;
2435
2436 case nir_cf_node_loop:
2437 emit_loop(ctx, nir_cf_node_as_loop(node));
2438 break;
2439
2440 case nir_cf_node_function:
2441 assert(0);
2442 break;
2443 }
2444 }
2445
2446 return start_block;
2447 }
2448
2449 /* Due to lookahead, we need to report the first tag executed in the command
2450 * stream and in branch targets. An initial block might be empty, so iterate
2451 * until we find one that 'works' */
2452
2453 static unsigned
2454 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2455 {
2456 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2457
2458 unsigned first_tag = 0;
2459
2460 mir_foreach_block_from(ctx, initial_block, v) {
2461 midgard_bundle *initial_bundle =
2462 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2463
2464 if (initial_bundle) {
2465 first_tag = initial_bundle->tag;
2466 break;
2467 }
2468 }
2469
2470 return first_tag;
2471 }
2472
2473 int
2474 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2475 {
2476 struct util_dynarray *compiled = &program->compiled;
2477
2478 midgard_debug = debug_get_option_midgard_debug();
2479
2480 /* TODO: Bound against what? */
2481 compiler_context *ctx = rzalloc(NULL, compiler_context);
2482
2483 ctx->nir = nir;
2484 ctx->screen = screen;
2485 ctx->stage = nir->info.stage;
2486 ctx->is_blend = is_blend;
2487 ctx->alpha_ref = program->alpha_ref;
2488
2489 /* Start off with a safe cutoff, allowing usage of all 16 work
2490 * registers. Later, we'll promote uniform reads to uniform registers
2491 * if we determine it is beneficial to do so */
2492 ctx->uniform_cutoff = 8;
2493
2494 /* Initialize at a global (not block) level hash tables */
2495
2496 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2497 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2498 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2499
2500 /* Record the varying mapping for the command stream's bookkeeping */
2501
2502 struct exec_list *varyings =
2503 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2504
2505 unsigned max_varying = 0;
2506 nir_foreach_variable(var, varyings) {
2507 unsigned loc = var->data.driver_location;
2508 unsigned sz = glsl_type_size(var->type, FALSE);
2509
2510 for (int c = 0; c < sz; ++c) {
2511 program->varyings[loc + c] = var->data.location + c;
2512 max_varying = MAX2(max_varying, loc + c);
2513 }
2514 }
2515
2516 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2517 * (so we don't accidentally duplicate the epilogue since mesa/st has
2518 * messed with our I/O quite a bit already) */
2519
2520 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2521
2522 if (ctx->stage == MESA_SHADER_VERTEX) {
2523 NIR_PASS_V(nir, nir_lower_viewport_transform);
2524 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2525 }
2526
2527 NIR_PASS_V(nir, nir_lower_var_copies);
2528 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2529 NIR_PASS_V(nir, nir_split_var_copies);
2530 NIR_PASS_V(nir, nir_lower_var_copies);
2531 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2532 NIR_PASS_V(nir, nir_lower_var_copies);
2533 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2534
2535 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2536
2537 /* Optimisation passes */
2538
2539 optimise_nir(nir);
2540
2541 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2542 nir_print_shader(nir, stdout);
2543 }
2544
2545 /* Assign sysvals and counts, now that we're sure
2546 * (post-optimisation) */
2547
2548 midgard_nir_assign_sysvals(ctx, nir);
2549
2550 program->uniform_count = nir->num_uniforms;
2551 program->sysval_count = ctx->sysval_count;
2552 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2553
2554 nir_foreach_function(func, nir) {
2555 if (!func->impl)
2556 continue;
2557
2558 list_inithead(&ctx->blocks);
2559 ctx->block_count = 0;
2560 ctx->func = func;
2561
2562 emit_cf_list(ctx, &func->impl->body);
2563 emit_block(ctx, func->impl->end_block);
2564
2565 break; /* TODO: Multi-function shaders */
2566 }
2567
2568 util_dynarray_init(compiled, NULL);
2569
2570 /* MIR-level optimizations */
2571
2572 bool progress = false;
2573
2574 do {
2575 progress = false;
2576
2577 mir_foreach_block(ctx, block) {
2578 progress |= midgard_opt_pos_propagate(ctx, block);
2579 progress |= midgard_opt_copy_prop(ctx, block);
2580 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2581 progress |= midgard_opt_combine_projection(ctx, block);
2582 progress |= midgard_opt_varying_projection(ctx, block);
2583 progress |= midgard_opt_not_propagate(ctx, block);
2584 progress |= midgard_opt_fuse_src_invert(ctx, block);
2585 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2586 }
2587 } while (progress);
2588
2589 mir_foreach_block(ctx, block) {
2590 midgard_lower_invert(ctx, block);
2591 midgard_lower_derivatives(ctx, block);
2592 }
2593
2594 /* Nested control-flow can result in dead branches at the end of the
2595 * block. This messes with our analysis and is just dead code, so cull
2596 * them */
2597 mir_foreach_block(ctx, block) {
2598 midgard_opt_cull_dead_branch(ctx, block);
2599 }
2600
2601 /* Ensure we were lowered */
2602 mir_foreach_instr_global(ctx, ins) {
2603 assert(!ins->invert);
2604 }
2605
2606 /* Schedule! */
2607 schedule_program(ctx);
2608
2609 /* Now that all the bundles are scheduled and we can calculate block
2610 * sizes, emit actual branch instructions rather than placeholders */
2611
2612 int br_block_idx = 0;
2613
2614 mir_foreach_block(ctx, block) {
2615 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2616 for (int c = 0; c < bundle->instruction_count; ++c) {
2617 midgard_instruction *ins = bundle->instructions[c];
2618
2619 if (!midgard_is_branch_unit(ins->unit)) continue;
2620
2621 if (ins->prepacked_branch) continue;
2622
2623 /* Parse some basic branch info */
2624 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2625 bool is_conditional = ins->branch.conditional;
2626 bool is_inverted = ins->branch.invert_conditional;
2627 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2628
2629 /* Determine the block we're jumping to */
2630 int target_number = ins->branch.target_block;
2631
2632 /* Report the destination tag */
2633 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2634
2635 /* Count up the number of quadwords we're
2636 * jumping over = number of quadwords until
2637 * (br_block_idx, target_number) */
2638
2639 int quadword_offset = 0;
2640
2641 if (is_discard) {
2642 /* Ignored */
2643 } else if (target_number > br_block_idx) {
2644 /* Jump forward */
2645
2646 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2647 midgard_block *blk = mir_get_block(ctx, idx);
2648 assert(blk);
2649
2650 quadword_offset += blk->quadword_count;
2651 }
2652 } else {
2653 /* Jump backwards */
2654
2655 for (int idx = br_block_idx; idx >= target_number; --idx) {
2656 midgard_block *blk = mir_get_block(ctx, idx);
2657 assert(blk);
2658
2659 quadword_offset -= blk->quadword_count;
2660 }
2661 }
2662
2663 /* Unconditional extended branches (far jumps)
2664 * have issues, so we always use a conditional
2665 * branch, setting the condition to always for
2666 * unconditional. For compact unconditional
2667 * branches, cond isn't used so it doesn't
2668 * matter what we pick. */
2669
2670 midgard_condition cond =
2671 !is_conditional ? midgard_condition_always :
2672 is_inverted ? midgard_condition_false :
2673 midgard_condition_true;
2674
2675 midgard_jmp_writeout_op op =
2676 is_discard ? midgard_jmp_writeout_op_discard :
2677 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2678 midgard_jmp_writeout_op_branch_cond;
2679
2680 if (!is_compact) {
2681 midgard_branch_extended branch =
2682 midgard_create_branch_extended(
2683 cond, op,
2684 dest_tag,
2685 quadword_offset);
2686
2687 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2688 } else if (is_conditional || is_discard) {
2689 midgard_branch_cond branch = {
2690 .op = op,
2691 .dest_tag = dest_tag,
2692 .offset = quadword_offset,
2693 .cond = cond
2694 };
2695
2696 assert(branch.offset == quadword_offset);
2697
2698 memcpy(&ins->br_compact, &branch, sizeof(branch));
2699 } else {
2700 assert(op == midgard_jmp_writeout_op_branch_uncond);
2701
2702 midgard_branch_uncond branch = {
2703 .op = op,
2704 .dest_tag = dest_tag,
2705 .offset = quadword_offset,
2706 .unknown = 1
2707 };
2708
2709 assert(branch.offset == quadword_offset);
2710
2711 memcpy(&ins->br_compact, &branch, sizeof(branch));
2712 }
2713 }
2714 }
2715
2716 ++br_block_idx;
2717 }
2718
2719 /* Emit flat binary from the instruction arrays. Iterate each block in
2720 * sequence. Save instruction boundaries such that lookahead tags can
2721 * be assigned easily */
2722
2723 /* Cache _all_ bundles in source order for lookahead across failed branches */
2724
2725 int bundle_count = 0;
2726 mir_foreach_block(ctx, block) {
2727 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2728 }
2729 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2730 int bundle_idx = 0;
2731 mir_foreach_block(ctx, block) {
2732 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2733 source_order_bundles[bundle_idx++] = bundle;
2734 }
2735 }
2736
2737 int current_bundle = 0;
2738
2739 /* Midgard prefetches instruction types, so during emission we
2740 * need to lookahead. Unless this is the last instruction, in
2741 * which we return 1. Or if this is the second to last and the
2742 * last is an ALU, then it's also 1... */
2743
2744 mir_foreach_block(ctx, block) {
2745 mir_foreach_bundle_in_block(block, bundle) {
2746 int lookahead = 1;
2747
2748 if (current_bundle + 1 < bundle_count) {
2749 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2750
2751 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2752 lookahead = 1;
2753 } else {
2754 lookahead = next;
2755 }
2756 }
2757
2758 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2759 ++current_bundle;
2760 }
2761
2762 /* TODO: Free deeper */
2763 //util_dynarray_fini(&block->instructions);
2764 }
2765
2766 free(source_order_bundles);
2767
2768 /* Report the very first tag executed */
2769 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2770
2771 /* Deal with off-by-one related to the fencepost problem */
2772 program->work_register_count = ctx->work_registers + 1;
2773 program->uniform_cutoff = ctx->uniform_cutoff;
2774
2775 program->blend_patch_offset = ctx->blend_constant_offset;
2776 program->tls_size = ctx->tls_size;
2777
2778 if (midgard_debug & MIDGARD_DBG_SHADERS)
2779 disassemble_midgard(program->compiled.data, program->compiled.size, false, 0, "");
2780
2781 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2782 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2783
2784 /* Count instructions and bundles */
2785
2786 mir_foreach_instr_global(ctx, ins) {
2787 nr_ins++;
2788 }
2789
2790 mir_foreach_block(ctx, block) {
2791 nr_bundles += util_dynarray_num_elements(
2792 &block->bundles, midgard_bundle);
2793
2794 nr_quadwords += block->quadword_count;
2795 }
2796
2797 /* Calculate thread count. There are certain cutoffs by
2798 * register count for thread count */
2799
2800 unsigned nr_registers = program->work_register_count;
2801
2802 unsigned nr_threads =
2803 (nr_registers <= 4) ? 4 :
2804 (nr_registers <= 8) ? 2 :
2805 1;
2806
2807 /* Dump stats */
2808
2809 fprintf(stderr, "shader%d - %s shader: "
2810 "%u inst, %u bundles, %u quadwords, "
2811 "%u registers, %u threads, %u loops, "
2812 "%d:%d spills:fills\n",
2813 SHADER_DB_COUNT++,
2814 gl_shader_stage_name(ctx->stage),
2815 nr_ins, nr_bundles, nr_quadwords,
2816 nr_registers, nr_threads,
2817 ctx->loop_count,
2818 ctx->spills, ctx->fills);
2819 }
2820
2821 ralloc_free(ctx);
2822
2823 return 0;
2824 }