pan/midgard: Fix cppcheck issues
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static midgard_block *
79 create_empty_block(compiler_context *ctx)
80 {
81 midgard_block *blk = rzalloc(ctx, midgard_block);
82
83 blk->predecessors = _mesa_set_create(blk,
84 _mesa_hash_pointer,
85 _mesa_key_pointer_equal);
86
87 blk->source_id = ctx->block_source_count++;
88
89 return blk;
90 }
91
92 static void
93 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
94 {
95 assert(block);
96 assert(successor);
97
98 /* Deduplicate */
99 for (unsigned i = 0; i < block->nr_successors; ++i) {
100 if (block->successors[i] == successor)
101 return;
102 }
103
104 block->successors[block->nr_successors++] = successor;
105 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
106
107 /* Note the predecessor in the other direction */
108 _mesa_set_add(successor->predecessors, block);
109 }
110
111 static void
112 schedule_barrier(compiler_context *ctx)
113 {
114 midgard_block *temp = ctx->after_block;
115 ctx->after_block = create_empty_block(ctx);
116 ctx->block_count++;
117 list_addtail(&ctx->after_block->link, &ctx->blocks);
118 list_inithead(&ctx->after_block->instructions);
119 midgard_block_add_successor(ctx->current_block, ctx->after_block);
120 ctx->current_block = ctx->after_block;
121 ctx->after_block = temp;
122 }
123
124 /* Helpers to generate midgard_instruction's using macro magic, since every
125 * driver seems to do it that way */
126
127 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
128
129 #define M_LOAD_STORE(name, store) \
130 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
131 midgard_instruction i = { \
132 .type = TAG_LOAD_STORE_4, \
133 .mask = 0xF, \
134 .dest = ~0, \
135 .src = { ~0, ~0, ~0 }, \
136 .load_store = { \
137 .op = midgard_op_##name, \
138 .swizzle = SWIZZLE_XYZW, \
139 .address = address \
140 } \
141 }; \
142 \
143 if (store) \
144 i.src[0] = ssa; \
145 else \
146 i.dest = ssa; \
147 \
148 return i; \
149 }
150
151 #define M_LOAD(name) M_LOAD_STORE(name, false)
152 #define M_STORE(name) M_LOAD_STORE(name, true)
153
154 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
155 * the corresponding Midgard source */
156
157 static midgard_vector_alu_src
158 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
159 bool half, bool sext)
160 {
161 if (!src) return blank_alu_src;
162
163 /* Figure out how many components there are so we can adjust the
164 * swizzle. Specifically we want to broadcast the last channel so
165 * things like ball2/3 work
166 */
167
168 if (broadcast_count) {
169 uint8_t last_component = src->swizzle[broadcast_count - 1];
170
171 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
172 src->swizzle[c] = last_component;
173 }
174 }
175
176 midgard_vector_alu_src alu_src = {
177 .rep_low = 0,
178 .rep_high = 0,
179 .half = half,
180 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
181 };
182
183 if (is_int) {
184 alu_src.mod = midgard_int_normal;
185
186 /* Sign/zero-extend if needed */
187
188 if (half) {
189 alu_src.mod = sext ?
190 midgard_int_sign_extend
191 : midgard_int_zero_extend;
192 }
193
194 /* These should have been lowered away */
195 assert(!(src->abs || src->negate));
196 } else {
197 alu_src.mod = (src->abs << 0) | (src->negate << 1);
198 }
199
200 return alu_src;
201 }
202
203 /* load/store instructions have both 32-bit and 16-bit variants, depending on
204 * whether we are using vectors composed of highp or mediump. At the moment, we
205 * don't support half-floats -- this requires changes in other parts of the
206 * compiler -- therefore the 16-bit versions are commented out. */
207
208 //M_LOAD(ld_attr_16);
209 M_LOAD(ld_attr_32);
210 //M_LOAD(ld_vary_16);
211 M_LOAD(ld_vary_32);
212 M_LOAD(ld_ubo_int4);
213 M_LOAD(ld_int4);
214 M_STORE(st_int4);
215 M_LOAD(ld_color_buffer_8);
216 //M_STORE(st_vary_16);
217 M_STORE(st_vary_32);
218 M_LOAD(ld_cubemap_coords);
219 M_LOAD(ld_compute_id);
220
221 static midgard_instruction
222 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
223 {
224 midgard_branch_cond branch = {
225 .op = op,
226 .dest_tag = tag,
227 .offset = offset,
228 .cond = cond
229 };
230
231 uint16_t compact;
232 memcpy(&compact, &branch, sizeof(branch));
233
234 midgard_instruction ins = {
235 .type = TAG_ALU_4,
236 .unit = ALU_ENAB_BR_COMPACT,
237 .prepacked_branch = true,
238 .compact_branch = true,
239 .br_compact = compact,
240 .dest = ~0,
241 .src = { ~0, ~0, ~0 },
242 };
243
244 if (op == midgard_jmp_writeout_op_writeout)
245 ins.writeout = true;
246
247 return ins;
248 }
249
250 static midgard_instruction
251 v_branch(bool conditional, bool invert)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .unit = ALU_ENAB_BRANCH,
256 .compact_branch = true,
257 .branch = {
258 .conditional = conditional,
259 .invert_conditional = invert
260 },
261 .dest = ~0,
262 .src = { ~0, ~0, ~0 },
263 };
264
265 return ins;
266 }
267
268 static midgard_branch_extended
269 midgard_create_branch_extended( midgard_condition cond,
270 midgard_jmp_writeout_op op,
271 unsigned dest_tag,
272 signed quadword_offset)
273 {
274 /* The condition code is actually a LUT describing a function to
275 * combine multiple condition codes. However, we only support a single
276 * condition code at the moment, so we just duplicate over a bunch of
277 * times. */
278
279 uint16_t duplicated_cond =
280 (cond << 14) |
281 (cond << 12) |
282 (cond << 10) |
283 (cond << 8) |
284 (cond << 6) |
285 (cond << 4) |
286 (cond << 2) |
287 (cond << 0);
288
289 midgard_branch_extended branch = {
290 .op = op,
291 .dest_tag = dest_tag,
292 .offset = quadword_offset,
293 .cond = duplicated_cond
294 };
295
296 return branch;
297 }
298
299 static void
300 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
301 {
302 ins->has_constants = true;
303 memcpy(&ins->constants, constants, 16);
304 }
305
306 static int
307 glsl_type_size(const struct glsl_type *type, bool bindless)
308 {
309 return glsl_count_attribute_slots(type, false);
310 }
311
312 /* Lower fdot2 to a vector multiplication followed by channel addition */
313 static void
314 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
315 {
316 if (alu->op != nir_op_fdot2)
317 return;
318
319 b->cursor = nir_before_instr(&alu->instr);
320
321 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
322 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
323
324 nir_ssa_def *product = nir_fmul(b, src0, src1);
325
326 nir_ssa_def *sum = nir_fadd(b,
327 nir_channel(b, product, 0),
328 nir_channel(b, product, 1));
329
330 /* Replace the fdot2 with this sum */
331 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
332 }
333
334 static int
335 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
336 {
337 /* This is way too meta */
338 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
339 unsigned idx_idx = is_store ? 1 : 0;
340
341 nir_src index = instr->src[idx_idx];
342 assert(nir_src_is_const(index));
343 uint32_t uindex = nir_src_as_uint(index);
344
345 return PAN_SYSVAL(SSBO, uindex);
346 }
347
348 static int
349 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
350 {
351 switch (instr->intrinsic) {
352 case nir_intrinsic_load_viewport_scale:
353 return PAN_SYSVAL_VIEWPORT_SCALE;
354 case nir_intrinsic_load_viewport_offset:
355 return PAN_SYSVAL_VIEWPORT_OFFSET;
356 case nir_intrinsic_load_num_work_groups:
357 return PAN_SYSVAL_NUM_WORK_GROUPS;
358 case nir_intrinsic_load_ssbo:
359 case nir_intrinsic_store_ssbo:
360 return midgard_sysval_for_ssbo(instr);
361 default:
362 return ~0;
363 }
364 }
365
366 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
367 unsigned *dest)
368 {
369 nir_intrinsic_instr *intr;
370 nir_dest *dst = NULL;
371 nir_tex_instr *tex;
372 int sysval = -1;
373
374 bool is_store = false;
375
376 switch (instr->type) {
377 case nir_instr_type_intrinsic:
378 intr = nir_instr_as_intrinsic(instr);
379 sysval = midgard_nir_sysval_for_intrinsic(intr);
380 dst = &intr->dest;
381 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
382 break;
383 case nir_instr_type_tex:
384 tex = nir_instr_as_tex(instr);
385 if (tex->op != nir_texop_txs)
386 break;
387
388 sysval = PAN_SYSVAL(TEXTURE_SIZE,
389 PAN_TXS_SYSVAL_ID(tex->texture_index,
390 nir_tex_instr_dest_size(tex) -
391 (tex->is_array ? 1 : 0),
392 tex->is_array));
393 dst = &tex->dest;
394 break;
395 default:
396 break;
397 }
398
399 if (dest && dst && !is_store)
400 *dest = nir_dest_index(ctx, dst);
401
402 return sysval;
403 }
404
405 static void
406 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
407 {
408 int sysval;
409
410 sysval = sysval_for_instr(ctx, instr, NULL);
411 if (sysval < 0)
412 return;
413
414 /* We have a sysval load; check if it's already been assigned */
415
416 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
417 return;
418
419 /* It hasn't -- so assign it now! */
420
421 unsigned id = ctx->sysval_count++;
422 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
423 ctx->sysvals[id] = sysval;
424 }
425
426 static void
427 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
428 {
429 ctx->sysval_count = 0;
430
431 nir_foreach_function(function, shader) {
432 if (!function->impl) continue;
433
434 nir_foreach_block(block, function->impl) {
435 nir_foreach_instr_safe(instr, block) {
436 midgard_nir_assign_sysval_body(ctx, instr);
437 }
438 }
439 }
440 }
441
442 static bool
443 midgard_nir_lower_fdot2(nir_shader *shader)
444 {
445 bool progress = false;
446
447 nir_foreach_function(function, shader) {
448 if (!function->impl) continue;
449
450 nir_builder _b;
451 nir_builder *b = &_b;
452 nir_builder_init(b, function->impl);
453
454 nir_foreach_block(block, function->impl) {
455 nir_foreach_instr_safe(instr, block) {
456 if (instr->type != nir_instr_type_alu) continue;
457
458 nir_alu_instr *alu = nir_instr_as_alu(instr);
459 midgard_nir_lower_fdot2_body(b, alu);
460
461 progress |= true;
462 }
463 }
464
465 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
466
467 }
468
469 return progress;
470 }
471
472 /* Flushes undefined values to zero */
473
474 static void
475 optimise_nir(nir_shader *nir)
476 {
477 bool progress;
478 unsigned lower_flrp =
479 (nir->options->lower_flrp16 ? 16 : 0) |
480 (nir->options->lower_flrp32 ? 32 : 0) |
481 (nir->options->lower_flrp64 ? 64 : 0);
482
483 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
484 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
485 NIR_PASS(progress, nir, nir_lower_idiv);
486
487 nir_lower_tex_options lower_tex_options = {
488 .lower_txs_lod = true,
489 .lower_txp = ~0
490 };
491
492 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
493
494 do {
495 progress = false;
496
497 NIR_PASS(progress, nir, nir_lower_var_copies);
498 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
499
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502 NIR_PASS(progress, nir, nir_opt_dead_cf);
503 NIR_PASS(progress, nir, nir_opt_cse);
504 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
505 NIR_PASS(progress, nir, nir_opt_algebraic);
506 NIR_PASS(progress, nir, nir_opt_constant_folding);
507
508 if (lower_flrp != 0) {
509 bool lower_flrp_progress = false;
510 NIR_PASS(lower_flrp_progress,
511 nir,
512 nir_lower_flrp,
513 lower_flrp,
514 false /* always_precise */,
515 nir->options->lower_ffma);
516 if (lower_flrp_progress) {
517 NIR_PASS(progress, nir,
518 nir_opt_constant_folding);
519 progress = true;
520 }
521
522 /* Nothing should rematerialize any flrps, so we only
523 * need to do this lowering once.
524 */
525 lower_flrp = 0;
526 }
527
528 NIR_PASS(progress, nir, nir_opt_undef);
529 NIR_PASS(progress, nir, nir_undef_to_zero);
530
531 NIR_PASS(progress, nir, nir_opt_loop_unroll,
532 nir_var_shader_in |
533 nir_var_shader_out |
534 nir_var_function_temp);
535
536 NIR_PASS(progress, nir, nir_opt_vectorize);
537 } while (progress);
538
539 /* Must be run at the end to prevent creation of fsin/fcos ops */
540 NIR_PASS(progress, nir, midgard_nir_scale_trig);
541
542 do {
543 progress = false;
544
545 NIR_PASS(progress, nir, nir_opt_dce);
546 NIR_PASS(progress, nir, nir_opt_algebraic);
547 NIR_PASS(progress, nir, nir_opt_constant_folding);
548 NIR_PASS(progress, nir, nir_copy_prop);
549 } while (progress);
550
551 NIR_PASS(progress, nir, nir_opt_algebraic_late);
552
553 /* We implement booleans as 32-bit 0/~0 */
554 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
555
556 /* Now that booleans are lowered, we can run out late opts */
557 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
558
559 /* Lower mods for float ops only. Integer ops don't support modifiers
560 * (saturate doesn't make sense on integers, neg/abs require dedicated
561 * instructions) */
562
563 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
564 NIR_PASS(progress, nir, nir_copy_prop);
565 NIR_PASS(progress, nir, nir_opt_dce);
566
567 /* Take us out of SSA */
568 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
569 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
570
571 /* We are a vector architecture; write combine where possible */
572 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
573 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
574
575 NIR_PASS(progress, nir, nir_opt_dce);
576 }
577
578 /* Do not actually emit a load; instead, cache the constant for inlining */
579
580 static void
581 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
582 {
583 nir_ssa_def def = instr->def;
584
585 float *v = rzalloc_array(NULL, float, 4);
586 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
587
588 /* Shifted for SSA, +1 for off-by-one */
589 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
590 }
591
592 /* Normally constants are embedded implicitly, but for I/O and such we have to
593 * explicitly emit a move with the constant source */
594
595 static void
596 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
597 {
598 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
599
600 if (constant_value) {
601 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
602 attach_constants(ctx, &ins, constant_value, node + 1);
603 emit_mir_instruction(ctx, ins);
604 }
605 }
606
607 static bool
608 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
609 {
610 unsigned comp = src->swizzle[0];
611
612 for (unsigned c = 1; c < nr_components; ++c) {
613 if (src->swizzle[c] != comp)
614 return true;
615 }
616
617 return false;
618 }
619
620 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
621 * output of a conditional test) into that register */
622
623 static void
624 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
625 {
626 int condition = nir_src_index(ctx, src);
627
628 /* Source to swizzle the desired component into w */
629
630 const midgard_vector_alu_src alu_src = {
631 .swizzle = SWIZZLE(component, component, component, component),
632 };
633
634 /* There is no boolean move instruction. Instead, we simulate a move by
635 * ANDing the condition with itself to get it into r31.w */
636
637 midgard_instruction ins = {
638 .type = TAG_ALU_4,
639
640 /* We need to set the conditional as close as possible */
641 .precede_break = true,
642 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
643 .mask = 1 << COMPONENT_W,
644 .src = { condition, condition, ~0 },
645 .dest = SSA_FIXED_REGISTER(31),
646
647 .alu = {
648 .op = midgard_alu_op_iand,
649 .outmod = midgard_outmod_int_wrap,
650 .reg_mode = midgard_reg_mode_32,
651 .dest_override = midgard_dest_override_none,
652 .src1 = vector_alu_srco_unsigned(alu_src),
653 .src2 = vector_alu_srco_unsigned(alu_src)
654 },
655 };
656
657 emit_mir_instruction(ctx, ins);
658 }
659
660 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
661 * r31 instead */
662
663 static void
664 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
665 {
666 int condition = nir_src_index(ctx, &src->src);
667
668 /* Source to swizzle the desired component into w */
669
670 const midgard_vector_alu_src alu_src = {
671 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
672 };
673
674 /* There is no boolean move instruction. Instead, we simulate a move by
675 * ANDing the condition with itself to get it into r31.w */
676
677 midgard_instruction ins = {
678 .type = TAG_ALU_4,
679 .precede_break = true,
680 .mask = mask_of(nr_comp),
681 .src = { condition, condition, ~0 },
682 .dest = SSA_FIXED_REGISTER(31),
683 .alu = {
684 .op = midgard_alu_op_iand,
685 .outmod = midgard_outmod_int_wrap,
686 .reg_mode = midgard_reg_mode_32,
687 .dest_override = midgard_dest_override_none,
688 .src1 = vector_alu_srco_unsigned(alu_src),
689 .src2 = vector_alu_srco_unsigned(alu_src)
690 },
691 };
692
693 emit_mir_instruction(ctx, ins);
694 }
695
696 #define ALU_CASE(nir, _op) \
697 case nir_op_##nir: \
698 op = midgard_alu_op_##_op; \
699 assert(src_bitsize == dst_bitsize); \
700 break;
701
702 #define ALU_CASE_BCAST(nir, _op, count) \
703 case nir_op_##nir: \
704 op = midgard_alu_op_##_op; \
705 broadcast_swizzle = count; \
706 assert(src_bitsize == dst_bitsize); \
707 break;
708 static bool
709 nir_is_fzero_constant(nir_src src)
710 {
711 if (!nir_src_is_const(src))
712 return false;
713
714 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
715 if (nir_src_comp_as_float(src, c) != 0.0)
716 return false;
717 }
718
719 return true;
720 }
721
722 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
723 * special treatment override this anyway. */
724
725 static midgard_reg_mode
726 reg_mode_for_nir(nir_alu_instr *instr)
727 {
728 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
729
730 switch (src_bitsize) {
731 case 8:
732 return midgard_reg_mode_8;
733 case 16:
734 return midgard_reg_mode_16;
735 case 32:
736 return midgard_reg_mode_32;
737 case 64:
738 return midgard_reg_mode_64;
739 default:
740 unreachable("Invalid bit size");
741 }
742 }
743
744 static void
745 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
746 {
747 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
748 * is handled elsewhere */
749
750 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
751 midgard_emit_derivatives(ctx, instr);
752 return;
753 }
754
755 bool is_ssa = instr->dest.dest.is_ssa;
756
757 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
758 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
759 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
760
761 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
762 * supported. A few do not and are commented for now. Also, there are a
763 * number of NIR ops which Midgard does not support and need to be
764 * lowered, also TODO. This switch block emits the opcode and calling
765 * convention of the Midgard instruction; actual packing is done in
766 * emit_alu below */
767
768 unsigned op;
769
770 /* Number of components valid to check for the instruction (the rest
771 * will be forced to the last), or 0 to use as-is. Relevant as
772 * ball-type instructions have a channel count in NIR but are all vec4
773 * in Midgard */
774
775 unsigned broadcast_swizzle = 0;
776
777 /* What register mode should we operate in? */
778 midgard_reg_mode reg_mode =
779 reg_mode_for_nir(instr);
780
781 /* Do we need a destination override? Used for inline
782 * type conversion */
783
784 midgard_dest_override dest_override =
785 midgard_dest_override_none;
786
787 /* Should we use a smaller respective source and sign-extend? */
788
789 bool half_1 = false, sext_1 = false;
790 bool half_2 = false, sext_2 = false;
791
792 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
793 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
794
795 switch (instr->op) {
796 ALU_CASE(fadd, fadd);
797 ALU_CASE(fmul, fmul);
798 ALU_CASE(fmin, fmin);
799 ALU_CASE(fmax, fmax);
800 ALU_CASE(imin, imin);
801 ALU_CASE(imax, imax);
802 ALU_CASE(umin, umin);
803 ALU_CASE(umax, umax);
804 ALU_CASE(ffloor, ffloor);
805 ALU_CASE(fround_even, froundeven);
806 ALU_CASE(ftrunc, ftrunc);
807 ALU_CASE(fceil, fceil);
808 ALU_CASE(fdot3, fdot3);
809 ALU_CASE(fdot4, fdot4);
810 ALU_CASE(iadd, iadd);
811 ALU_CASE(isub, isub);
812 ALU_CASE(imul, imul);
813
814 /* Zero shoved as second-arg */
815 ALU_CASE(iabs, iabsdiff);
816
817 ALU_CASE(mov, imov);
818
819 ALU_CASE(feq32, feq);
820 ALU_CASE(fne32, fne);
821 ALU_CASE(flt32, flt);
822 ALU_CASE(ieq32, ieq);
823 ALU_CASE(ine32, ine);
824 ALU_CASE(ilt32, ilt);
825 ALU_CASE(ult32, ult);
826
827 /* We don't have a native b2f32 instruction. Instead, like many
828 * GPUs, we exploit booleans as 0/~0 for false/true, and
829 * correspondingly AND
830 * by 1.0 to do the type conversion. For the moment, prime us
831 * to emit:
832 *
833 * iand [whatever], #0
834 *
835 * At the end of emit_alu (as MIR), we'll fix-up the constant
836 */
837
838 ALU_CASE(b2f32, iand);
839 ALU_CASE(b2i32, iand);
840
841 /* Likewise, we don't have a dedicated f2b32 instruction, but
842 * we can do a "not equal to 0.0" test. */
843
844 ALU_CASE(f2b32, fne);
845 ALU_CASE(i2b32, ine);
846
847 ALU_CASE(frcp, frcp);
848 ALU_CASE(frsq, frsqrt);
849 ALU_CASE(fsqrt, fsqrt);
850 ALU_CASE(fexp2, fexp2);
851 ALU_CASE(flog2, flog2);
852
853 ALU_CASE(f2i32, f2i_rtz);
854 ALU_CASE(f2u32, f2u_rtz);
855 ALU_CASE(i2f32, i2f_rtz);
856 ALU_CASE(u2f32, u2f_rtz);
857
858 ALU_CASE(f2i16, f2i_rtz);
859 ALU_CASE(f2u16, f2u_rtz);
860 ALU_CASE(i2f16, i2f_rtz);
861 ALU_CASE(u2f16, u2f_rtz);
862
863 ALU_CASE(fsin, fsin);
864 ALU_CASE(fcos, fcos);
865
866 /* We'll set invert */
867 ALU_CASE(inot, imov);
868 ALU_CASE(iand, iand);
869 ALU_CASE(ior, ior);
870 ALU_CASE(ixor, ixor);
871 ALU_CASE(ishl, ishl);
872 ALU_CASE(ishr, iasr);
873 ALU_CASE(ushr, ilsr);
874
875 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
876 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
877 ALU_CASE(b32all_fequal4, fball_eq);
878
879 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
880 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
881 ALU_CASE(b32any_fnequal4, fbany_neq);
882
883 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
884 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
885 ALU_CASE(b32all_iequal4, iball_eq);
886
887 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
888 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
889 ALU_CASE(b32any_inequal4, ibany_neq);
890
891 /* Source mods will be shoved in later */
892 ALU_CASE(fabs, fmov);
893 ALU_CASE(fneg, fmov);
894 ALU_CASE(fsat, fmov);
895
896 /* For size conversion, we use a move. Ideally though we would squash
897 * these ops together; maybe that has to happen after in NIR as part of
898 * propagation...? An earlier algebraic pass ensured we step down by
899 * only / exactly one size. If stepping down, we use a dest override to
900 * reduce the size; if stepping up, we use a larger-sized move with a
901 * half source and a sign/zero-extension modifier */
902
903 case nir_op_i2i8:
904 case nir_op_i2i16:
905 case nir_op_i2i32:
906 /* If we end up upscale, we'll need a sign-extend on the
907 * operand (the second argument) */
908
909 sext_2 = true;
910 /* fallthrough */
911 case nir_op_u2u8:
912 case nir_op_u2u16:
913 case nir_op_u2u32: {
914 op = midgard_alu_op_imov;
915
916 if (dst_bitsize == (src_bitsize * 2)) {
917 /* Converting up */
918 half_2 = true;
919
920 /* Use a greater register mode */
921 reg_mode++;
922 } else if (src_bitsize == (dst_bitsize * 2)) {
923 /* Converting down */
924 dest_override = midgard_dest_override_lower;
925 }
926
927 break;
928 }
929
930 case nir_op_f2f16: {
931 assert(src_bitsize == 32);
932
933 op = midgard_alu_op_fmov;
934 dest_override = midgard_dest_override_lower;
935 break;
936 }
937
938 case nir_op_f2f32: {
939 assert(src_bitsize == 16);
940
941 op = midgard_alu_op_fmov;
942 half_2 = true;
943 reg_mode++;
944 break;
945 }
946
947
948 /* For greater-or-equal, we lower to less-or-equal and flip the
949 * arguments */
950
951 case nir_op_fge:
952 case nir_op_fge32:
953 case nir_op_ige32:
954 case nir_op_uge32: {
955 op =
956 instr->op == nir_op_fge ? midgard_alu_op_fle :
957 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
958 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
959 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
960 0;
961
962 /* Swap via temporary */
963 nir_alu_src temp = instr->src[1];
964 instr->src[1] = instr->src[0];
965 instr->src[0] = temp;
966
967 break;
968 }
969
970 case nir_op_b32csel: {
971 /* Midgard features both fcsel and icsel, depending on
972 * the type of the arguments/output. However, as long
973 * as we're careful we can _always_ use icsel and
974 * _never_ need fcsel, since the latter does additional
975 * floating-point-specific processing whereas the
976 * former just moves bits on the wire. It's not obvious
977 * why these are separate opcodes, save for the ability
978 * to do things like sat/pos/abs/neg for free */
979
980 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
981 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
982
983 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
984 nr_inputs = 2;
985
986 /* Emit the condition into r31 */
987
988 if (mixed)
989 emit_condition_mixed(ctx, &instr->src[0], nr_components);
990 else
991 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
992
993 /* The condition is the first argument; move the other
994 * arguments up one to be a binary instruction for
995 * Midgard */
996
997 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
998 break;
999 }
1000
1001 default:
1002 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1003 assert(0);
1004 return;
1005 }
1006
1007 /* Midgard can perform certain modifiers on output of an ALU op */
1008 unsigned outmod;
1009
1010 if (midgard_is_integer_out_op(op)) {
1011 outmod = midgard_outmod_int_wrap;
1012 } else {
1013 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
1014 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1015 }
1016
1017 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1018
1019 if (instr->op == nir_op_fmax) {
1020 if (nir_is_fzero_constant(instr->src[0].src)) {
1021 op = midgard_alu_op_fmov;
1022 nr_inputs = 1;
1023 outmod = midgard_outmod_pos;
1024 instr->src[0] = instr->src[1];
1025 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1026 op = midgard_alu_op_fmov;
1027 nr_inputs = 1;
1028 outmod = midgard_outmod_pos;
1029 }
1030 }
1031
1032 /* Fetch unit, quirks, etc information */
1033 unsigned opcode_props = alu_opcode_props[op].props;
1034 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1035
1036 /* src0 will always exist afaik, but src1 will not for 1-argument
1037 * instructions. The latter can only be fetched if the instruction
1038 * needs it, or else we may segfault. */
1039
1040 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1041 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
1042 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
1043
1044 /* Rather than use the instruction generation helpers, we do it
1045 * ourselves here to avoid the mess */
1046
1047 midgard_instruction ins = {
1048 .type = TAG_ALU_4,
1049 .src = {
1050 quirk_flipped_r24 ? ~0 : src0,
1051 quirk_flipped_r24 ? src0 : src1,
1052 src2,
1053 },
1054 .dest = dest,
1055 };
1056
1057 nir_alu_src *nirmods[3] = { NULL };
1058
1059 if (nr_inputs >= 2) {
1060 nirmods[0] = &instr->src[0];
1061 nirmods[1] = &instr->src[1];
1062 } else if (nr_inputs == 1) {
1063 nirmods[quirk_flipped_r24] = &instr->src[0];
1064 } else {
1065 assert(0);
1066 }
1067
1068 if (nr_inputs == 3)
1069 nirmods[2] = &instr->src[2];
1070
1071 /* These were lowered to a move, so apply the corresponding mod */
1072
1073 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1074 nir_alu_src *s = nirmods[quirk_flipped_r24];
1075
1076 if (instr->op == nir_op_fneg)
1077 s->negate = !s->negate;
1078
1079 if (instr->op == nir_op_fabs)
1080 s->abs = !s->abs;
1081 }
1082
1083 bool is_int = midgard_is_integer_op(op);
1084
1085 ins.mask = mask_of(nr_components);
1086
1087 midgard_vector_alu alu = {
1088 .op = op,
1089 .reg_mode = reg_mode,
1090 .dest_override = dest_override,
1091 .outmod = outmod,
1092
1093 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1094 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1095 };
1096
1097 if (nr_inputs == 3) {
1098 ins.csel_swizzle = SWIZZLE_FROM_ARRAY(nirmods[2]->swizzle);
1099 assert(!nirmods[2]->abs);
1100 assert(!nirmods[2]->negate);
1101 }
1102
1103 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1104
1105 if (!is_ssa)
1106 ins.mask &= instr->dest.write_mask;
1107
1108 ins.alu = alu;
1109
1110 /* Late fixup for emulated instructions */
1111
1112 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1113 /* Presently, our second argument is an inline #0 constant.
1114 * Switch over to an embedded 1.0 constant (that can't fit
1115 * inline, since we're 32-bit, not 16-bit like the inline
1116 * constants) */
1117
1118 ins.has_inline_constant = false;
1119 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1120 ins.has_constants = true;
1121
1122 if (instr->op == nir_op_b2f32) {
1123 float f = 1.0f;
1124 memcpy(&ins.constants, &f, sizeof(float));
1125 } else {
1126 ins.constants[0] = 1;
1127 }
1128
1129 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1130 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1131 /* Lots of instructions need a 0 plonked in */
1132 ins.has_inline_constant = false;
1133 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1134 ins.has_constants = true;
1135 ins.constants[0] = 0;
1136 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1137 } else if (instr->op == nir_op_inot) {
1138 ins.invert = true;
1139 }
1140
1141 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1142 /* To avoid duplicating the lookup tables (probably), true LUT
1143 * instructions can only operate as if they were scalars. Lower
1144 * them here by changing the component. */
1145
1146 uint8_t original_swizzle[4];
1147 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1148 unsigned orig_mask = ins.mask;
1149
1150 for (int i = 0; i < nr_components; ++i) {
1151 /* Mask the associated component, dropping the
1152 * instruction if needed */
1153
1154 ins.mask = 1 << i;
1155 ins.mask &= orig_mask;
1156
1157 if (!ins.mask)
1158 continue;
1159
1160 for (int j = 0; j < 4; ++j)
1161 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1162
1163 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1164 emit_mir_instruction(ctx, ins);
1165 }
1166 } else {
1167 emit_mir_instruction(ctx, ins);
1168 }
1169 }
1170
1171 #undef ALU_CASE
1172
1173 static unsigned
1174 mir_mask_for_intr(nir_instr *instr, bool is_read)
1175 {
1176 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1177
1178 if (is_read)
1179 return mask_of(nir_intrinsic_dest_components(intr));
1180 else
1181 return nir_intrinsic_write_mask(intr);
1182 }
1183
1184 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1185 * optimized) versions of UBO #0 */
1186
1187 midgard_instruction *
1188 emit_ubo_read(
1189 compiler_context *ctx,
1190 nir_instr *instr,
1191 unsigned dest,
1192 unsigned offset,
1193 nir_src *indirect_offset,
1194 unsigned index)
1195 {
1196 /* TODO: half-floats */
1197
1198 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1199
1200 assert((offset & 0xF) == 0);
1201 offset /= 16;
1202
1203 /* TODO: Don't split */
1204 ins.load_store.varying_parameters = (offset & 7) << 7;
1205 ins.load_store.address = offset >> 3;
1206 ins.mask = mir_mask_for_intr(instr, true);
1207
1208 if (indirect_offset) {
1209 ins.src[1] = nir_src_index(ctx, indirect_offset);
1210 ins.load_store.arg_2 = 0x80;
1211 } else {
1212 ins.load_store.arg_2 = 0x1E;
1213 }
1214
1215 ins.load_store.arg_1 = index;
1216
1217 return emit_mir_instruction(ctx, ins);
1218 }
1219
1220 /* SSBO reads are like UBO reads if you squint */
1221
1222 static void
1223 emit_ssbo_access(
1224 compiler_context *ctx,
1225 nir_instr *instr,
1226 bool is_read,
1227 unsigned srcdest,
1228 unsigned offset,
1229 nir_src *indirect_offset,
1230 unsigned index)
1231 {
1232 /* TODO: types */
1233
1234 midgard_instruction ins;
1235
1236 if (is_read)
1237 ins = m_ld_int4(srcdest, offset);
1238 else
1239 ins = m_st_int4(srcdest, offset);
1240
1241 /* SSBO reads use a generic memory read interface, so we need the
1242 * address of the SSBO as the first argument. This is a sysval. */
1243
1244 unsigned addr = make_compiler_temp(ctx);
1245 emit_sysval_read(ctx, instr, addr, 2);
1246
1247 /* The source array is a bit of a leaky abstraction for SSBOs.
1248 * Nevertheless, for loads:
1249 *
1250 * src[0] = arg_1
1251 * src[1] = arg_2
1252 * src[2] = unused
1253 *
1254 * Whereas for stores:
1255 *
1256 * src[0] = value
1257 * src[1] = arg_1
1258 * src[2] = arg_2
1259 *
1260 * We would like arg_1 = the address and
1261 * arg_2 = the offset.
1262 */
1263
1264 ins.src[is_read ? 0 : 1] = addr;
1265
1266 /* TODO: What is this? It looks superficially like a shift << 5, but
1267 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1268 * indirect offset. */
1269
1270 if (indirect_offset) {
1271 ins.load_store.arg_1 |= 0xE0;
1272 ins.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1273 } else {
1274 ins.load_store.arg_2 = 0x7E;
1275 }
1276
1277 /* TODO: Bounds check */
1278
1279 /* Finally, we emit the direct offset */
1280
1281 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1282 ins.load_store.address = (offset >> 9);
1283 ins.mask = mir_mask_for_intr(instr, is_read);
1284
1285 emit_mir_instruction(ctx, ins);
1286 }
1287
1288 static void
1289 emit_varying_read(
1290 compiler_context *ctx,
1291 unsigned dest, unsigned offset,
1292 unsigned nr_comp, unsigned component,
1293 nir_src *indirect_offset, nir_alu_type type)
1294 {
1295 /* XXX: Half-floats? */
1296 /* TODO: swizzle, mask */
1297
1298 midgard_instruction ins = m_ld_vary_32(dest, offset);
1299 ins.mask = mask_of(nr_comp);
1300 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1301
1302 midgard_varying_parameter p = {
1303 .is_varying = 1,
1304 .interpolation = midgard_interp_default,
1305 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1306 };
1307
1308 unsigned u;
1309 memcpy(&u, &p, sizeof(p));
1310 ins.load_store.varying_parameters = u;
1311
1312 if (indirect_offset)
1313 ins.src[1] = nir_src_index(ctx, indirect_offset);
1314 else
1315 ins.load_store.arg_2 = 0x1E;
1316
1317 ins.load_store.arg_1 = 0x9E;
1318
1319 /* Use the type appropriate load */
1320 switch (type) {
1321 case nir_type_uint:
1322 case nir_type_bool:
1323 ins.load_store.op = midgard_op_ld_vary_32u;
1324 break;
1325 case nir_type_int:
1326 ins.load_store.op = midgard_op_ld_vary_32i;
1327 break;
1328 case nir_type_float:
1329 ins.load_store.op = midgard_op_ld_vary_32;
1330 break;
1331 default:
1332 unreachable("Attempted to load unknown type");
1333 break;
1334 }
1335
1336 emit_mir_instruction(ctx, ins);
1337 }
1338
1339 void
1340 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1341 unsigned nr_components)
1342 {
1343 unsigned dest = 0;
1344
1345 /* Figure out which uniform this is */
1346 int sysval = sysval_for_instr(ctx, instr, &dest);
1347 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1348
1349 if (dest_override >= 0)
1350 dest = dest_override;
1351
1352 /* Sysvals are prefix uniforms */
1353 unsigned uniform = ((uintptr_t) val) - 1;
1354
1355 /* Emit the read itself -- this is never indirect */
1356 midgard_instruction *ins =
1357 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1358
1359 ins->mask = mask_of(nr_components);
1360 }
1361
1362 static unsigned
1363 compute_builtin_arg(nir_op op)
1364 {
1365 switch (op) {
1366 case nir_intrinsic_load_work_group_id:
1367 return 0x14;
1368 case nir_intrinsic_load_local_invocation_id:
1369 return 0x10;
1370 default:
1371 unreachable("Invalid compute paramater loaded");
1372 }
1373 }
1374
1375 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1376 * Handle MRT here */
1377
1378 static void
1379 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1380 {
1381 emit_explicit_constant(ctx, src, src);
1382
1383 /* If we're doing MRT, we need to specify the render target */
1384
1385 midgard_instruction rt_move = {
1386 .dest = ~0
1387 };
1388
1389 if (rt != 0) {
1390 /* We'll write to r1.z */
1391 rt_move = v_mov(~0, blank_alu_src, SSA_FIXED_REGISTER(1));
1392 rt_move.mask = 1 << COMPONENT_Z;
1393 rt_move.unit = UNIT_SADD;
1394
1395 /* r1.z = (rt * 0x100) */
1396 rt_move.has_inline_constant = true;
1397 rt_move.inline_constant = (rt * 0x100);
1398
1399 /* r1 */
1400 ctx->work_registers = MAX2(ctx->work_registers, 1);
1401
1402 /* Do the write */
1403 emit_mir_instruction(ctx, rt_move);
1404 }
1405
1406 /* Next, generate the branch. For R render targets in the writeout, the
1407 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1408
1409 unsigned outputs = ctx->is_blend ? 1 : ctx->nir->num_outputs;
1410 unsigned offset = (2 * (outputs - 1)) + rt;
1411
1412 struct midgard_instruction ins =
1413 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1414
1415 /* Add dependencies */
1416 ins.src[0] = src;
1417 ins.src[1] = rt_move.dest;
1418
1419 /* Emit the branch */
1420 emit_mir_instruction(ctx, ins);
1421 }
1422
1423 static void
1424 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1425 {
1426 unsigned reg = nir_dest_index(ctx, &instr->dest);
1427 midgard_instruction ins = m_ld_compute_id(reg, 0);
1428 ins.mask = mask_of(3);
1429 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1430 emit_mir_instruction(ctx, ins);
1431 }
1432 static void
1433 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1434 {
1435 unsigned offset = 0, reg;
1436
1437 switch (instr->intrinsic) {
1438 case nir_intrinsic_discard_if:
1439 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1440
1441 /* fallthrough */
1442
1443 case nir_intrinsic_discard: {
1444 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1445 struct midgard_instruction discard = v_branch(conditional, false);
1446 discard.branch.target_type = TARGET_DISCARD;
1447
1448 if (conditional)
1449 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1450
1451 emit_mir_instruction(ctx, discard);
1452 schedule_barrier(ctx);
1453
1454 break;
1455 }
1456
1457 case nir_intrinsic_load_uniform:
1458 case nir_intrinsic_load_ubo:
1459 case nir_intrinsic_load_ssbo:
1460 case nir_intrinsic_load_input: {
1461 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1462 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1463 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1464
1465 /* Get the base type of the intrinsic */
1466 /* TODO: Infer type? Does it matter? */
1467 nir_alu_type t =
1468 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1469 t = nir_alu_type_get_base_type(t);
1470
1471 if (!(is_ubo || is_ssbo)) {
1472 offset = nir_intrinsic_base(instr);
1473 }
1474
1475 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1476
1477 nir_src *src_offset = nir_get_io_offset_src(instr);
1478
1479 bool direct = nir_src_is_const(*src_offset);
1480 nir_src *indirect_offset = direct ? NULL : src_offset;
1481
1482 if (direct)
1483 offset += nir_src_as_uint(*src_offset);
1484
1485 /* We may need to apply a fractional offset */
1486 int component = instr->intrinsic == nir_intrinsic_load_input ?
1487 nir_intrinsic_component(instr) : 0;
1488 reg = nir_dest_index(ctx, &instr->dest);
1489
1490 if (is_uniform && !ctx->is_blend) {
1491 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1492 } else if (is_ubo) {
1493 nir_src index = instr->src[0];
1494
1495 /* We don't yet support indirect UBOs. For indirect
1496 * block numbers (if that's possible), we don't know
1497 * enough about the hardware yet. For indirect sources,
1498 * we know what we need but we need to add some NIR
1499 * support for lowering correctly with respect to
1500 * 128-bit reads */
1501
1502 assert(nir_src_is_const(index));
1503 assert(nir_src_is_const(*src_offset));
1504
1505 uint32_t uindex = nir_src_as_uint(index) + 1;
1506 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1507 } else if (is_ssbo) {
1508 nir_src index = instr->src[0];
1509 assert(nir_src_is_const(index));
1510 uint32_t uindex = nir_src_as_uint(index);
1511
1512 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1513 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1514 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1515 } else if (ctx->is_blend) {
1516 /* For blend shaders, load the input color, which is
1517 * preloaded to r0 */
1518
1519 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1520 emit_mir_instruction(ctx, move);
1521 schedule_barrier(ctx);
1522 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1523 midgard_instruction ins = m_ld_attr_32(reg, offset);
1524 ins.load_store.arg_1 = 0x1E;
1525 ins.load_store.arg_2 = 0x1E;
1526 ins.mask = mask_of(nr_comp);
1527
1528 /* Use the type appropriate load */
1529 switch (t) {
1530 case nir_type_uint:
1531 case nir_type_bool:
1532 ins.load_store.op = midgard_op_ld_attr_32u;
1533 break;
1534 case nir_type_int:
1535 ins.load_store.op = midgard_op_ld_attr_32i;
1536 break;
1537 case nir_type_float:
1538 ins.load_store.op = midgard_op_ld_attr_32;
1539 break;
1540 default:
1541 unreachable("Attempted to load unknown type");
1542 break;
1543 }
1544
1545 emit_mir_instruction(ctx, ins);
1546 } else {
1547 DBG("Unknown load\n");
1548 assert(0);
1549 }
1550
1551 break;
1552 }
1553
1554 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1555
1556 case nir_intrinsic_load_raw_output_pan:
1557 reg = nir_dest_index(ctx, &instr->dest);
1558 assert(ctx->is_blend);
1559
1560 midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
1561 emit_mir_instruction(ctx, ld);
1562 break;
1563
1564 case nir_intrinsic_load_blend_const_color_rgba: {
1565 assert(ctx->is_blend);
1566 reg = nir_dest_index(ctx, &instr->dest);
1567
1568 /* Blend constants are embedded directly in the shader and
1569 * patched in, so we use some magic routing */
1570
1571 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1572 ins.has_constants = true;
1573 ins.has_blend_constant = true;
1574 emit_mir_instruction(ctx, ins);
1575 break;
1576 }
1577
1578 case nir_intrinsic_store_output:
1579 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1580
1581 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1582
1583 reg = nir_src_index(ctx, &instr->src[0]);
1584
1585 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1586 /* Determine number of render targets */
1587 emit_fragment_store(ctx, reg, offset);
1588 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1589 /* We should have been vectorized, though we don't
1590 * currently check that st_vary is emitted only once
1591 * per slot (this is relevant, since there's not a mask
1592 * parameter available on the store [set to 0 by the
1593 * blob]). We do respect the component by adjusting the
1594 * swizzle. If this is a constant source, we'll need to
1595 * emit that explicitly. */
1596
1597 emit_explicit_constant(ctx, reg, reg);
1598
1599 unsigned component = nir_intrinsic_component(instr);
1600 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1601
1602 midgard_instruction st = m_st_vary_32(reg, offset);
1603 st.load_store.arg_1 = 0x9E;
1604 st.load_store.arg_2 = 0x1E;
1605 st.load_store.swizzle = swizzle_of(nr_comp) << (2*component);
1606 emit_mir_instruction(ctx, st);
1607 } else {
1608 DBG("Unknown store\n");
1609 assert(0);
1610 }
1611
1612 break;
1613
1614 /* Special case of store_output for lowered blend shaders */
1615 case nir_intrinsic_store_raw_output_pan:
1616 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1617 reg = nir_src_index(ctx, &instr->src[0]);
1618 emit_fragment_store(ctx, reg, 0);
1619
1620 break;
1621
1622 case nir_intrinsic_store_ssbo:
1623 assert(nir_src_is_const(instr->src[1]));
1624
1625 bool direct_offset = nir_src_is_const(instr->src[2]);
1626 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1627 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1628 reg = nir_src_index(ctx, &instr->src[0]);
1629
1630 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1631
1632 emit_explicit_constant(ctx, reg, reg);
1633 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1634 break;
1635
1636 case nir_intrinsic_load_alpha_ref_float:
1637 assert(instr->dest.is_ssa);
1638
1639 float ref_value = ctx->alpha_ref;
1640
1641 /* See emit_load_const */
1642 float *v = ralloc_array(NULL, float, 4);
1643 memcpy(v, &ref_value, sizeof(float));
1644 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1645 break;
1646
1647 case nir_intrinsic_load_viewport_scale:
1648 case nir_intrinsic_load_viewport_offset:
1649 case nir_intrinsic_load_num_work_groups:
1650 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1651 break;
1652
1653 case nir_intrinsic_load_work_group_id:
1654 case nir_intrinsic_load_local_invocation_id:
1655 emit_compute_builtin(ctx, instr);
1656 break;
1657
1658 default:
1659 printf ("Unhandled intrinsic\n");
1660 assert(0);
1661 break;
1662 }
1663 }
1664
1665 static unsigned
1666 midgard_tex_format(enum glsl_sampler_dim dim)
1667 {
1668 switch (dim) {
1669 case GLSL_SAMPLER_DIM_1D:
1670 case GLSL_SAMPLER_DIM_BUF:
1671 return MALI_TEX_1D;
1672
1673 case GLSL_SAMPLER_DIM_2D:
1674 case GLSL_SAMPLER_DIM_EXTERNAL:
1675 case GLSL_SAMPLER_DIM_RECT:
1676 return MALI_TEX_2D;
1677
1678 case GLSL_SAMPLER_DIM_3D:
1679 return MALI_TEX_3D;
1680
1681 case GLSL_SAMPLER_DIM_CUBE:
1682 return MALI_TEX_CUBE;
1683
1684 default:
1685 DBG("Unknown sampler dim type\n");
1686 assert(0);
1687 return 0;
1688 }
1689 }
1690
1691 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1692 * was successful */
1693
1694 static bool
1695 pan_attach_constant_bias(
1696 compiler_context *ctx,
1697 nir_src lod,
1698 midgard_texture_word *word)
1699 {
1700 /* To attach as constant, it has to *be* constant */
1701
1702 if (!nir_src_is_const(lod))
1703 return false;
1704
1705 float f = nir_src_as_float(lod);
1706
1707 /* Break into fixed-point */
1708 signed lod_int = f;
1709 float lod_frac = f - lod_int;
1710
1711 /* Carry over negative fractions */
1712 if (lod_frac < 0.0) {
1713 lod_int--;
1714 lod_frac += 1.0;
1715 }
1716
1717 /* Encode */
1718 word->bias = float_to_ubyte(lod_frac);
1719 word->bias_int = lod_int;
1720
1721 return true;
1722 }
1723
1724 static enum mali_sampler_type
1725 midgard_sampler_type(nir_alu_type t) {
1726 switch (nir_alu_type_get_base_type(t))
1727 {
1728 case nir_type_float:
1729 return MALI_SAMPLER_FLOAT;
1730 case nir_type_int:
1731 return MALI_SAMPLER_SIGNED;
1732 case nir_type_uint:
1733 return MALI_SAMPLER_UNSIGNED;
1734 default:
1735 unreachable("Unknown sampler type");
1736 }
1737 }
1738
1739 static void
1740 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1741 unsigned midgard_texop)
1742 {
1743 /* TODO */
1744 //assert (!instr->sampler);
1745 //assert (!instr->texture_array_size);
1746
1747 int texture_index = instr->texture_index;
1748 int sampler_index = texture_index;
1749
1750 /* No helper to build texture words -- we do it all here */
1751 midgard_instruction ins = {
1752 .type = TAG_TEXTURE_4,
1753 .mask = 0xF,
1754 .dest = nir_dest_index(ctx, &instr->dest),
1755 .src = { ~0, ~0, ~0 },
1756 .texture = {
1757 .op = midgard_texop,
1758 .format = midgard_tex_format(instr->sampler_dim),
1759 .texture_handle = texture_index,
1760 .sampler_handle = sampler_index,
1761 .swizzle = SWIZZLE_XYZW,
1762 .in_reg_swizzle = SWIZZLE_XYZW,
1763
1764 /* TODO: half */
1765 .in_reg_full = 1,
1766 .out_full = 1,
1767
1768 .sampler_type = midgard_sampler_type(instr->dest_type),
1769 }
1770 };
1771
1772 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1773 int index = nir_src_index(ctx, &instr->src[i].src);
1774 midgard_vector_alu_src alu_src = blank_alu_src;
1775 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1776
1777 switch (instr->src[i].src_type) {
1778 case nir_tex_src_coord: {
1779 emit_explicit_constant(ctx, index, index);
1780
1781 /* Texelfetch coordinates uses all four elements
1782 * (xyz/index) regardless of texture dimensionality,
1783 * which means it's necessary to zero the unused
1784 * components to keep everything happy */
1785
1786 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1787 unsigned old_index = index;
1788
1789 index = make_compiler_temp(ctx);
1790
1791 /* mov index, old_index */
1792 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1793 mov.mask = 0x3;
1794 emit_mir_instruction(ctx, mov);
1795
1796 /* mov index.zw, #0 */
1797 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1798 blank_alu_src, index);
1799 mov.has_constants = true;
1800 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1801 emit_mir_instruction(ctx, mov);
1802 }
1803
1804 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1805 /* texelFetch is undefined on samplerCube */
1806 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1807
1808 /* For cubemaps, we use a special ld/st op to
1809 * select the face and copy the xy into the
1810 * texture register */
1811
1812 unsigned temp = make_compiler_temp(ctx);
1813 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1814 ld.src[0] = index;
1815 ld.mask = 0x3; /* xy */
1816 ld.load_store.arg_1 = 0x20;
1817 ld.load_store.swizzle = alu_src.swizzle;
1818 emit_mir_instruction(ctx, ld);
1819
1820 ins.src[0] = temp;
1821 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1822 } else {
1823 ins.src[0] = index;
1824 }
1825
1826 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1827 /* Array component in w but NIR wants it in z */
1828 if (nr_components == 3)
1829 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1830 else if (nr_components == 2)
1831 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1832 else
1833 unreachable("Invalid texture 2D components");
1834 }
1835
1836 break;
1837 }
1838
1839 case nir_tex_src_bias:
1840 case nir_tex_src_lod: {
1841 /* Try as a constant if we can */
1842
1843 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1844 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1845 break;
1846
1847 ins.texture.lod_register = true;
1848 ins.src[1] = index;
1849 emit_explicit_constant(ctx, index, index);
1850
1851 break;
1852 };
1853
1854 default:
1855 unreachable("Unknown texture source type\n");
1856 }
1857 }
1858
1859 emit_mir_instruction(ctx, ins);
1860
1861 /* Used for .cont and .last hinting */
1862 ctx->texture_op_count++;
1863 }
1864
1865 static void
1866 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1867 {
1868 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1869 * generic tex in some cases (which confuses the hardware) */
1870
1871 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1872
1873 if (is_vertex && instr->op == nir_texop_tex)
1874 instr->op = nir_texop_txl;
1875
1876 switch (instr->op) {
1877 case nir_texop_tex:
1878 case nir_texop_txb:
1879 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1880 break;
1881 case nir_texop_txl:
1882 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1883 break;
1884 case nir_texop_txf:
1885 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1886 break;
1887 case nir_texop_txs:
1888 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1889 break;
1890 default:
1891 unreachable("Unhanlded texture op");
1892 }
1893 }
1894
1895 static void
1896 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1897 {
1898 switch (instr->type) {
1899 case nir_jump_break: {
1900 /* Emit a branch out of the loop */
1901 struct midgard_instruction br = v_branch(false, false);
1902 br.branch.target_type = TARGET_BREAK;
1903 br.branch.target_break = ctx->current_loop_depth;
1904 emit_mir_instruction(ctx, br);
1905 break;
1906 }
1907
1908 default:
1909 DBG("Unknown jump type %d\n", instr->type);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1916 {
1917 switch (instr->type) {
1918 case nir_instr_type_load_const:
1919 emit_load_const(ctx, nir_instr_as_load_const(instr));
1920 break;
1921
1922 case nir_instr_type_intrinsic:
1923 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1924 break;
1925
1926 case nir_instr_type_alu:
1927 emit_alu(ctx, nir_instr_as_alu(instr));
1928 break;
1929
1930 case nir_instr_type_tex:
1931 emit_tex(ctx, nir_instr_as_tex(instr));
1932 break;
1933
1934 case nir_instr_type_jump:
1935 emit_jump(ctx, nir_instr_as_jump(instr));
1936 break;
1937
1938 case nir_instr_type_ssa_undef:
1939 /* Spurious */
1940 break;
1941
1942 default:
1943 DBG("Unhandled instruction type\n");
1944 break;
1945 }
1946 }
1947
1948
1949 /* ALU instructions can inline or embed constants, which decreases register
1950 * pressure and saves space. */
1951
1952 #define CONDITIONAL_ATTACH(idx) { \
1953 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1954 \
1955 if (entry) { \
1956 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1957 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1958 } \
1959 }
1960
1961 static void
1962 inline_alu_constants(compiler_context *ctx, midgard_block *block)
1963 {
1964 mir_foreach_instr_in_block(block, alu) {
1965 /* Other instructions cannot inline constants */
1966 if (alu->type != TAG_ALU_4) continue;
1967 if (alu->compact_branch) continue;
1968
1969 /* If there is already a constant here, we can do nothing */
1970 if (alu->has_constants) continue;
1971
1972 CONDITIONAL_ATTACH(0);
1973
1974 if (!alu->has_constants) {
1975 CONDITIONAL_ATTACH(1)
1976 } else if (!alu->inline_constant) {
1977 /* Corner case: _two_ vec4 constants, for instance with a
1978 * csel. For this case, we can only use a constant
1979 * register for one, we'll have to emit a move for the
1980 * other. Note, if both arguments are constants, then
1981 * necessarily neither argument depends on the value of
1982 * any particular register. As the destination register
1983 * will be wiped, that means we can spill the constant
1984 * to the destination register.
1985 */
1986
1987 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1988 unsigned scratch = alu->dest;
1989
1990 if (entry) {
1991 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1992 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1993
1994 /* Force a break XXX Defer r31 writes */
1995 ins.unit = UNIT_VLUT;
1996
1997 /* Set the source */
1998 alu->src[1] = scratch;
1999
2000 /* Inject us -before- the last instruction which set r31 */
2001 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2002 }
2003 }
2004 }
2005 }
2006
2007 /* Being a little silly with the names, but returns the op that is the bitwise
2008 * inverse of the op with the argument switched. I.e. (f and g are
2009 * contrapositives):
2010 *
2011 * f(a, b) = ~g(b, a)
2012 *
2013 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
2014 *
2015 * f(a, b) = ~g(b, a)
2016 * ~f(a, b) = g(b, a)
2017 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
2018 * f(a, b) = h(a, b)
2019 *
2020 * Thus we define this function in pairs.
2021 */
2022
2023 static inline midgard_alu_op
2024 mir_contrapositive(midgard_alu_op op)
2025 {
2026 switch (op) {
2027 case midgard_alu_op_flt:
2028 return midgard_alu_op_fle;
2029 case midgard_alu_op_fle:
2030 return midgard_alu_op_flt;
2031
2032 case midgard_alu_op_ilt:
2033 return midgard_alu_op_ile;
2034 case midgard_alu_op_ile:
2035 return midgard_alu_op_ilt;
2036
2037 default:
2038 unreachable("No known contrapositive");
2039 }
2040 }
2041
2042 /* Midgard supports two types of constants, embedded constants (128-bit) and
2043 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2044 * constants can be demoted to inline constants, for space savings and
2045 * sometimes a performance boost */
2046
2047 static void
2048 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2049 {
2050 mir_foreach_instr_in_block(block, ins) {
2051 if (!ins->has_constants) continue;
2052 if (ins->has_inline_constant) continue;
2053
2054 /* Blend constants must not be inlined by definition */
2055 if (ins->has_blend_constant) continue;
2056
2057 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2058 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2059 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2060
2061 if (!(is_16 || is_32))
2062 continue;
2063
2064 /* src1 cannot be an inline constant due to encoding
2065 * restrictions. So, if possible we try to flip the arguments
2066 * in that case */
2067
2068 int op = ins->alu.op;
2069
2070 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2071 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2072
2073 switch (op) {
2074 /* Conditionals can be inverted */
2075 case midgard_alu_op_flt:
2076 case midgard_alu_op_ilt:
2077 case midgard_alu_op_fle:
2078 case midgard_alu_op_ile:
2079 ins->alu.op = mir_contrapositive(ins->alu.op);
2080 ins->invert = true;
2081 flip = true;
2082 break;
2083
2084 case midgard_alu_op_fcsel:
2085 case midgard_alu_op_icsel:
2086 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2087 default:
2088 break;
2089 }
2090
2091 if (flip) {
2092 /* Flip the SSA numbers */
2093 ins->src[0] = ins->src[1];
2094 ins->src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2095
2096 /* And flip the modifiers */
2097
2098 unsigned src_temp;
2099
2100 src_temp = ins->alu.src2;
2101 ins->alu.src2 = ins->alu.src1;
2102 ins->alu.src1 = src_temp;
2103 }
2104 }
2105
2106 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2107 /* Extract the source information */
2108
2109 midgard_vector_alu_src *src;
2110 int q = ins->alu.src2;
2111 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2112 src = m;
2113
2114 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2115 int component = src->swizzle & 3;
2116
2117 /* Scale constant appropriately, if we can legally */
2118 uint16_t scaled_constant = 0;
2119
2120 if (midgard_is_integer_op(op) || is_16) {
2121 unsigned int *iconstants = (unsigned int *) ins->constants;
2122 scaled_constant = (uint16_t) iconstants[component];
2123
2124 /* Constant overflow after resize */
2125 if (scaled_constant != iconstants[component])
2126 continue;
2127 } else {
2128 float *f = (float *) ins->constants;
2129 float original = f[component];
2130 scaled_constant = _mesa_float_to_half(original);
2131
2132 /* Check for loss of precision. If this is
2133 * mediump, we don't care, but for a highp
2134 * shader, we need to pay attention. NIR
2135 * doesn't yet tell us which mode we're in!
2136 * Practically this prevents most constants
2137 * from being inlined, sadly. */
2138
2139 float fp32 = _mesa_half_to_float(scaled_constant);
2140
2141 if (fp32 != original)
2142 continue;
2143 }
2144
2145 /* We don't know how to handle these with a constant */
2146
2147 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2148 DBG("Bailing inline constant...\n");
2149 continue;
2150 }
2151
2152 /* Make sure that the constant is not itself a
2153 * vector by checking if all accessed values
2154 * (by the swizzle) are the same. */
2155
2156 uint32_t *cons = ins->constants;
2157 uint32_t value = cons[component];
2158
2159 bool is_vector = false;
2160 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2161
2162 for (int c = 1; c < 4; ++c) {
2163 /* We only care if this component is actually used */
2164 if (!(mask & (1 << c)))
2165 continue;
2166
2167 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2168
2169 if (test != value) {
2170 is_vector = true;
2171 break;
2172 }
2173 }
2174
2175 if (is_vector)
2176 continue;
2177
2178 /* Get rid of the embedded constant */
2179 ins->has_constants = false;
2180 ins->src[1] = ~0;
2181 ins->has_inline_constant = true;
2182 ins->inline_constant = scaled_constant;
2183 }
2184 }
2185 }
2186
2187 /* Dead code elimination for branches at the end of a block - only one branch
2188 * per block is legal semantically */
2189
2190 static void
2191 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2192 {
2193 bool branched = false;
2194
2195 mir_foreach_instr_in_block_safe(block, ins) {
2196 if (!midgard_is_branch_unit(ins->unit)) continue;
2197
2198 if (branched)
2199 mir_remove_instruction(ins);
2200
2201 branched = true;
2202 }
2203 }
2204
2205 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2206 * the move can be propagated away entirely */
2207
2208 static bool
2209 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2210 {
2211 /* Nothing to do */
2212 if (comp == midgard_outmod_none)
2213 return true;
2214
2215 if (*outmod == midgard_outmod_none) {
2216 *outmod = comp;
2217 return true;
2218 }
2219
2220 /* TODO: Compose rules */
2221 return false;
2222 }
2223
2224 static bool
2225 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2226 {
2227 bool progress = false;
2228
2229 mir_foreach_instr_in_block_safe(block, ins) {
2230 if (ins->type != TAG_ALU_4) continue;
2231 if (ins->alu.op != midgard_alu_op_fmov) continue;
2232 if (ins->alu.outmod != midgard_outmod_pos) continue;
2233
2234 /* TODO: Registers? */
2235 unsigned src = ins->src[1];
2236 if (src & IS_REG) continue;
2237 assert(!mir_has_multiple_writes(ctx, src));
2238
2239 /* There might be a source modifier, too */
2240 if (mir_nontrivial_source2_mod(ins)) continue;
2241
2242 /* Backpropagate the modifier */
2243 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2244 if (v->type != TAG_ALU_4) continue;
2245 if (v->dest != src) continue;
2246
2247 /* Can we even take a float outmod? */
2248 if (midgard_is_integer_out_op(v->alu.op)) continue;
2249
2250 midgard_outmod_float temp = v->alu.outmod;
2251 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2252
2253 /* Throw in the towel.. */
2254 if (!progress) break;
2255
2256 /* Otherwise, transfer the modifier */
2257 v->alu.outmod = temp;
2258 ins->alu.outmod = midgard_outmod_none;
2259
2260 break;
2261 }
2262 }
2263
2264 return progress;
2265 }
2266
2267 static void
2268 emit_fragment_epilogue(compiler_context *ctx)
2269 {
2270 /* Just emit the last chunk with the branch */
2271 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2272 }
2273
2274 static midgard_block *
2275 emit_block(compiler_context *ctx, nir_block *block)
2276 {
2277 midgard_block *this_block = ctx->after_block;
2278 ctx->after_block = NULL;
2279
2280 if (!this_block)
2281 this_block = create_empty_block(ctx);
2282
2283 list_addtail(&this_block->link, &ctx->blocks);
2284
2285 this_block->is_scheduled = false;
2286 ++ctx->block_count;
2287
2288 /* Set up current block */
2289 list_inithead(&this_block->instructions);
2290 ctx->current_block = this_block;
2291
2292 nir_foreach_instr(instr, block) {
2293 emit_instr(ctx, instr);
2294 ++ctx->instruction_count;
2295 }
2296
2297 return this_block;
2298 }
2299
2300 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2301
2302 static void
2303 emit_if(struct compiler_context *ctx, nir_if *nif)
2304 {
2305 midgard_block *before_block = ctx->current_block;
2306
2307 /* Conditional branches expect the condition in r31.w; emit a move for
2308 * that in the _previous_ block (which is the current block). */
2309 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2310
2311 /* Speculatively emit the branch, but we can't fill it in until later */
2312 EMIT(branch, true, true);
2313 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2314 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2315
2316 /* Emit the two subblocks. */
2317 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2318 midgard_block *end_then_block = ctx->current_block;
2319
2320 /* Emit a jump from the end of the then block to the end of the else */
2321 EMIT(branch, false, false);
2322 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2323
2324 /* Emit second block, and check if it's empty */
2325
2326 int else_idx = ctx->block_count;
2327 int count_in = ctx->instruction_count;
2328 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2329 midgard_block *end_else_block = ctx->current_block;
2330 int after_else_idx = ctx->block_count;
2331
2332 /* Now that we have the subblocks emitted, fix up the branches */
2333
2334 assert(then_block);
2335 assert(else_block);
2336
2337 if (ctx->instruction_count == count_in) {
2338 /* The else block is empty, so don't emit an exit jump */
2339 mir_remove_instruction(then_exit);
2340 then_branch->branch.target_block = after_else_idx;
2341 } else {
2342 then_branch->branch.target_block = else_idx;
2343 then_exit->branch.target_block = after_else_idx;
2344 }
2345
2346 /* Wire up the successors */
2347
2348 ctx->after_block = create_empty_block(ctx);
2349
2350 midgard_block_add_successor(before_block, then_block);
2351 midgard_block_add_successor(before_block, else_block);
2352
2353 midgard_block_add_successor(end_then_block, ctx->after_block);
2354 midgard_block_add_successor(end_else_block, ctx->after_block);
2355 }
2356
2357 static void
2358 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2359 {
2360 /* Remember where we are */
2361 midgard_block *start_block = ctx->current_block;
2362
2363 /* Allocate a loop number, growing the current inner loop depth */
2364 int loop_idx = ++ctx->current_loop_depth;
2365
2366 /* Get index from before the body so we can loop back later */
2367 int start_idx = ctx->block_count;
2368
2369 /* Emit the body itself */
2370 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2371
2372 /* Branch back to loop back */
2373 struct midgard_instruction br_back = v_branch(false, false);
2374 br_back.branch.target_block = start_idx;
2375 emit_mir_instruction(ctx, br_back);
2376
2377 /* Mark down that branch in the graph. */
2378 midgard_block_add_successor(start_block, loop_block);
2379 midgard_block_add_successor(ctx->current_block, loop_block);
2380
2381 /* Find the index of the block about to follow us (note: we don't add
2382 * one; blocks are 0-indexed so we get a fencepost problem) */
2383 int break_block_idx = ctx->block_count;
2384
2385 /* Fix up the break statements we emitted to point to the right place,
2386 * now that we can allocate a block number for them */
2387 ctx->after_block = create_empty_block(ctx);
2388
2389 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2390 mir_foreach_instr_in_block(block, ins) {
2391 if (ins->type != TAG_ALU_4) continue;
2392 if (!ins->compact_branch) continue;
2393 if (ins->prepacked_branch) continue;
2394
2395 /* We found a branch -- check the type to see if we need to do anything */
2396 if (ins->branch.target_type != TARGET_BREAK) continue;
2397
2398 /* It's a break! Check if it's our break */
2399 if (ins->branch.target_break != loop_idx) continue;
2400
2401 /* Okay, cool, we're breaking out of this loop.
2402 * Rewrite from a break to a goto */
2403
2404 ins->branch.target_type = TARGET_GOTO;
2405 ins->branch.target_block = break_block_idx;
2406
2407 midgard_block_add_successor(block, ctx->after_block);
2408 }
2409 }
2410
2411 /* Now that we've finished emitting the loop, free up the depth again
2412 * so we play nice with recursion amid nested loops */
2413 --ctx->current_loop_depth;
2414
2415 /* Dump loop stats */
2416 ++ctx->loop_count;
2417 }
2418
2419 static midgard_block *
2420 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2421 {
2422 midgard_block *start_block = NULL;
2423
2424 foreach_list_typed(nir_cf_node, node, node, list) {
2425 switch (node->type) {
2426 case nir_cf_node_block: {
2427 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2428
2429 if (!start_block)
2430 start_block = block;
2431
2432 break;
2433 }
2434
2435 case nir_cf_node_if:
2436 emit_if(ctx, nir_cf_node_as_if(node));
2437 break;
2438
2439 case nir_cf_node_loop:
2440 emit_loop(ctx, nir_cf_node_as_loop(node));
2441 break;
2442
2443 case nir_cf_node_function:
2444 assert(0);
2445 break;
2446 }
2447 }
2448
2449 return start_block;
2450 }
2451
2452 /* Due to lookahead, we need to report the first tag executed in the command
2453 * stream and in branch targets. An initial block might be empty, so iterate
2454 * until we find one that 'works' */
2455
2456 static unsigned
2457 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2458 {
2459 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2460
2461 unsigned first_tag = 0;
2462
2463 mir_foreach_block_from(ctx, initial_block, v) {
2464 midgard_bundle *initial_bundle =
2465 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2466
2467 if (initial_bundle) {
2468 first_tag = initial_bundle->tag;
2469 break;
2470 }
2471 }
2472
2473 return first_tag;
2474 }
2475
2476 int
2477 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2478 {
2479 struct util_dynarray *compiled = &program->compiled;
2480
2481 midgard_debug = debug_get_option_midgard_debug();
2482
2483 /* TODO: Bound against what? */
2484 compiler_context *ctx = rzalloc(NULL, compiler_context);
2485
2486 ctx->nir = nir;
2487 ctx->screen = screen;
2488 ctx->stage = nir->info.stage;
2489 ctx->is_blend = is_blend;
2490 ctx->alpha_ref = program->alpha_ref;
2491
2492 /* Start off with a safe cutoff, allowing usage of all 16 work
2493 * registers. Later, we'll promote uniform reads to uniform registers
2494 * if we determine it is beneficial to do so */
2495 ctx->uniform_cutoff = 8;
2496
2497 /* Initialize at a global (not block) level hash tables */
2498
2499 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2500 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2501 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2502
2503 /* Record the varying mapping for the command stream's bookkeeping */
2504
2505 struct exec_list *varyings =
2506 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2507
2508 unsigned max_varying = 0;
2509 nir_foreach_variable(var, varyings) {
2510 unsigned loc = var->data.driver_location;
2511 unsigned sz = glsl_type_size(var->type, FALSE);
2512
2513 for (int c = 0; c < sz; ++c) {
2514 program->varyings[loc + c] = var->data.location + c;
2515 max_varying = MAX2(max_varying, loc + c);
2516 }
2517 }
2518
2519 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2520 * (so we don't accidentally duplicate the epilogue since mesa/st has
2521 * messed with our I/O quite a bit already) */
2522
2523 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2524
2525 if (ctx->stage == MESA_SHADER_VERTEX) {
2526 NIR_PASS_V(nir, nir_lower_viewport_transform);
2527 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2528 }
2529
2530 NIR_PASS_V(nir, nir_lower_var_copies);
2531 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2532 NIR_PASS_V(nir, nir_split_var_copies);
2533 NIR_PASS_V(nir, nir_lower_var_copies);
2534 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2535 NIR_PASS_V(nir, nir_lower_var_copies);
2536 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2537
2538 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2539
2540 /* Optimisation passes */
2541
2542 optimise_nir(nir);
2543
2544 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2545 nir_print_shader(nir, stdout);
2546 }
2547
2548 /* Assign sysvals and counts, now that we're sure
2549 * (post-optimisation) */
2550
2551 midgard_nir_assign_sysvals(ctx, nir);
2552
2553 program->uniform_count = nir->num_uniforms;
2554 program->sysval_count = ctx->sysval_count;
2555 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2556
2557 nir_foreach_function(func, nir) {
2558 if (!func->impl)
2559 continue;
2560
2561 list_inithead(&ctx->blocks);
2562 ctx->block_count = 0;
2563 ctx->func = func;
2564
2565 emit_cf_list(ctx, &func->impl->body);
2566
2567 /* Emit empty exit block with successor */
2568
2569 struct midgard_block *semi_end = ctx->current_block;
2570
2571 struct midgard_block *end =
2572 emit_block(ctx, func->impl->end_block);
2573
2574 if (ctx->stage == MESA_SHADER_FRAGMENT)
2575 emit_fragment_epilogue(ctx);
2576
2577 midgard_block_add_successor(semi_end, end);
2578
2579 break; /* TODO: Multi-function shaders */
2580 }
2581
2582 util_dynarray_init(compiled, NULL);
2583
2584 /* Per-block lowering before opts */
2585
2586 mir_foreach_block(ctx, block) {
2587 inline_alu_constants(ctx, block);
2588 midgard_opt_promote_fmov(ctx, block);
2589 embedded_to_inline_constant(ctx, block);
2590 }
2591 /* MIR-level optimizations */
2592
2593 bool progress = false;
2594
2595 do {
2596 progress = false;
2597
2598 mir_foreach_block(ctx, block) {
2599 progress |= midgard_opt_pos_propagate(ctx, block);
2600 progress |= midgard_opt_copy_prop(ctx, block);
2601 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2602 progress |= midgard_opt_combine_projection(ctx, block);
2603 progress |= midgard_opt_varying_projection(ctx, block);
2604 progress |= midgard_opt_not_propagate(ctx, block);
2605 progress |= midgard_opt_fuse_src_invert(ctx, block);
2606 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2607 }
2608 } while (progress);
2609
2610 mir_foreach_block(ctx, block) {
2611 midgard_lower_invert(ctx, block);
2612 midgard_lower_derivatives(ctx, block);
2613 }
2614
2615 /* Nested control-flow can result in dead branches at the end of the
2616 * block. This messes with our analysis and is just dead code, so cull
2617 * them */
2618 mir_foreach_block(ctx, block) {
2619 midgard_opt_cull_dead_branch(ctx, block);
2620 }
2621
2622 /* Ensure we were lowered */
2623 mir_foreach_instr_global(ctx, ins) {
2624 assert(!ins->invert);
2625 }
2626
2627 /* Schedule! */
2628 schedule_program(ctx);
2629
2630 /* Now that all the bundles are scheduled and we can calculate block
2631 * sizes, emit actual branch instructions rather than placeholders */
2632
2633 int br_block_idx = 0;
2634
2635 mir_foreach_block(ctx, block) {
2636 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2637 for (int c = 0; c < bundle->instruction_count; ++c) {
2638 midgard_instruction *ins = bundle->instructions[c];
2639
2640 if (!midgard_is_branch_unit(ins->unit)) continue;
2641
2642 if (ins->prepacked_branch) continue;
2643
2644 /* Parse some basic branch info */
2645 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2646 bool is_conditional = ins->branch.conditional;
2647 bool is_inverted = ins->branch.invert_conditional;
2648 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2649
2650 /* Determine the block we're jumping to */
2651 int target_number = ins->branch.target_block;
2652
2653 /* Report the destination tag */
2654 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2655
2656 /* Count up the number of quadwords we're
2657 * jumping over = number of quadwords until
2658 * (br_block_idx, target_number) */
2659
2660 int quadword_offset = 0;
2661
2662 if (is_discard) {
2663 /* Ignored */
2664 } else if (target_number > br_block_idx) {
2665 /* Jump forward */
2666
2667 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2668 midgard_block *blk = mir_get_block(ctx, idx);
2669 assert(blk);
2670
2671 quadword_offset += blk->quadword_count;
2672 }
2673 } else {
2674 /* Jump backwards */
2675
2676 for (int idx = br_block_idx; idx >= target_number; --idx) {
2677 midgard_block *blk = mir_get_block(ctx, idx);
2678 assert(blk);
2679
2680 quadword_offset -= blk->quadword_count;
2681 }
2682 }
2683
2684 /* Unconditional extended branches (far jumps)
2685 * have issues, so we always use a conditional
2686 * branch, setting the condition to always for
2687 * unconditional. For compact unconditional
2688 * branches, cond isn't used so it doesn't
2689 * matter what we pick. */
2690
2691 midgard_condition cond =
2692 !is_conditional ? midgard_condition_always :
2693 is_inverted ? midgard_condition_false :
2694 midgard_condition_true;
2695
2696 midgard_jmp_writeout_op op =
2697 is_discard ? midgard_jmp_writeout_op_discard :
2698 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2699 midgard_jmp_writeout_op_branch_cond;
2700
2701 if (!is_compact) {
2702 midgard_branch_extended branch =
2703 midgard_create_branch_extended(
2704 cond, op,
2705 dest_tag,
2706 quadword_offset);
2707
2708 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2709 } else if (is_conditional || is_discard) {
2710 midgard_branch_cond branch = {
2711 .op = op,
2712 .dest_tag = dest_tag,
2713 .offset = quadword_offset,
2714 .cond = cond
2715 };
2716
2717 assert(branch.offset == quadword_offset);
2718
2719 memcpy(&ins->br_compact, &branch, sizeof(branch));
2720 } else {
2721 assert(op == midgard_jmp_writeout_op_branch_uncond);
2722
2723 midgard_branch_uncond branch = {
2724 .op = op,
2725 .dest_tag = dest_tag,
2726 .offset = quadword_offset,
2727 .unknown = 1
2728 };
2729
2730 assert(branch.offset == quadword_offset);
2731
2732 memcpy(&ins->br_compact, &branch, sizeof(branch));
2733 }
2734 }
2735 }
2736
2737 ++br_block_idx;
2738 }
2739
2740 /* Emit flat binary from the instruction arrays. Iterate each block in
2741 * sequence. Save instruction boundaries such that lookahead tags can
2742 * be assigned easily */
2743
2744 /* Cache _all_ bundles in source order for lookahead across failed branches */
2745
2746 int bundle_count = 0;
2747 mir_foreach_block(ctx, block) {
2748 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2749 }
2750 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2751 int bundle_idx = 0;
2752 mir_foreach_block(ctx, block) {
2753 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2754 source_order_bundles[bundle_idx++] = bundle;
2755 }
2756 }
2757
2758 int current_bundle = 0;
2759
2760 /* Midgard prefetches instruction types, so during emission we
2761 * need to lookahead. Unless this is the last instruction, in
2762 * which we return 1. Or if this is the second to last and the
2763 * last is an ALU, then it's also 1... */
2764
2765 mir_foreach_block(ctx, block) {
2766 mir_foreach_bundle_in_block(block, bundle) {
2767 int lookahead = 1;
2768
2769 if (current_bundle + 1 < bundle_count) {
2770 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2771
2772 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2773 lookahead = 1;
2774 } else {
2775 lookahead = next;
2776 }
2777 }
2778
2779 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2780 ++current_bundle;
2781 }
2782
2783 /* TODO: Free deeper */
2784 //util_dynarray_fini(&block->instructions);
2785 }
2786
2787 free(source_order_bundles);
2788
2789 /* Report the very first tag executed */
2790 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2791
2792 /* Deal with off-by-one related to the fencepost problem */
2793 program->work_register_count = ctx->work_registers + 1;
2794 program->uniform_cutoff = ctx->uniform_cutoff;
2795
2796 program->blend_patch_offset = ctx->blend_constant_offset;
2797 program->tls_size = ctx->tls_size;
2798
2799 if (midgard_debug & MIDGARD_DBG_SHADERS)
2800 disassemble_midgard(program->compiled.data, program->compiled.size);
2801
2802 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2803 unsigned nr_bundles = 0, nr_ins = 0;
2804
2805 /* Count instructions and bundles */
2806
2807 mir_foreach_block(ctx, block) {
2808 nr_bundles += util_dynarray_num_elements(
2809 &block->bundles, midgard_bundle);
2810
2811 mir_foreach_bundle_in_block(block, bun)
2812 nr_ins += bun->instruction_count;
2813 }
2814
2815 /* Calculate thread count. There are certain cutoffs by
2816 * register count for thread count */
2817
2818 unsigned nr_registers = program->work_register_count;
2819
2820 unsigned nr_threads =
2821 (nr_registers <= 4) ? 4 :
2822 (nr_registers <= 8) ? 2 :
2823 1;
2824
2825 /* Dump stats */
2826
2827 fprintf(stderr, "shader%d - %s shader: "
2828 "%u inst, %u bundles, %u quadwords, "
2829 "%u registers, %u threads, %u loops, "
2830 "%u:%u spills:fills\n",
2831 SHADER_DB_COUNT++,
2832 gl_shader_stage_name(ctx->stage),
2833 nr_ins, nr_bundles, ctx->quadword_count,
2834 nr_registers, nr_threads,
2835 ctx->loop_count,
2836 ctx->spills, ctx->fills);
2837 }
2838
2839 ralloc_free(ctx);
2840
2841 return 0;
2842 }