panfrost: Clamp point size
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_STORE(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* For unclear reasons, the condition code is repeated 8 times */
228 uint16_t duplicated_cond =
229 (cond << 14) |
230 (cond << 12) |
231 (cond << 10) |
232 (cond << 8) |
233 (cond << 6) |
234 (cond << 4) |
235 (cond << 2) |
236 (cond << 0);
237
238 midgard_branch_extended branch = {
239 .op = op,
240 .dest_tag = dest_tag,
241 .offset = quadword_offset,
242 .cond = duplicated_cond
243 };
244
245 return branch;
246 }
247
248 static void
249 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
250 {
251 ins->has_constants = true;
252 memcpy(&ins->constants, constants, 16);
253 }
254
255 static int
256 glsl_type_size(const struct glsl_type *type, bool bindless)
257 {
258 return glsl_count_attribute_slots(type, false);
259 }
260
261 /* Lower fdot2 to a vector multiplication followed by channel addition */
262 static void
263 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
264 {
265 if (alu->op != nir_op_fdot2)
266 return;
267
268 b->cursor = nir_before_instr(&alu->instr);
269
270 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
271 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
272
273 nir_ssa_def *product = nir_fmul(b, src0, src1);
274
275 nir_ssa_def *sum = nir_fadd(b,
276 nir_channel(b, product, 0),
277 nir_channel(b, product, 1));
278
279 /* Replace the fdot2 with this sum */
280 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
281 }
282
283 static int
284 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
285 {
286 switch (instr->intrinsic) {
287 case nir_intrinsic_load_viewport_scale:
288 return PAN_SYSVAL_VIEWPORT_SCALE;
289 case nir_intrinsic_load_viewport_offset:
290 return PAN_SYSVAL_VIEWPORT_OFFSET;
291 default:
292 return -1;
293 }
294 }
295
296 static unsigned
297 nir_dest_index(compiler_context *ctx, nir_dest *dst)
298 {
299 if (dst->is_ssa)
300 return dst->ssa.index;
301 else {
302 assert(!dst->reg.indirect);
303 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
304 }
305 }
306
307 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
308 unsigned *dest)
309 {
310 nir_intrinsic_instr *intr;
311 nir_dest *dst = NULL;
312 nir_tex_instr *tex;
313 int sysval = -1;
314
315 switch (instr->type) {
316 case nir_instr_type_intrinsic:
317 intr = nir_instr_as_intrinsic(instr);
318 sysval = midgard_nir_sysval_for_intrinsic(intr);
319 dst = &intr->dest;
320 break;
321 case nir_instr_type_tex:
322 tex = nir_instr_as_tex(instr);
323 if (tex->op != nir_texop_txs)
324 break;
325
326 sysval = PAN_SYSVAL(TEXTURE_SIZE,
327 PAN_TXS_SYSVAL_ID(tex->texture_index,
328 nir_tex_instr_dest_size(tex) -
329 (tex->is_array ? 1 : 0),
330 tex->is_array));
331 dst = &tex->dest;
332 break;
333 default:
334 break;
335 }
336
337 if (dest && dst)
338 *dest = nir_dest_index(ctx, dst);
339
340 return sysval;
341 }
342
343 static void
344 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
345 {
346 int sysval;
347
348 sysval = sysval_for_instr(ctx, instr, NULL);
349 if (sysval < 0)
350 return;
351
352 /* We have a sysval load; check if it's already been assigned */
353
354 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
355 return;
356
357 /* It hasn't -- so assign it now! */
358
359 unsigned id = ctx->sysval_count++;
360 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
361 ctx->sysvals[id] = sysval;
362 }
363
364 static void
365 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
366 {
367 ctx->sysval_count = 0;
368
369 nir_foreach_function(function, shader) {
370 if (!function->impl) continue;
371
372 nir_foreach_block(block, function->impl) {
373 nir_foreach_instr_safe(instr, block) {
374 midgard_nir_assign_sysval_body(ctx, instr);
375 }
376 }
377 }
378 }
379
380 static bool
381 midgard_nir_lower_fdot2(nir_shader *shader)
382 {
383 bool progress = false;
384
385 nir_foreach_function(function, shader) {
386 if (!function->impl) continue;
387
388 nir_builder _b;
389 nir_builder *b = &_b;
390 nir_builder_init(b, function->impl);
391
392 nir_foreach_block(block, function->impl) {
393 nir_foreach_instr_safe(instr, block) {
394 if (instr->type != nir_instr_type_alu) continue;
395
396 nir_alu_instr *alu = nir_instr_as_alu(instr);
397 midgard_nir_lower_fdot2_body(b, alu);
398
399 progress |= true;
400 }
401 }
402
403 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
404
405 }
406
407 return progress;
408 }
409
410 /* Flushes undefined values to zero */
411
412 static void
413 optimise_nir(nir_shader *nir)
414 {
415 bool progress;
416 unsigned lower_flrp =
417 (nir->options->lower_flrp16 ? 16 : 0) |
418 (nir->options->lower_flrp32 ? 32 : 0) |
419 (nir->options->lower_flrp64 ? 64 : 0);
420
421 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
422 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
423 NIR_PASS(progress, nir, nir_lower_idiv);
424
425 nir_lower_tex_options lower_tex_1st_pass_options = {
426 .lower_rect = true,
427 .lower_txp = ~0
428 };
429
430 nir_lower_tex_options lower_tex_2nd_pass_options = {
431 .lower_txs_lod = true,
432 };
433
434 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
435 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
436
437 do {
438 progress = false;
439
440 NIR_PASS(progress, nir, nir_lower_var_copies);
441 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
442
443 NIR_PASS(progress, nir, nir_copy_prop);
444 NIR_PASS(progress, nir, nir_opt_dce);
445 NIR_PASS(progress, nir, nir_opt_dead_cf);
446 NIR_PASS(progress, nir, nir_opt_cse);
447 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
448 NIR_PASS(progress, nir, nir_opt_algebraic);
449 NIR_PASS(progress, nir, nir_opt_constant_folding);
450
451 if (lower_flrp != 0) {
452 bool lower_flrp_progress = false;
453 NIR_PASS(lower_flrp_progress,
454 nir,
455 nir_lower_flrp,
456 lower_flrp,
457 false /* always_precise */,
458 nir->options->lower_ffma);
459 if (lower_flrp_progress) {
460 NIR_PASS(progress, nir,
461 nir_opt_constant_folding);
462 progress = true;
463 }
464
465 /* Nothing should rematerialize any flrps, so we only
466 * need to do this lowering once.
467 */
468 lower_flrp = 0;
469 }
470
471 NIR_PASS(progress, nir, nir_opt_undef);
472 NIR_PASS(progress, nir, nir_undef_to_zero);
473
474 NIR_PASS(progress, nir, nir_opt_loop_unroll,
475 nir_var_shader_in |
476 nir_var_shader_out |
477 nir_var_function_temp);
478
479 NIR_PASS(progress, nir, nir_opt_vectorize);
480 } while (progress);
481
482 /* Must be run at the end to prevent creation of fsin/fcos ops */
483 NIR_PASS(progress, nir, midgard_nir_scale_trig);
484
485 do {
486 progress = false;
487
488 NIR_PASS(progress, nir, nir_opt_dce);
489 NIR_PASS(progress, nir, nir_opt_algebraic);
490 NIR_PASS(progress, nir, nir_opt_constant_folding);
491 NIR_PASS(progress, nir, nir_copy_prop);
492 } while (progress);
493
494 NIR_PASS(progress, nir, nir_opt_algebraic_late);
495
496 /* We implement booleans as 32-bit 0/~0 */
497 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
498
499 /* Now that booleans are lowered, we can run out late opts */
500 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
501
502 /* Lower mods for float ops only. Integer ops don't support modifiers
503 * (saturate doesn't make sense on integers, neg/abs require dedicated
504 * instructions) */
505
506 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
507 NIR_PASS(progress, nir, nir_copy_prop);
508 NIR_PASS(progress, nir, nir_opt_dce);
509
510 /* Take us out of SSA */
511 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
512 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
513
514 /* We are a vector architecture; write combine where possible */
515 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
516 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 }
520
521 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
522 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
523 * r0. See the comments in compiler_context */
524
525 static void
526 alias_ssa(compiler_context *ctx, int dest, int src)
527 {
528 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
529 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
530 }
531
532 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
533
534 static void
535 unalias_ssa(compiler_context *ctx, int dest)
536 {
537 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
538 /* TODO: Remove from leftover or no? */
539 }
540
541 /* Do not actually emit a load; instead, cache the constant for inlining */
542
543 static void
544 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
545 {
546 nir_ssa_def def = instr->def;
547
548 float *v = rzalloc_array(NULL, float, 4);
549 nir_const_load_to_arr(v, instr, f32);
550 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
551 }
552
553 static unsigned
554 nir_src_index(compiler_context *ctx, nir_src *src)
555 {
556 if (src->is_ssa)
557 return src->ssa->index;
558 else {
559 assert(!src->reg.indirect);
560 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
561 }
562 }
563
564 static unsigned
565 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
566 {
567 return nir_src_index(ctx, &src->src);
568 }
569
570 static bool
571 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
572 {
573 unsigned comp = src->swizzle[0];
574
575 for (unsigned c = 1; c < nr_components; ++c) {
576 if (src->swizzle[c] != comp)
577 return true;
578 }
579
580 return false;
581 }
582
583 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
584 * output of a conditional test) into that register */
585
586 static void
587 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
588 {
589 int condition = nir_src_index(ctx, src);
590
591 /* Source to swizzle the desired component into w */
592
593 const midgard_vector_alu_src alu_src = {
594 .swizzle = SWIZZLE(component, component, component, component),
595 };
596
597 /* There is no boolean move instruction. Instead, we simulate a move by
598 * ANDing the condition with itself to get it into r31.w */
599
600 midgard_instruction ins = {
601 .type = TAG_ALU_4,
602
603 /* We need to set the conditional as close as possible */
604 .precede_break = true,
605 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
606 .mask = 1 << COMPONENT_W,
607
608 .ssa_args = {
609 .src0 = condition,
610 .src1 = condition,
611 .dest = SSA_FIXED_REGISTER(31),
612 },
613
614 .alu = {
615 .op = midgard_alu_op_iand,
616 .outmod = midgard_outmod_int_wrap,
617 .reg_mode = midgard_reg_mode_32,
618 .dest_override = midgard_dest_override_none,
619 .src1 = vector_alu_srco_unsigned(alu_src),
620 .src2 = vector_alu_srco_unsigned(alu_src)
621 },
622 };
623
624 emit_mir_instruction(ctx, ins);
625 }
626
627 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
628 * r31 instead */
629
630 static void
631 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
632 {
633 int condition = nir_src_index(ctx, &src->src);
634
635 /* Source to swizzle the desired component into w */
636
637 const midgard_vector_alu_src alu_src = {
638 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
639 };
640
641 /* There is no boolean move instruction. Instead, we simulate a move by
642 * ANDing the condition with itself to get it into r31.w */
643
644 midgard_instruction ins = {
645 .type = TAG_ALU_4,
646 .precede_break = true,
647 .mask = mask_of(nr_comp),
648 .ssa_args = {
649 .src0 = condition,
650 .src1 = condition,
651 .dest = SSA_FIXED_REGISTER(31),
652 },
653 .alu = {
654 .op = midgard_alu_op_iand,
655 .outmod = midgard_outmod_int_wrap,
656 .reg_mode = midgard_reg_mode_32,
657 .dest_override = midgard_dest_override_none,
658 .src1 = vector_alu_srco_unsigned(alu_src),
659 .src2 = vector_alu_srco_unsigned(alu_src)
660 },
661 };
662
663 emit_mir_instruction(ctx, ins);
664 }
665
666
667
668 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
669 * pinning to eliminate this move in all known cases */
670
671 static void
672 emit_indirect_offset(compiler_context *ctx, nir_src *src)
673 {
674 int offset = nir_src_index(ctx, src);
675
676 midgard_instruction ins = {
677 .type = TAG_ALU_4,
678 .mask = 1 << COMPONENT_W,
679 .ssa_args = {
680 .src0 = SSA_UNUSED_1,
681 .src1 = offset,
682 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
683 },
684 .alu = {
685 .op = midgard_alu_op_imov,
686 .outmod = midgard_outmod_int_wrap,
687 .reg_mode = midgard_reg_mode_32,
688 .dest_override = midgard_dest_override_none,
689 .src1 = vector_alu_srco_unsigned(zero_alu_src),
690 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
691 },
692 };
693
694 emit_mir_instruction(ctx, ins);
695 }
696
697 #define ALU_CASE(nir, _op) \
698 case nir_op_##nir: \
699 op = midgard_alu_op_##_op; \
700 assert(src_bitsize == dst_bitsize); \
701 break;
702
703 #define ALU_CASE_BCAST(nir, _op, count) \
704 case nir_op_##nir: \
705 op = midgard_alu_op_##_op; \
706 broadcast_swizzle = count; \
707 assert(src_bitsize == dst_bitsize); \
708 break;
709 static bool
710 nir_is_fzero_constant(nir_src src)
711 {
712 if (!nir_src_is_const(src))
713 return false;
714
715 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
716 if (nir_src_comp_as_float(src, c) != 0.0)
717 return false;
718 }
719
720 return true;
721 }
722
723 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
724 * special treatment override this anyway. */
725
726 static midgard_reg_mode
727 reg_mode_for_nir(nir_alu_instr *instr)
728 {
729 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
730
731 switch (src_bitsize) {
732 case 8:
733 return midgard_reg_mode_8;
734 case 16:
735 return midgard_reg_mode_16;
736 case 32:
737 return midgard_reg_mode_32;
738 case 64:
739 return midgard_reg_mode_64;
740 default:
741 unreachable("Invalid bit size");
742 }
743 }
744
745 static void
746 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
747 {
748 bool is_ssa = instr->dest.dest.is_ssa;
749
750 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
751 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
752 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
753
754 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
755 * supported. A few do not and are commented for now. Also, there are a
756 * number of NIR ops which Midgard does not support and need to be
757 * lowered, also TODO. This switch block emits the opcode and calling
758 * convention of the Midgard instruction; actual packing is done in
759 * emit_alu below */
760
761 unsigned op;
762
763 /* Number of components valid to check for the instruction (the rest
764 * will be forced to the last), or 0 to use as-is. Relevant as
765 * ball-type instructions have a channel count in NIR but are all vec4
766 * in Midgard */
767
768 unsigned broadcast_swizzle = 0;
769
770 /* What register mode should we operate in? */
771 midgard_reg_mode reg_mode =
772 reg_mode_for_nir(instr);
773
774 /* Do we need a destination override? Used for inline
775 * type conversion */
776
777 midgard_dest_override dest_override =
778 midgard_dest_override_none;
779
780 /* Should we use a smaller respective source and sign-extend? */
781
782 bool half_1 = false, sext_1 = false;
783 bool half_2 = false, sext_2 = false;
784
785 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
786 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
787
788 switch (instr->op) {
789 ALU_CASE(fadd, fadd);
790 ALU_CASE(fmul, fmul);
791 ALU_CASE(fmin, fmin);
792 ALU_CASE(fmax, fmax);
793 ALU_CASE(imin, imin);
794 ALU_CASE(imax, imax);
795 ALU_CASE(umin, umin);
796 ALU_CASE(umax, umax);
797 ALU_CASE(ffloor, ffloor);
798 ALU_CASE(fround_even, froundeven);
799 ALU_CASE(ftrunc, ftrunc);
800 ALU_CASE(fceil, fceil);
801 ALU_CASE(fdot3, fdot3);
802 ALU_CASE(fdot4, fdot4);
803 ALU_CASE(iadd, iadd);
804 ALU_CASE(isub, isub);
805 ALU_CASE(imul, imul);
806
807 /* Zero shoved as second-arg */
808 ALU_CASE(iabs, iabsdiff);
809
810 ALU_CASE(mov, imov);
811
812 ALU_CASE(feq32, feq);
813 ALU_CASE(fne32, fne);
814 ALU_CASE(flt32, flt);
815 ALU_CASE(ieq32, ieq);
816 ALU_CASE(ine32, ine);
817 ALU_CASE(ilt32, ilt);
818 ALU_CASE(ult32, ult);
819
820 /* We don't have a native b2f32 instruction. Instead, like many
821 * GPUs, we exploit booleans as 0/~0 for false/true, and
822 * correspondingly AND
823 * by 1.0 to do the type conversion. For the moment, prime us
824 * to emit:
825 *
826 * iand [whatever], #0
827 *
828 * At the end of emit_alu (as MIR), we'll fix-up the constant
829 */
830
831 ALU_CASE(b2f32, iand);
832 ALU_CASE(b2i32, iand);
833
834 /* Likewise, we don't have a dedicated f2b32 instruction, but
835 * we can do a "not equal to 0.0" test. */
836
837 ALU_CASE(f2b32, fne);
838 ALU_CASE(i2b32, ine);
839
840 ALU_CASE(frcp, frcp);
841 ALU_CASE(frsq, frsqrt);
842 ALU_CASE(fsqrt, fsqrt);
843 ALU_CASE(fexp2, fexp2);
844 ALU_CASE(flog2, flog2);
845
846 ALU_CASE(f2i32, f2i_rtz);
847 ALU_CASE(f2u32, f2u_rtz);
848 ALU_CASE(i2f32, i2f_rtz);
849 ALU_CASE(u2f32, u2f_rtz);
850
851 ALU_CASE(f2i16, f2i_rtz);
852 ALU_CASE(f2u16, f2u_rtz);
853 ALU_CASE(i2f16, i2f_rtz);
854 ALU_CASE(u2f16, u2f_rtz);
855
856 ALU_CASE(fsin, fsin);
857 ALU_CASE(fcos, fcos);
858
859 /* Second op implicit #0 */
860 ALU_CASE(inot, inor);
861 ALU_CASE(iand, iand);
862 ALU_CASE(ior, ior);
863 ALU_CASE(ixor, ixor);
864 ALU_CASE(ishl, ishl);
865 ALU_CASE(ishr, iasr);
866 ALU_CASE(ushr, ilsr);
867
868 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
869 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
870 ALU_CASE(b32all_fequal4, fball_eq);
871
872 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
873 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
874 ALU_CASE(b32any_fnequal4, fbany_neq);
875
876 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
877 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
878 ALU_CASE(b32all_iequal4, iball_eq);
879
880 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
881 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
882 ALU_CASE(b32any_inequal4, ibany_neq);
883
884 /* Source mods will be shoved in later */
885 ALU_CASE(fabs, fmov);
886 ALU_CASE(fneg, fmov);
887 ALU_CASE(fsat, fmov);
888
889 /* For size conversion, we use a move. Ideally though we would squash
890 * these ops together; maybe that has to happen after in NIR as part of
891 * propagation...? An earlier algebraic pass ensured we step down by
892 * only / exactly one size. If stepping down, we use a dest override to
893 * reduce the size; if stepping up, we use a larger-sized move with a
894 * half source and a sign/zero-extension modifier */
895
896 case nir_op_i2i8:
897 case nir_op_i2i16:
898 case nir_op_i2i32:
899 /* If we end up upscale, we'll need a sign-extend on the
900 * operand (the second argument) */
901
902 sext_2 = true;
903 case nir_op_u2u8:
904 case nir_op_u2u16:
905 case nir_op_u2u32: {
906 op = midgard_alu_op_imov;
907
908 if (dst_bitsize == (src_bitsize * 2)) {
909 /* Converting up */
910 half_2 = true;
911
912 /* Use a greater register mode */
913 reg_mode++;
914 } else if (src_bitsize == (dst_bitsize * 2)) {
915 /* Converting down */
916 dest_override = midgard_dest_override_lower;
917 }
918
919 break;
920 }
921
922 case nir_op_f2f16: {
923 assert(src_bitsize == 32);
924
925 op = midgard_alu_op_fmov;
926 dest_override = midgard_dest_override_lower;
927 break;
928 }
929
930 case nir_op_f2f32: {
931 assert(src_bitsize == 16);
932
933 op = midgard_alu_op_fmov;
934 half_2 = true;
935 reg_mode++;
936 break;
937 }
938
939
940 /* For greater-or-equal, we lower to less-or-equal and flip the
941 * arguments */
942
943 case nir_op_fge:
944 case nir_op_fge32:
945 case nir_op_ige32:
946 case nir_op_uge32: {
947 op =
948 instr->op == nir_op_fge ? midgard_alu_op_fle :
949 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
950 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
951 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
952 0;
953
954 /* Swap via temporary */
955 nir_alu_src temp = instr->src[1];
956 instr->src[1] = instr->src[0];
957 instr->src[0] = temp;
958
959 break;
960 }
961
962 case nir_op_b32csel: {
963 /* Midgard features both fcsel and icsel, depending on
964 * the type of the arguments/output. However, as long
965 * as we're careful we can _always_ use icsel and
966 * _never_ need fcsel, since the latter does additional
967 * floating-point-specific processing whereas the
968 * former just moves bits on the wire. It's not obvious
969 * why these are separate opcodes, save for the ability
970 * to do things like sat/pos/abs/neg for free */
971
972 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
973 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
974
975 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
976 nr_inputs = 2;
977
978 /* Emit the condition into r31 */
979
980 if (mixed)
981 emit_condition_mixed(ctx, &instr->src[0], nr_components);
982 else
983 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
984
985 /* The condition is the first argument; move the other
986 * arguments up one to be a binary instruction for
987 * Midgard */
988
989 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
990 break;
991 }
992
993 default:
994 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
995 assert(0);
996 return;
997 }
998
999 /* Midgard can perform certain modifiers on output of an ALU op */
1000 unsigned outmod;
1001
1002 if (midgard_is_integer_out_op(op)) {
1003 outmod = midgard_outmod_int_wrap;
1004 } else {
1005 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
1006 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1007 }
1008
1009 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1010
1011 if (instr->op == nir_op_fmax) {
1012 if (nir_is_fzero_constant(instr->src[0].src)) {
1013 op = midgard_alu_op_fmov;
1014 nr_inputs = 1;
1015 outmod = midgard_outmod_pos;
1016 instr->src[0] = instr->src[1];
1017 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1018 op = midgard_alu_op_fmov;
1019 nr_inputs = 1;
1020 outmod = midgard_outmod_pos;
1021 }
1022 }
1023
1024 /* Fetch unit, quirks, etc information */
1025 unsigned opcode_props = alu_opcode_props[op].props;
1026 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1027
1028 /* src0 will always exist afaik, but src1 will not for 1-argument
1029 * instructions. The latter can only be fetched if the instruction
1030 * needs it, or else we may segfault. */
1031
1032 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1033 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1034
1035 /* Rather than use the instruction generation helpers, we do it
1036 * ourselves here to avoid the mess */
1037
1038 midgard_instruction ins = {
1039 .type = TAG_ALU_4,
1040 .ssa_args = {
1041 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1042 .src1 = quirk_flipped_r24 ? src0 : src1,
1043 .dest = dest,
1044 }
1045 };
1046
1047 nir_alu_src *nirmods[2] = { NULL };
1048
1049 if (nr_inputs == 2) {
1050 nirmods[0] = &instr->src[0];
1051 nirmods[1] = &instr->src[1];
1052 } else if (nr_inputs == 1) {
1053 nirmods[quirk_flipped_r24] = &instr->src[0];
1054 } else {
1055 assert(0);
1056 }
1057
1058 /* These were lowered to a move, so apply the corresponding mod */
1059
1060 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1061 nir_alu_src *s = nirmods[quirk_flipped_r24];
1062
1063 if (instr->op == nir_op_fneg)
1064 s->negate = !s->negate;
1065
1066 if (instr->op == nir_op_fabs)
1067 s->abs = !s->abs;
1068 }
1069
1070 bool is_int = midgard_is_integer_op(op);
1071
1072 ins.mask = mask_of(nr_components);
1073
1074 midgard_vector_alu alu = {
1075 .op = op,
1076 .reg_mode = reg_mode,
1077 .dest_override = dest_override,
1078 .outmod = outmod,
1079
1080 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1081 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1082 };
1083
1084 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1085
1086 if (!is_ssa)
1087 ins.mask &= instr->dest.write_mask;
1088
1089 ins.alu = alu;
1090
1091 /* Late fixup for emulated instructions */
1092
1093 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1094 /* Presently, our second argument is an inline #0 constant.
1095 * Switch over to an embedded 1.0 constant (that can't fit
1096 * inline, since we're 32-bit, not 16-bit like the inline
1097 * constants) */
1098
1099 ins.ssa_args.inline_constant = false;
1100 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1101 ins.has_constants = true;
1102
1103 if (instr->op == nir_op_b2f32) {
1104 ins.constants[0] = 1.0f;
1105 } else {
1106 /* Type pun it into place */
1107 uint32_t one = 0x1;
1108 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1109 }
1110
1111 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1112 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1113 /* Lots of instructions need a 0 plonked in */
1114 ins.ssa_args.inline_constant = false;
1115 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1116 ins.has_constants = true;
1117 ins.constants[0] = 0.0f;
1118 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1119 } else if (instr->op == nir_op_inot) {
1120 /* ~b = ~(b & b), so duplicate the source */
1121 ins.ssa_args.src1 = ins.ssa_args.src0;
1122 ins.alu.src2 = ins.alu.src1;
1123 }
1124
1125 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1126 /* To avoid duplicating the lookup tables (probably), true LUT
1127 * instructions can only operate as if they were scalars. Lower
1128 * them here by changing the component. */
1129
1130 uint8_t original_swizzle[4];
1131 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1132 unsigned orig_mask = ins.mask;
1133
1134 for (int i = 0; i < nr_components; ++i) {
1135 /* Mask the associated component, dropping the
1136 * instruction if needed */
1137
1138 ins.mask = 1 << i;
1139 ins.mask &= orig_mask;
1140
1141 if (!ins.mask)
1142 continue;
1143
1144 for (int j = 0; j < 4; ++j)
1145 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1146
1147 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1148 emit_mir_instruction(ctx, ins);
1149 }
1150 } else {
1151 emit_mir_instruction(ctx, ins);
1152 }
1153 }
1154
1155 #undef ALU_CASE
1156
1157 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1158 * optimized) versions of UBO #0 */
1159
1160 static void
1161 emit_ubo_read(
1162 compiler_context *ctx,
1163 unsigned dest,
1164 unsigned offset,
1165 nir_src *indirect_offset,
1166 unsigned index)
1167 {
1168 /* TODO: half-floats */
1169
1170 if (!indirect_offset && offset < ctx->uniform_cutoff && index == 0) {
1171 /* Fast path: For the first 16 uniforms, direct accesses are
1172 * 0-cycle, since they're just a register fetch in the usual
1173 * case. So, we alias the registers while we're still in
1174 * SSA-space */
1175
1176 int reg_slot = 23 - offset;
1177 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1178 } else {
1179 /* Otherwise, read from the 'special' UBO to access
1180 * higher-indexed uniforms, at a performance cost. More
1181 * generally, we're emitting a UBO read instruction. */
1182
1183 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1184
1185 /* TODO: Don't split */
1186 ins.load_store.varying_parameters = (offset & 7) << 7;
1187 ins.load_store.address = offset >> 3;
1188
1189 if (indirect_offset) {
1190 emit_indirect_offset(ctx, indirect_offset);
1191 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1192 } else {
1193 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1194 }
1195
1196 /* TODO respect index */
1197
1198 emit_mir_instruction(ctx, ins);
1199 }
1200 }
1201
1202 static void
1203 emit_varying_read(
1204 compiler_context *ctx,
1205 unsigned dest, unsigned offset,
1206 unsigned nr_comp, unsigned component,
1207 nir_src *indirect_offset, nir_alu_type type)
1208 {
1209 /* XXX: Half-floats? */
1210 /* TODO: swizzle, mask */
1211
1212 midgard_instruction ins = m_ld_vary_32(dest, offset);
1213 ins.mask = mask_of(nr_comp);
1214 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1215
1216 midgard_varying_parameter p = {
1217 .is_varying = 1,
1218 .interpolation = midgard_interp_default,
1219 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1220 };
1221
1222 unsigned u;
1223 memcpy(&u, &p, sizeof(p));
1224 ins.load_store.varying_parameters = u;
1225
1226 if (indirect_offset) {
1227 /* We need to add in the dynamic index, moved to r27.w */
1228 emit_indirect_offset(ctx, indirect_offset);
1229 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1230 } else {
1231 /* Just a direct load */
1232 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1233 }
1234
1235 /* Use the type appropriate load */
1236 switch (type) {
1237 case nir_type_uint:
1238 case nir_type_bool:
1239 ins.load_store.op = midgard_op_ld_vary_32u;
1240 break;
1241 case nir_type_int:
1242 ins.load_store.op = midgard_op_ld_vary_32i;
1243 break;
1244 case nir_type_float:
1245 ins.load_store.op = midgard_op_ld_vary_32;
1246 break;
1247 default:
1248 unreachable("Attempted to load unknown type");
1249 break;
1250 }
1251
1252 emit_mir_instruction(ctx, ins);
1253 }
1254
1255 static void
1256 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1257 {
1258 unsigned dest;
1259 /* Figure out which uniform this is */
1260 int sysval = sysval_for_instr(ctx, instr, &dest);
1261 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1262
1263 /* Sysvals are prefix uniforms */
1264 unsigned uniform = ((uintptr_t) val) - 1;
1265
1266 /* Emit the read itself -- this is never indirect */
1267 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1268 }
1269
1270 static void
1271 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1272 {
1273 unsigned offset = 0, reg;
1274
1275 switch (instr->intrinsic) {
1276 case nir_intrinsic_discard_if:
1277 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1278
1279 /* fallthrough */
1280
1281 case nir_intrinsic_discard: {
1282 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1283 struct midgard_instruction discard = v_branch(conditional, false);
1284 discard.branch.target_type = TARGET_DISCARD;
1285 emit_mir_instruction(ctx, discard);
1286
1287 ctx->can_discard = true;
1288 break;
1289 }
1290
1291 case nir_intrinsic_load_uniform:
1292 case nir_intrinsic_load_ubo:
1293 case nir_intrinsic_load_input: {
1294 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1295 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1296
1297 /* Get the base type of the intrinsic */
1298 /* TODO: Infer type? Does it matter? */
1299 nir_alu_type t =
1300 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1301 t = nir_alu_type_get_base_type(t);
1302
1303 if (!is_ubo) {
1304 offset = nir_intrinsic_base(instr);
1305 }
1306
1307 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1308
1309 nir_src *src_offset = nir_get_io_offset_src(instr);
1310
1311 bool direct = nir_src_is_const(*src_offset);
1312
1313 if (direct)
1314 offset += nir_src_as_uint(*src_offset);
1315
1316 /* We may need to apply a fractional offset */
1317 int component = instr->intrinsic == nir_intrinsic_load_input ?
1318 nir_intrinsic_component(instr) : 0;
1319 reg = nir_dest_index(ctx, &instr->dest);
1320
1321 if (is_uniform && !ctx->is_blend) {
1322 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1323 } else if (is_ubo) {
1324 nir_src index = instr->src[0];
1325
1326 /* We don't yet support indirect UBOs. For indirect
1327 * block numbers (if that's possible), we don't know
1328 * enough about the hardware yet. For indirect sources,
1329 * we know what we need but we need to add some NIR
1330 * support for lowering correctly with respect to
1331 * 128-bit reads */
1332
1333 assert(nir_src_is_const(index));
1334 assert(nir_src_is_const(*src_offset));
1335
1336 /* TODO: Alignment */
1337 assert((offset & 0xF) == 0);
1338
1339 uint32_t uindex = nir_src_as_uint(index) + 1;
1340 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1341 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1342 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1343 } else if (ctx->is_blend) {
1344 /* For blend shaders, load the input color, which is
1345 * preloaded to r0 */
1346
1347 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1348 emit_mir_instruction(ctx, move);
1349 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1350 midgard_instruction ins = m_ld_attr_32(reg, offset);
1351 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1352 ins.mask = mask_of(nr_comp);
1353
1354 /* Use the type appropriate load */
1355 switch (t) {
1356 case nir_type_uint:
1357 case nir_type_bool:
1358 ins.load_store.op = midgard_op_ld_attr_32u;
1359 break;
1360 case nir_type_int:
1361 ins.load_store.op = midgard_op_ld_attr_32i;
1362 break;
1363 case nir_type_float:
1364 ins.load_store.op = midgard_op_ld_attr_32;
1365 break;
1366 default:
1367 unreachable("Attempted to load unknown type");
1368 break;
1369 }
1370
1371 emit_mir_instruction(ctx, ins);
1372 } else {
1373 DBG("Unknown load\n");
1374 assert(0);
1375 }
1376
1377 break;
1378 }
1379
1380 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1381
1382 case nir_intrinsic_load_raw_output_pan:
1383 reg = nir_dest_index(ctx, &instr->dest);
1384 assert(ctx->is_blend);
1385
1386 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1387 emit_mir_instruction(ctx, ins);
1388 break;
1389
1390 case nir_intrinsic_load_blend_const_color_rgba: {
1391 assert(ctx->is_blend);
1392 reg = nir_dest_index(ctx, &instr->dest);
1393
1394 /* Blend constants are embedded directly in the shader and
1395 * patched in, so we use some magic routing */
1396
1397 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1398 ins.has_constants = true;
1399 ins.has_blend_constant = true;
1400 emit_mir_instruction(ctx, ins);
1401 break;
1402 }
1403
1404 case nir_intrinsic_store_output:
1405 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1406
1407 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1408
1409 reg = nir_src_index(ctx, &instr->src[0]);
1410
1411 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1412 /* gl_FragColor is not emitted with load/store
1413 * instructions. Instead, it gets plonked into
1414 * r0 at the end of the shader and we do the
1415 * framebuffer writeout dance. TODO: Defer
1416 * writes */
1417
1418 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1419 emit_mir_instruction(ctx, move);
1420
1421 /* Save the index we're writing to for later reference
1422 * in the epilogue */
1423
1424 ctx->fragment_output = reg;
1425 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1426 /* Varyings are written into one of two special
1427 * varying register, r26 or r27. The register itself is
1428 * selected as the register in the st_vary instruction,
1429 * minus the base of 26. E.g. write into r27 and then
1430 * call st_vary(1) */
1431
1432 midgard_instruction ins = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(26));
1433 emit_mir_instruction(ctx, ins);
1434
1435 /* We should have been vectorized, though we don't
1436 * currently check that st_vary is emitted only once
1437 * per slot (this is relevant, since there's not a mask
1438 * parameter available on the store [set to 0 by the
1439 * blob]). We do respect the component by adjusting the
1440 * swizzle. */
1441
1442 unsigned component = nir_intrinsic_component(instr);
1443
1444 midgard_instruction st = m_st_vary_32(SSA_FIXED_REGISTER(0), offset);
1445 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1446 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1447 emit_mir_instruction(ctx, st);
1448 } else {
1449 DBG("Unknown store\n");
1450 assert(0);
1451 }
1452
1453 break;
1454
1455 /* Special case of store_output for lowered blend shaders */
1456 case nir_intrinsic_store_raw_output_pan:
1457 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1458 reg = nir_src_index(ctx, &instr->src[0]);
1459
1460 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1461 emit_mir_instruction(ctx, move);
1462 ctx->fragment_output = reg;
1463
1464 break;
1465
1466 case nir_intrinsic_load_alpha_ref_float:
1467 assert(instr->dest.is_ssa);
1468
1469 float ref_value = ctx->alpha_ref;
1470
1471 float *v = ralloc_array(NULL, float, 4);
1472 memcpy(v, &ref_value, sizeof(float));
1473 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1474 break;
1475
1476 case nir_intrinsic_load_viewport_scale:
1477 case nir_intrinsic_load_viewport_offset:
1478 emit_sysval_read(ctx, &instr->instr);
1479 break;
1480
1481 default:
1482 printf ("Unhandled intrinsic\n");
1483 assert(0);
1484 break;
1485 }
1486 }
1487
1488 static unsigned
1489 midgard_tex_format(enum glsl_sampler_dim dim)
1490 {
1491 switch (dim) {
1492 case GLSL_SAMPLER_DIM_1D:
1493 case GLSL_SAMPLER_DIM_BUF:
1494 return MALI_TEX_1D;
1495
1496 case GLSL_SAMPLER_DIM_2D:
1497 case GLSL_SAMPLER_DIM_EXTERNAL:
1498 return MALI_TEX_2D;
1499
1500 case GLSL_SAMPLER_DIM_3D:
1501 return MALI_TEX_3D;
1502
1503 case GLSL_SAMPLER_DIM_CUBE:
1504 return MALI_TEX_CUBE;
1505
1506 default:
1507 DBG("Unknown sampler dim type\n");
1508 assert(0);
1509 return 0;
1510 }
1511 }
1512
1513 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1514 * was successful */
1515
1516 static bool
1517 pan_attach_constant_bias(
1518 compiler_context *ctx,
1519 nir_src lod,
1520 midgard_texture_word *word)
1521 {
1522 /* To attach as constant, it has to *be* constant */
1523
1524 if (!nir_src_is_const(lod))
1525 return false;
1526
1527 float f = nir_src_as_float(lod);
1528
1529 /* Break into fixed-point */
1530 signed lod_int = f;
1531 float lod_frac = f - lod_int;
1532
1533 /* Carry over negative fractions */
1534 if (lod_frac < 0.0) {
1535 lod_int--;
1536 lod_frac += 1.0;
1537 }
1538
1539 /* Encode */
1540 word->bias = float_to_ubyte(lod_frac);
1541 word->bias_int = lod_int;
1542
1543 return true;
1544 }
1545
1546 static enum mali_sampler_type
1547 midgard_sampler_type(nir_alu_type t) {
1548 switch (nir_alu_type_get_base_type(t))
1549 {
1550 case nir_type_float:
1551 return MALI_SAMPLER_FLOAT;
1552 case nir_type_int:
1553 return MALI_SAMPLER_SIGNED;
1554 case nir_type_uint:
1555 return MALI_SAMPLER_UNSIGNED;
1556 default:
1557 unreachable("Unknown sampler type");
1558 }
1559 }
1560
1561 static void
1562 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1563 unsigned midgard_texop)
1564 {
1565 /* TODO */
1566 //assert (!instr->sampler);
1567 //assert (!instr->texture_array_size);
1568
1569 /* Allocate registers via a round robin scheme to alternate between the two registers */
1570 int reg = ctx->texture_op_count & 1;
1571 int in_reg = reg, out_reg = reg;
1572
1573 /* Make room for the reg */
1574
1575 if (ctx->texture_index[reg] > -1)
1576 unalias_ssa(ctx, ctx->texture_index[reg]);
1577
1578 int texture_index = instr->texture_index;
1579 int sampler_index = texture_index;
1580
1581 /* No helper to build texture words -- we do it all here */
1582 midgard_instruction ins = {
1583 .type = TAG_TEXTURE_4,
1584 .mask = 0xF,
1585 .texture = {
1586 .op = midgard_texop,
1587 .format = midgard_tex_format(instr->sampler_dim),
1588 .texture_handle = texture_index,
1589 .sampler_handle = sampler_index,
1590
1591 /* TODO: Regalloc it in */
1592 .swizzle = SWIZZLE_XYZW,
1593
1594 /* TODO: half */
1595 .in_reg_full = 1,
1596 .out_full = 1,
1597
1598 .sampler_type = midgard_sampler_type(instr->dest_type),
1599 }
1600 };
1601
1602 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1603 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1604 int index = nir_src_index(ctx, &instr->src[i].src);
1605 int nr_comp = nir_src_num_components(instr->src[i].src);
1606 midgard_vector_alu_src alu_src = blank_alu_src;
1607
1608 switch (instr->src[i].src_type) {
1609 case nir_tex_src_coord: {
1610 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1611 /* texelFetch is undefined on samplerCube */
1612 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1613
1614 /* For cubemaps, we need to load coords into
1615 * special r27, and then use a special ld/st op
1616 * to select the face and copy the xy into the
1617 * texture register */
1618
1619 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1620
1621 midgard_instruction move = v_mov(index, alu_src, SSA_FIXED_REGISTER(27));
1622 emit_mir_instruction(ctx, move);
1623
1624 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1625 st.load_store.unknown = 0x24; /* XXX: What is this? */
1626 st.mask = 0x3; /* xy */
1627 st.load_store.swizzle = alu_src.swizzle;
1628 emit_mir_instruction(ctx, st);
1629
1630 ins.texture.in_reg_swizzle = swizzle_of(2);
1631 } else {
1632 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1633
1634 midgard_instruction mov = v_mov(index, alu_src, reg);
1635 mov.mask = mask_of(nr_comp);
1636 emit_mir_instruction(ctx, mov);
1637
1638 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1639 /* Texel fetch opcodes care about the
1640 * values of z and w, so we actually
1641 * need to spill into a second register
1642 * for a texel fetch with register bias
1643 * (for non-2D). TODO: Implement that
1644 */
1645
1646 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1647
1648 midgard_instruction zero = v_mov(index, alu_src, reg);
1649 zero.ssa_args.inline_constant = true;
1650 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1651 zero.has_constants = true;
1652 zero.mask = ~mov.mask;
1653 emit_mir_instruction(ctx, zero);
1654
1655 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1656 } else {
1657 /* Non-texel fetch doesn't need that
1658 * nonsense. However we do use the Z
1659 * for array indexing */
1660 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1661 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1662 }
1663 }
1664
1665 break;
1666 }
1667
1668 case nir_tex_src_bias:
1669 case nir_tex_src_lod: {
1670 /* Try as a constant if we can */
1671
1672 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1673 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1674 break;
1675
1676 /* Otherwise we use a register. To keep RA simple, we
1677 * put the bias/LOD into the w component of the input
1678 * source, which is otherwise in xy */
1679
1680 alu_src.swizzle = SWIZZLE_XXXX;
1681
1682 midgard_instruction mov = v_mov(index, alu_src, reg);
1683 mov.mask = 1 << COMPONENT_W;
1684 emit_mir_instruction(ctx, mov);
1685
1686 ins.texture.lod_register = true;
1687
1688 midgard_tex_register_select sel = {
1689 .select = in_reg,
1690 .full = 1,
1691
1692 /* w */
1693 .component_lo = 1,
1694 .component_hi = 1
1695 };
1696
1697 uint8_t packed;
1698 memcpy(&packed, &sel, sizeof(packed));
1699 ins.texture.bias = packed;
1700
1701 break;
1702 };
1703
1704 default:
1705 unreachable("Unknown texture source type\n");
1706 }
1707 }
1708
1709 /* Set registers to read and write from the same place */
1710 ins.texture.in_reg_select = in_reg;
1711 ins.texture.out_reg_select = out_reg;
1712
1713 emit_mir_instruction(ctx, ins);
1714
1715 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1716 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1717 emit_mir_instruction(ctx, ins2);
1718
1719 /* Used for .cont and .last hinting */
1720 ctx->texture_op_count++;
1721 }
1722
1723 static void
1724 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1725 {
1726 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1727 * generic tex in some cases (which confuses the hardware) */
1728
1729 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1730
1731 if (is_vertex && instr->op == nir_texop_tex)
1732 instr->op = nir_texop_txl;
1733
1734 switch (instr->op) {
1735 case nir_texop_tex:
1736 case nir_texop_txb:
1737 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1738 break;
1739 case nir_texop_txl:
1740 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1741 break;
1742 case nir_texop_txf:
1743 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1744 break;
1745 case nir_texop_txs:
1746 emit_sysval_read(ctx, &instr->instr);
1747 break;
1748 default:
1749 unreachable("Unhanlded texture op");
1750 }
1751 }
1752
1753 static void
1754 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1755 {
1756 switch (instr->type) {
1757 case nir_jump_break: {
1758 /* Emit a branch out of the loop */
1759 struct midgard_instruction br = v_branch(false, false);
1760 br.branch.target_type = TARGET_BREAK;
1761 br.branch.target_break = ctx->current_loop_depth;
1762 emit_mir_instruction(ctx, br);
1763
1764 DBG("break..\n");
1765 break;
1766 }
1767
1768 default:
1769 DBG("Unknown jump type %d\n", instr->type);
1770 break;
1771 }
1772 }
1773
1774 static void
1775 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1776 {
1777 switch (instr->type) {
1778 case nir_instr_type_load_const:
1779 emit_load_const(ctx, nir_instr_as_load_const(instr));
1780 break;
1781
1782 case nir_instr_type_intrinsic:
1783 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1784 break;
1785
1786 case nir_instr_type_alu:
1787 emit_alu(ctx, nir_instr_as_alu(instr));
1788 break;
1789
1790 case nir_instr_type_tex:
1791 emit_tex(ctx, nir_instr_as_tex(instr));
1792 break;
1793
1794 case nir_instr_type_jump:
1795 emit_jump(ctx, nir_instr_as_jump(instr));
1796 break;
1797
1798 case nir_instr_type_ssa_undef:
1799 /* Spurious */
1800 break;
1801
1802 default:
1803 DBG("Unhandled instruction type\n");
1804 break;
1805 }
1806 }
1807
1808
1809 /* ALU instructions can inline or embed constants, which decreases register
1810 * pressure and saves space. */
1811
1812 #define CONDITIONAL_ATTACH(src) { \
1813 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1814 \
1815 if (entry) { \
1816 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1817 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1818 } \
1819 }
1820
1821 static void
1822 inline_alu_constants(compiler_context *ctx)
1823 {
1824 mir_foreach_instr(ctx, alu) {
1825 /* Other instructions cannot inline constants */
1826 if (alu->type != TAG_ALU_4) continue;
1827
1828 /* If there is already a constant here, we can do nothing */
1829 if (alu->has_constants) continue;
1830
1831 /* It makes no sense to inline constants on a branch */
1832 if (alu->compact_branch || alu->prepacked_branch) continue;
1833
1834 CONDITIONAL_ATTACH(src0);
1835
1836 if (!alu->has_constants) {
1837 CONDITIONAL_ATTACH(src1)
1838 } else if (!alu->inline_constant) {
1839 /* Corner case: _two_ vec4 constants, for instance with a
1840 * csel. For this case, we can only use a constant
1841 * register for one, we'll have to emit a move for the
1842 * other. Note, if both arguments are constants, then
1843 * necessarily neither argument depends on the value of
1844 * any particular register. As the destination register
1845 * will be wiped, that means we can spill the constant
1846 * to the destination register.
1847 */
1848
1849 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1850 unsigned scratch = alu->ssa_args.dest;
1851
1852 if (entry) {
1853 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1854 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1855
1856 /* Force a break XXX Defer r31 writes */
1857 ins.unit = UNIT_VLUT;
1858
1859 /* Set the source */
1860 alu->ssa_args.src1 = scratch;
1861
1862 /* Inject us -before- the last instruction which set r31 */
1863 mir_insert_instruction_before(mir_prev_op(alu), ins);
1864 }
1865 }
1866 }
1867 }
1868
1869 /* Midgard supports two types of constants, embedded constants (128-bit) and
1870 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1871 * constants can be demoted to inline constants, for space savings and
1872 * sometimes a performance boost */
1873
1874 static void
1875 embedded_to_inline_constant(compiler_context *ctx)
1876 {
1877 mir_foreach_instr(ctx, ins) {
1878 if (!ins->has_constants) continue;
1879
1880 if (ins->ssa_args.inline_constant) continue;
1881
1882 /* Blend constants must not be inlined by definition */
1883 if (ins->has_blend_constant) continue;
1884
1885 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1886 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1887 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1888
1889 if (!(is_16 || is_32))
1890 continue;
1891
1892 /* src1 cannot be an inline constant due to encoding
1893 * restrictions. So, if possible we try to flip the arguments
1894 * in that case */
1895
1896 int op = ins->alu.op;
1897
1898 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1899 switch (op) {
1900 /* These ops require an operational change to flip
1901 * their arguments TODO */
1902 case midgard_alu_op_flt:
1903 case midgard_alu_op_fle:
1904 case midgard_alu_op_ilt:
1905 case midgard_alu_op_ile:
1906 case midgard_alu_op_fcsel:
1907 case midgard_alu_op_icsel:
1908 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1909 default:
1910 break;
1911 }
1912
1913 if (alu_opcode_props[op].props & OP_COMMUTES) {
1914 /* Flip the SSA numbers */
1915 ins->ssa_args.src0 = ins->ssa_args.src1;
1916 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1917
1918 /* And flip the modifiers */
1919
1920 unsigned src_temp;
1921
1922 src_temp = ins->alu.src2;
1923 ins->alu.src2 = ins->alu.src1;
1924 ins->alu.src1 = src_temp;
1925 }
1926 }
1927
1928 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1929 /* Extract the source information */
1930
1931 midgard_vector_alu_src *src;
1932 int q = ins->alu.src2;
1933 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1934 src = m;
1935
1936 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1937 int component = src->swizzle & 3;
1938
1939 /* Scale constant appropriately, if we can legally */
1940 uint16_t scaled_constant = 0;
1941
1942 if (midgard_is_integer_op(op) || is_16) {
1943 unsigned int *iconstants = (unsigned int *) ins->constants;
1944 scaled_constant = (uint16_t) iconstants[component];
1945
1946 /* Constant overflow after resize */
1947 if (scaled_constant != iconstants[component])
1948 continue;
1949 } else {
1950 float original = (float) ins->constants[component];
1951 scaled_constant = _mesa_float_to_half(original);
1952
1953 /* Check for loss of precision. If this is
1954 * mediump, we don't care, but for a highp
1955 * shader, we need to pay attention. NIR
1956 * doesn't yet tell us which mode we're in!
1957 * Practically this prevents most constants
1958 * from being inlined, sadly. */
1959
1960 float fp32 = _mesa_half_to_float(scaled_constant);
1961
1962 if (fp32 != original)
1963 continue;
1964 }
1965
1966 /* We don't know how to handle these with a constant */
1967
1968 if (src->mod || src->half || src->rep_low || src->rep_high) {
1969 DBG("Bailing inline constant...\n");
1970 continue;
1971 }
1972
1973 /* Make sure that the constant is not itself a
1974 * vector by checking if all accessed values
1975 * (by the swizzle) are the same. */
1976
1977 uint32_t *cons = (uint32_t *) ins->constants;
1978 uint32_t value = cons[component];
1979
1980 bool is_vector = false;
1981 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1982
1983 for (int c = 1; c < 4; ++c) {
1984 /* We only care if this component is actually used */
1985 if (!(mask & (1 << c)))
1986 continue;
1987
1988 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1989
1990 if (test != value) {
1991 is_vector = true;
1992 break;
1993 }
1994 }
1995
1996 if (is_vector)
1997 continue;
1998
1999 /* Get rid of the embedded constant */
2000 ins->has_constants = false;
2001 ins->ssa_args.src1 = SSA_UNUSED_0;
2002 ins->ssa_args.inline_constant = true;
2003 ins->inline_constant = scaled_constant;
2004 }
2005 }
2006 }
2007
2008 /* Map normal SSA sources to other SSA sources / fixed registers (like
2009 * uniforms) */
2010
2011 static void
2012 map_ssa_to_alias(compiler_context *ctx, int *ref)
2013 {
2014 /* Sign is used quite deliberately for unused */
2015 if (*ref < 0)
2016 return;
2017
2018 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2019
2020 if (alias) {
2021 /* Remove entry in leftovers to avoid a redunant fmov */
2022
2023 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2024
2025 if (leftover)
2026 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2027
2028 /* Assign the alias map */
2029 *ref = alias - 1;
2030 return;
2031 }
2032 }
2033
2034 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
2035 * texture pipeline */
2036
2037 static bool
2038 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
2039 {
2040 bool progress = false;
2041
2042 mir_foreach_instr_in_block_safe(block, ins) {
2043 if (ins->type != TAG_ALU_4) continue;
2044 if (ins->compact_branch) continue;
2045
2046 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2047 if (mir_is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2048
2049 mir_remove_instruction(ins);
2050 progress = true;
2051 }
2052
2053 return progress;
2054 }
2055
2056 /* Dead code elimination for branches at the end of a block - only one branch
2057 * per block is legal semantically */
2058
2059 static void
2060 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2061 {
2062 bool branched = false;
2063
2064 mir_foreach_instr_in_block_safe(block, ins) {
2065 if (!midgard_is_branch_unit(ins->unit)) continue;
2066
2067 /* We ignore prepacked branches since the fragment epilogue is
2068 * just generally special */
2069 if (ins->prepacked_branch) continue;
2070
2071 /* Discards are similarly special and may not correspond to the
2072 * end of a block */
2073
2074 if (ins->branch.target_type == TARGET_DISCARD) continue;
2075
2076 if (branched) {
2077 /* We already branched, so this is dead */
2078 mir_remove_instruction(ins);
2079 }
2080
2081 branched = true;
2082 }
2083 }
2084
2085 static bool
2086 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
2087 {
2088 /* abs or neg */
2089 if (!is_int && src.mod) return true;
2090
2091 /* Other int mods don't matter in isolation */
2092 if (is_int && src.mod == midgard_int_shift) return true;
2093
2094 /* size-conversion */
2095 if (src.half) return true;
2096
2097 /* swizzle */
2098 for (unsigned c = 0; c < 4; ++c) {
2099 if (!(mask & (1 << c))) continue;
2100 if (((src.swizzle >> (2*c)) & 3) != c) return true;
2101 }
2102
2103 return false;
2104 }
2105
2106 static bool
2107 mir_nontrivial_source2_mod(midgard_instruction *ins)
2108 {
2109 bool is_int = midgard_is_integer_op(ins->alu.op);
2110
2111 midgard_vector_alu_src src2 =
2112 vector_alu_from_unsigned(ins->alu.src2);
2113
2114 return mir_nontrivial_mod(src2, is_int, ins->mask);
2115 }
2116
2117 static bool
2118 mir_nontrivial_outmod(midgard_instruction *ins)
2119 {
2120 bool is_int = midgard_is_integer_op(ins->alu.op);
2121 unsigned mod = ins->alu.outmod;
2122
2123 /* Type conversion is a sort of outmod */
2124 if (ins->alu.dest_override != midgard_dest_override_none)
2125 return true;
2126
2127 if (is_int)
2128 return mod != midgard_outmod_int_wrap;
2129 else
2130 return mod != midgard_outmod_none;
2131 }
2132
2133 static bool
2134 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
2135 {
2136 bool progress = false;
2137
2138 mir_foreach_instr_in_block_safe(block, ins) {
2139 if (ins->type != TAG_ALU_4) continue;
2140 if (!OP_IS_MOVE(ins->alu.op)) continue;
2141
2142 unsigned from = ins->ssa_args.src1;
2143 unsigned to = ins->ssa_args.dest;
2144
2145 /* We only work on pure SSA */
2146
2147 if (to >= SSA_FIXED_MINIMUM) continue;
2148 if (from >= SSA_FIXED_MINIMUM) continue;
2149 if (to >= ctx->func->impl->ssa_alloc) continue;
2150 if (from >= ctx->func->impl->ssa_alloc) continue;
2151
2152 /* Constant propagation is not handled here, either */
2153 if (ins->ssa_args.inline_constant) continue;
2154 if (ins->has_constants) continue;
2155
2156 if (mir_nontrivial_source2_mod(ins)) continue;
2157 if (mir_nontrivial_outmod(ins)) continue;
2158
2159 /* We're clear -- rewrite */
2160 mir_rewrite_index_src(ctx, to, from);
2161 mir_remove_instruction(ins);
2162 progress |= true;
2163 }
2164
2165 return progress;
2166 }
2167
2168 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2169 * the move can be propagated away entirely */
2170
2171 static bool
2172 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2173 {
2174 /* Nothing to do */
2175 if (comp == midgard_outmod_none)
2176 return true;
2177
2178 if (*outmod == midgard_outmod_none) {
2179 *outmod = comp;
2180 return true;
2181 }
2182
2183 /* TODO: Compose rules */
2184 return false;
2185 }
2186
2187 static bool
2188 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2189 {
2190 bool progress = false;
2191
2192 mir_foreach_instr_in_block_safe(block, ins) {
2193 if (ins->type != TAG_ALU_4) continue;
2194 if (ins->alu.op != midgard_alu_op_fmov) continue;
2195 if (ins->alu.outmod != midgard_outmod_pos) continue;
2196
2197 /* TODO: Registers? */
2198 unsigned src = ins->ssa_args.src1;
2199 if (src >= ctx->func->impl->ssa_alloc) continue;
2200 assert(!mir_has_multiple_writes(ctx, src));
2201
2202 /* There might be a source modifier, too */
2203 if (mir_nontrivial_source2_mod(ins)) continue;
2204
2205 /* Backpropagate the modifier */
2206 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2207 if (v->type != TAG_ALU_4) continue;
2208 if (v->ssa_args.dest != src) continue;
2209
2210 /* Can we even take a float outmod? */
2211 if (midgard_is_integer_out_op(v->alu.op)) continue;
2212
2213 midgard_outmod_float temp = v->alu.outmod;
2214 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2215
2216 /* Throw in the towel.. */
2217 if (!progress) break;
2218
2219 /* Otherwise, transfer the modifier */
2220 v->alu.outmod = temp;
2221 ins->alu.outmod = midgard_outmod_none;
2222
2223 break;
2224 }
2225 }
2226
2227 return progress;
2228 }
2229
2230 /* The following passes reorder MIR instructions to enable better scheduling */
2231
2232 static void
2233 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2234 {
2235 mir_foreach_instr_in_block_safe(block, ins) {
2236 if (ins->type != TAG_LOAD_STORE_4) continue;
2237
2238 /* We've found a load/store op. Check if next is also load/store. */
2239 midgard_instruction *next_op = mir_next_op(ins);
2240 if (&next_op->link != &block->instructions) {
2241 if (next_op->type == TAG_LOAD_STORE_4) {
2242 /* If so, we're done since we're a pair */
2243 ins = mir_next_op(ins);
2244 continue;
2245 }
2246
2247 /* Maximum search distance to pair, to avoid register pressure disasters */
2248 int search_distance = 8;
2249
2250 /* Otherwise, we have an orphaned load/store -- search for another load */
2251 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2252 /* Terminate search if necessary */
2253 if (!(search_distance--)) break;
2254
2255 if (c->type != TAG_LOAD_STORE_4) continue;
2256
2257 /* Stores cannot be reordered, since they have
2258 * dependencies. For the same reason, indirect
2259 * loads cannot be reordered as their index is
2260 * loaded in r27.w */
2261
2262 if (OP_IS_STORE(c->load_store.op)) continue;
2263
2264 /* It appears the 0x800 bit is set whenever a
2265 * load is direct, unset when it is indirect.
2266 * Skip indirect loads. */
2267
2268 if (!(c->load_store.unknown & 0x800)) continue;
2269
2270 /* We found one! Move it up to pair and remove it from the old location */
2271
2272 mir_insert_instruction_before(ins, *c);
2273 mir_remove_instruction(c);
2274
2275 break;
2276 }
2277 }
2278 }
2279 }
2280
2281 /* If there are leftovers after the below pass, emit actual fmov
2282 * instructions for the slow-but-correct path */
2283
2284 static void
2285 emit_leftover_move(compiler_context *ctx)
2286 {
2287 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2288 int base = ((uintptr_t) leftover->key) - 1;
2289 int mapped = base;
2290
2291 map_ssa_to_alias(ctx, &mapped);
2292 EMIT(mov, mapped, blank_alu_src, base);
2293 }
2294 }
2295
2296 static void
2297 actualise_ssa_to_alias(compiler_context *ctx)
2298 {
2299 mir_foreach_instr(ctx, ins) {
2300 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2301 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2302 }
2303
2304 emit_leftover_move(ctx);
2305 }
2306
2307 static void
2308 emit_fragment_epilogue(compiler_context *ctx)
2309 {
2310 /* Special case: writing out constants requires us to include the move
2311 * explicitly now, so shove it into r0 */
2312
2313 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
2314
2315 if (constant_value) {
2316 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
2317 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
2318 emit_mir_instruction(ctx, ins);
2319 }
2320
2321 /* Perform the actual fragment writeout. We have two writeout/branch
2322 * instructions, forming a loop until writeout is successful as per the
2323 * docs. TODO: gl_FragDepth */
2324
2325 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2326 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2327 }
2328
2329 static midgard_block *
2330 emit_block(compiler_context *ctx, nir_block *block)
2331 {
2332 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2333 list_addtail(&this_block->link, &ctx->blocks);
2334
2335 this_block->is_scheduled = false;
2336 ++ctx->block_count;
2337
2338 ctx->texture_index[0] = -1;
2339 ctx->texture_index[1] = -1;
2340
2341 /* Add us as a successor to the block we are following */
2342 if (ctx->current_block)
2343 midgard_block_add_successor(ctx->current_block, this_block);
2344
2345 /* Set up current block */
2346 list_inithead(&this_block->instructions);
2347 ctx->current_block = this_block;
2348
2349 nir_foreach_instr(instr, block) {
2350 emit_instr(ctx, instr);
2351 ++ctx->instruction_count;
2352 }
2353
2354 inline_alu_constants(ctx);
2355 embedded_to_inline_constant(ctx);
2356
2357 /* Perform heavylifting for aliasing */
2358 actualise_ssa_to_alias(ctx);
2359
2360 midgard_pair_load_store(ctx, this_block);
2361
2362 /* Append fragment shader epilogue (value writeout) */
2363 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2364 if (block == nir_impl_last_block(ctx->func->impl)) {
2365 emit_fragment_epilogue(ctx);
2366 }
2367 }
2368
2369 if (block == nir_start_block(ctx->func->impl))
2370 ctx->initial_block = this_block;
2371
2372 if (block == nir_impl_last_block(ctx->func->impl))
2373 ctx->final_block = this_block;
2374
2375 /* Allow the next control flow to access us retroactively, for
2376 * branching etc */
2377 ctx->current_block = this_block;
2378
2379 /* Document the fallthrough chain */
2380 ctx->previous_source_block = this_block;
2381
2382 return this_block;
2383 }
2384
2385 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2386
2387 static void
2388 emit_if(struct compiler_context *ctx, nir_if *nif)
2389 {
2390 /* Conditional branches expect the condition in r31.w; emit a move for
2391 * that in the _previous_ block (which is the current block). */
2392 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2393
2394 /* Speculatively emit the branch, but we can't fill it in until later */
2395 EMIT(branch, true, true);
2396 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2397
2398 /* Emit the two subblocks */
2399 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2400
2401 /* Emit a jump from the end of the then block to the end of the else */
2402 EMIT(branch, false, false);
2403 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2404
2405 /* Emit second block, and check if it's empty */
2406
2407 int else_idx = ctx->block_count;
2408 int count_in = ctx->instruction_count;
2409 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2410 int after_else_idx = ctx->block_count;
2411
2412 /* Now that we have the subblocks emitted, fix up the branches */
2413
2414 assert(then_block);
2415 assert(else_block);
2416
2417 if (ctx->instruction_count == count_in) {
2418 /* The else block is empty, so don't emit an exit jump */
2419 mir_remove_instruction(then_exit);
2420 then_branch->branch.target_block = after_else_idx;
2421 } else {
2422 then_branch->branch.target_block = else_idx;
2423 then_exit->branch.target_block = after_else_idx;
2424 }
2425 }
2426
2427 static void
2428 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2429 {
2430 /* Remember where we are */
2431 midgard_block *start_block = ctx->current_block;
2432
2433 /* Allocate a loop number, growing the current inner loop depth */
2434 int loop_idx = ++ctx->current_loop_depth;
2435
2436 /* Get index from before the body so we can loop back later */
2437 int start_idx = ctx->block_count;
2438
2439 /* Emit the body itself */
2440 emit_cf_list(ctx, &nloop->body);
2441
2442 /* Branch back to loop back */
2443 struct midgard_instruction br_back = v_branch(false, false);
2444 br_back.branch.target_block = start_idx;
2445 emit_mir_instruction(ctx, br_back);
2446
2447 /* Mark down that branch in the graph. Note that we're really branching
2448 * to the block *after* we started in. TODO: Why doesn't the branch
2449 * itself have an off-by-one then...? */
2450 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2451
2452 /* Find the index of the block about to follow us (note: we don't add
2453 * one; blocks are 0-indexed so we get a fencepost problem) */
2454 int break_block_idx = ctx->block_count;
2455
2456 /* Fix up the break statements we emitted to point to the right place,
2457 * now that we can allocate a block number for them */
2458
2459 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2460 mir_foreach_instr_in_block(block, ins) {
2461 if (ins->type != TAG_ALU_4) continue;
2462 if (!ins->compact_branch) continue;
2463 if (ins->prepacked_branch) continue;
2464
2465 /* We found a branch -- check the type to see if we need to do anything */
2466 if (ins->branch.target_type != TARGET_BREAK) continue;
2467
2468 /* It's a break! Check if it's our break */
2469 if (ins->branch.target_break != loop_idx) continue;
2470
2471 /* Okay, cool, we're breaking out of this loop.
2472 * Rewrite from a break to a goto */
2473
2474 ins->branch.target_type = TARGET_GOTO;
2475 ins->branch.target_block = break_block_idx;
2476 }
2477 }
2478
2479 /* Now that we've finished emitting the loop, free up the depth again
2480 * so we play nice with recursion amid nested loops */
2481 --ctx->current_loop_depth;
2482
2483 /* Dump loop stats */
2484 ++ctx->loop_count;
2485 }
2486
2487 static midgard_block *
2488 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2489 {
2490 midgard_block *start_block = NULL;
2491
2492 foreach_list_typed(nir_cf_node, node, node, list) {
2493 switch (node->type) {
2494 case nir_cf_node_block: {
2495 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2496
2497 if (!start_block)
2498 start_block = block;
2499
2500 break;
2501 }
2502
2503 case nir_cf_node_if:
2504 emit_if(ctx, nir_cf_node_as_if(node));
2505 break;
2506
2507 case nir_cf_node_loop:
2508 emit_loop(ctx, nir_cf_node_as_loop(node));
2509 break;
2510
2511 case nir_cf_node_function:
2512 assert(0);
2513 break;
2514 }
2515 }
2516
2517 return start_block;
2518 }
2519
2520 /* Due to lookahead, we need to report the first tag executed in the command
2521 * stream and in branch targets. An initial block might be empty, so iterate
2522 * until we find one that 'works' */
2523
2524 static unsigned
2525 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2526 {
2527 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2528
2529 unsigned first_tag = 0;
2530
2531 do {
2532 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2533
2534 if (initial_bundle) {
2535 first_tag = initial_bundle->tag;
2536 break;
2537 }
2538
2539 /* Initial block is empty, try the next block */
2540 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2541 } while(initial_block != NULL);
2542
2543 assert(first_tag);
2544 return first_tag;
2545 }
2546
2547 int
2548 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
2549 {
2550 struct util_dynarray *compiled = &program->compiled;
2551
2552 midgard_debug = debug_get_option_midgard_debug();
2553
2554 compiler_context ictx = {
2555 .nir = nir,
2556 .stage = nir->info.stage,
2557
2558 .is_blend = is_blend,
2559 .blend_constant_offset = 0,
2560
2561 .alpha_ref = program->alpha_ref
2562 };
2563
2564 compiler_context *ctx = &ictx;
2565
2566 /* TODO: Decide this at runtime */
2567 ctx->uniform_cutoff = 8;
2568
2569 /* Initialize at a global (not block) level hash tables */
2570
2571 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2572 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
2573 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2574 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2575 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
2576
2577 /* Record the varying mapping for the command stream's bookkeeping */
2578
2579 struct exec_list *varyings =
2580 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2581
2582 unsigned max_varying = 0;
2583 nir_foreach_variable(var, varyings) {
2584 unsigned loc = var->data.driver_location;
2585 unsigned sz = glsl_type_size(var->type, FALSE);
2586
2587 for (int c = 0; c < sz; ++c) {
2588 program->varyings[loc + c] = var->data.location + c;
2589 max_varying = MAX2(max_varying, loc + c);
2590 }
2591 }
2592
2593 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2594 * (so we don't accidentally duplicate the epilogue since mesa/st has
2595 * messed with our I/O quite a bit already) */
2596
2597 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2598
2599 if (ctx->stage == MESA_SHADER_VERTEX) {
2600 NIR_PASS_V(nir, nir_lower_viewport_transform);
2601 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2602 }
2603
2604 NIR_PASS_V(nir, nir_lower_var_copies);
2605 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2606 NIR_PASS_V(nir, nir_split_var_copies);
2607 NIR_PASS_V(nir, nir_lower_var_copies);
2608 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2609 NIR_PASS_V(nir, nir_lower_var_copies);
2610 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2611
2612 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2613
2614 /* Optimisation passes */
2615
2616 optimise_nir(nir);
2617
2618 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2619 nir_print_shader(nir, stdout);
2620 }
2621
2622 /* Assign sysvals and counts, now that we're sure
2623 * (post-optimisation) */
2624
2625 midgard_nir_assign_sysvals(ctx, nir);
2626
2627 program->uniform_count = nir->num_uniforms;
2628 program->sysval_count = ctx->sysval_count;
2629 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2630
2631 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
2632 program->varying_count = max_varying + 1; /* Fencepost off-by-one */
2633
2634 nir_foreach_function(func, nir) {
2635 if (!func->impl)
2636 continue;
2637
2638 list_inithead(&ctx->blocks);
2639 ctx->block_count = 0;
2640 ctx->func = func;
2641
2642 emit_cf_list(ctx, &func->impl->body);
2643 emit_block(ctx, func->impl->end_block);
2644
2645 break; /* TODO: Multi-function shaders */
2646 }
2647
2648 util_dynarray_init(compiled, NULL);
2649
2650 /* MIR-level optimizations */
2651
2652 bool progress = false;
2653
2654 do {
2655 progress = false;
2656
2657 mir_foreach_block(ctx, block) {
2658 progress |= midgard_opt_pos_propagate(ctx, block);
2659 progress |= midgard_opt_copy_prop(ctx, block);
2660 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2661 }
2662 } while (progress);
2663
2664 /* Nested control-flow can result in dead branches at the end of the
2665 * block. This messes with our analysis and is just dead code, so cull
2666 * them */
2667 mir_foreach_block(ctx, block) {
2668 midgard_opt_cull_dead_branch(ctx, block);
2669 }
2670
2671 /* Schedule! */
2672 schedule_program(ctx);
2673
2674 /* Now that all the bundles are scheduled and we can calculate block
2675 * sizes, emit actual branch instructions rather than placeholders */
2676
2677 int br_block_idx = 0;
2678
2679 mir_foreach_block(ctx, block) {
2680 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2681 for (int c = 0; c < bundle->instruction_count; ++c) {
2682 midgard_instruction *ins = bundle->instructions[c];
2683
2684 if (!midgard_is_branch_unit(ins->unit)) continue;
2685
2686 if (ins->prepacked_branch) continue;
2687
2688 /* Parse some basic branch info */
2689 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2690 bool is_conditional = ins->branch.conditional;
2691 bool is_inverted = ins->branch.invert_conditional;
2692 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2693
2694 /* Determine the block we're jumping to */
2695 int target_number = ins->branch.target_block;
2696
2697 /* Report the destination tag */
2698 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2699
2700 /* Count up the number of quadwords we're
2701 * jumping over = number of quadwords until
2702 * (br_block_idx, target_number) */
2703
2704 int quadword_offset = 0;
2705
2706 if (is_discard) {
2707 /* Jump to the end of the shader. We
2708 * need to include not only the
2709 * following blocks, but also the
2710 * contents of our current block (since
2711 * discard can come in the middle of
2712 * the block) */
2713
2714 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2715
2716 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2717 quadword_offset += quadword_size(bun->tag);
2718 }
2719
2720 mir_foreach_block_from(ctx, blk, b) {
2721 quadword_offset += b->quadword_count;
2722 }
2723
2724 } else if (target_number > br_block_idx) {
2725 /* Jump forward */
2726
2727 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2728 midgard_block *blk = mir_get_block(ctx, idx);
2729 assert(blk);
2730
2731 quadword_offset += blk->quadword_count;
2732 }
2733 } else {
2734 /* Jump backwards */
2735
2736 for (int idx = br_block_idx; idx >= target_number; --idx) {
2737 midgard_block *blk = mir_get_block(ctx, idx);
2738 assert(blk);
2739
2740 quadword_offset -= blk->quadword_count;
2741 }
2742 }
2743
2744 /* Unconditional extended branches (far jumps)
2745 * have issues, so we always use a conditional
2746 * branch, setting the condition to always for
2747 * unconditional. For compact unconditional
2748 * branches, cond isn't used so it doesn't
2749 * matter what we pick. */
2750
2751 midgard_condition cond =
2752 !is_conditional ? midgard_condition_always :
2753 is_inverted ? midgard_condition_false :
2754 midgard_condition_true;
2755
2756 midgard_jmp_writeout_op op =
2757 is_discard ? midgard_jmp_writeout_op_discard :
2758 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2759 midgard_jmp_writeout_op_branch_cond;
2760
2761 if (!is_compact) {
2762 midgard_branch_extended branch =
2763 midgard_create_branch_extended(
2764 cond, op,
2765 dest_tag,
2766 quadword_offset);
2767
2768 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2769 } else if (is_conditional || is_discard) {
2770 midgard_branch_cond branch = {
2771 .op = op,
2772 .dest_tag = dest_tag,
2773 .offset = quadword_offset,
2774 .cond = cond
2775 };
2776
2777 assert(branch.offset == quadword_offset);
2778
2779 memcpy(&ins->br_compact, &branch, sizeof(branch));
2780 } else {
2781 assert(op == midgard_jmp_writeout_op_branch_uncond);
2782
2783 midgard_branch_uncond branch = {
2784 .op = op,
2785 .dest_tag = dest_tag,
2786 .offset = quadword_offset,
2787 .unknown = 1
2788 };
2789
2790 assert(branch.offset == quadword_offset);
2791
2792 memcpy(&ins->br_compact, &branch, sizeof(branch));
2793 }
2794 }
2795 }
2796
2797 ++br_block_idx;
2798 }
2799
2800 /* Emit flat binary from the instruction arrays. Iterate each block in
2801 * sequence. Save instruction boundaries such that lookahead tags can
2802 * be assigned easily */
2803
2804 /* Cache _all_ bundles in source order for lookahead across failed branches */
2805
2806 int bundle_count = 0;
2807 mir_foreach_block(ctx, block) {
2808 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2809 }
2810 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2811 int bundle_idx = 0;
2812 mir_foreach_block(ctx, block) {
2813 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2814 source_order_bundles[bundle_idx++] = bundle;
2815 }
2816 }
2817
2818 int current_bundle = 0;
2819
2820 /* Midgard prefetches instruction types, so during emission we
2821 * need to lookahead. Unless this is the last instruction, in
2822 * which we return 1. Or if this is the second to last and the
2823 * last is an ALU, then it's also 1... */
2824
2825 mir_foreach_block(ctx, block) {
2826 mir_foreach_bundle_in_block(block, bundle) {
2827 int lookahead = 1;
2828
2829 if (current_bundle + 1 < bundle_count) {
2830 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2831
2832 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2833 lookahead = 1;
2834 } else {
2835 lookahead = next;
2836 }
2837 }
2838
2839 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2840 ++current_bundle;
2841 }
2842
2843 /* TODO: Free deeper */
2844 //util_dynarray_fini(&block->instructions);
2845 }
2846
2847 free(source_order_bundles);
2848
2849 /* Report the very first tag executed */
2850 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2851
2852 /* Deal with off-by-one related to the fencepost problem */
2853 program->work_register_count = ctx->work_registers + 1;
2854
2855 program->can_discard = ctx->can_discard;
2856 program->uniform_cutoff = ctx->uniform_cutoff;
2857
2858 program->blend_patch_offset = ctx->blend_constant_offset;
2859
2860 if (midgard_debug & MIDGARD_DBG_SHADERS)
2861 disassemble_midgard(program->compiled.data, program->compiled.size);
2862
2863 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2864 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2865
2866 /* Count instructions and bundles */
2867
2868 mir_foreach_instr_global(ctx, ins) {
2869 nr_ins++;
2870 }
2871
2872 mir_foreach_block(ctx, block) {
2873 nr_bundles += util_dynarray_num_elements(
2874 &block->bundles, midgard_bundle);
2875
2876 nr_quadwords += block->quadword_count;
2877 }
2878
2879 /* Calculate thread count. There are certain cutoffs by
2880 * register count for thread count */
2881
2882 unsigned nr_registers = program->work_register_count;
2883
2884 unsigned nr_threads =
2885 (nr_registers <= 4) ? 4 :
2886 (nr_registers <= 8) ? 2 :
2887 1;
2888
2889 /* Dump stats */
2890
2891 fprintf(stderr, "shader%d - %s shader: "
2892 "%u inst, %u bundles, %u quadwords, "
2893 "%u registers, %u threads, %u loops\n",
2894 SHADER_DB_COUNT++,
2895 gl_shader_stage_name(ctx->stage),
2896 nr_ins, nr_bundles, nr_quadwords,
2897 nr_registers, nr_threads,
2898 ctx->loop_count);
2899 }
2900
2901
2902 return 0;
2903 }