panfrost: Pipe the GPU ID into compiler and disassembler
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static midgard_block *
79 create_empty_block(compiler_context *ctx)
80 {
81 midgard_block *blk = rzalloc(ctx, midgard_block);
82
83 blk->predecessors = _mesa_set_create(blk,
84 _mesa_hash_pointer,
85 _mesa_key_pointer_equal);
86
87 blk->source_id = ctx->block_source_count++;
88
89 return blk;
90 }
91
92 static void
93 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
94 {
95 assert(block);
96 assert(successor);
97
98 /* Deduplicate */
99 for (unsigned i = 0; i < block->nr_successors; ++i) {
100 if (block->successors[i] == successor)
101 return;
102 }
103
104 block->successors[block->nr_successors++] = successor;
105 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
106
107 /* Note the predecessor in the other direction */
108 _mesa_set_add(successor->predecessors, block);
109 }
110
111 static void
112 schedule_barrier(compiler_context *ctx)
113 {
114 midgard_block *temp = ctx->after_block;
115 ctx->after_block = create_empty_block(ctx);
116 ctx->block_count++;
117 list_addtail(&ctx->after_block->link, &ctx->blocks);
118 list_inithead(&ctx->after_block->instructions);
119 midgard_block_add_successor(ctx->current_block, ctx->after_block);
120 ctx->current_block = ctx->after_block;
121 ctx->after_block = temp;
122 }
123
124 /* Helpers to generate midgard_instruction's using macro magic, since every
125 * driver seems to do it that way */
126
127 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
128
129 #define M_LOAD_STORE(name, store) \
130 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
131 midgard_instruction i = { \
132 .type = TAG_LOAD_STORE_4, \
133 .mask = 0xF, \
134 .dest = ~0, \
135 .src = { ~0, ~0, ~0 }, \
136 .swizzle = SWIZZLE_IDENTITY_4, \
137 .load_store = { \
138 .op = midgard_op_##name, \
139 .address = address \
140 } \
141 }; \
142 \
143 if (store) \
144 i.src[0] = ssa; \
145 else \
146 i.dest = ssa; \
147 \
148 return i; \
149 }
150
151 #define M_LOAD(name) M_LOAD_STORE(name, false)
152 #define M_STORE(name) M_LOAD_STORE(name, true)
153
154 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
155 * the corresponding Midgard source */
156
157 static midgard_vector_alu_src
158 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
159 bool half, bool sext)
160 {
161 /* Figure out how many components there are so we can adjust.
162 * Specifically we want to broadcast the last channel so things like
163 * ball2/3 work.
164 */
165
166 if (broadcast_count && src) {
167 uint8_t last_component = src->swizzle[broadcast_count - 1];
168
169 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
170 src->swizzle[c] = last_component;
171 }
172 }
173
174 midgard_vector_alu_src alu_src = {
175 .rep_low = 0,
176 .rep_high = 0,
177 .half = half
178 };
179
180 if (is_int) {
181 alu_src.mod = midgard_int_normal;
182
183 /* Sign/zero-extend if needed */
184
185 if (half) {
186 alu_src.mod = sext ?
187 midgard_int_sign_extend
188 : midgard_int_zero_extend;
189 }
190
191 /* These should have been lowered away */
192 if (src)
193 assert(!(src->abs || src->negate));
194 } else {
195 if (src)
196 alu_src.mod = (src->abs << 0) | (src->negate << 1);
197 }
198
199 return alu_src;
200 }
201
202 /* load/store instructions have both 32-bit and 16-bit variants, depending on
203 * whether we are using vectors composed of highp or mediump. At the moment, we
204 * don't support half-floats -- this requires changes in other parts of the
205 * compiler -- therefore the 16-bit versions are commented out. */
206
207 //M_LOAD(ld_attr_16);
208 M_LOAD(ld_attr_32);
209 //M_LOAD(ld_vary_16);
210 M_LOAD(ld_vary_32);
211 M_LOAD(ld_ubo_int4);
212 M_LOAD(ld_int4);
213 M_STORE(st_int4);
214 M_LOAD(ld_color_buffer_8);
215 //M_STORE(st_vary_16);
216 M_STORE(st_vary_32);
217 M_LOAD(ld_cubemap_coords);
218 M_LOAD(ld_compute_id);
219
220 static midgard_instruction
221 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
222 {
223 midgard_branch_cond branch = {
224 .op = op,
225 .dest_tag = tag,
226 .offset = offset,
227 .cond = cond
228 };
229
230 uint16_t compact;
231 memcpy(&compact, &branch, sizeof(branch));
232
233 midgard_instruction ins = {
234 .type = TAG_ALU_4,
235 .unit = ALU_ENAB_BR_COMPACT,
236 .prepacked_branch = true,
237 .compact_branch = true,
238 .br_compact = compact,
239 .dest = ~0,
240 .src = { ~0, ~0, ~0 },
241 };
242
243 if (op == midgard_jmp_writeout_op_writeout)
244 ins.writeout = true;
245
246 return ins;
247 }
248
249 static midgard_instruction
250 v_branch(bool conditional, bool invert)
251 {
252 midgard_instruction ins = {
253 .type = TAG_ALU_4,
254 .unit = ALU_ENAB_BRANCH,
255 .compact_branch = true,
256 .branch = {
257 .conditional = conditional,
258 .invert_conditional = invert
259 },
260 .dest = ~0,
261 .src = { ~0, ~0, ~0 },
262 };
263
264 return ins;
265 }
266
267 static midgard_branch_extended
268 midgard_create_branch_extended( midgard_condition cond,
269 midgard_jmp_writeout_op op,
270 unsigned dest_tag,
271 signed quadword_offset)
272 {
273 /* The condition code is actually a LUT describing a function to
274 * combine multiple condition codes. However, we only support a single
275 * condition code at the moment, so we just duplicate over a bunch of
276 * times. */
277
278 uint16_t duplicated_cond =
279 (cond << 14) |
280 (cond << 12) |
281 (cond << 10) |
282 (cond << 8) |
283 (cond << 6) |
284 (cond << 4) |
285 (cond << 2) |
286 (cond << 0);
287
288 midgard_branch_extended branch = {
289 .op = op,
290 .dest_tag = dest_tag,
291 .offset = quadword_offset,
292 .cond = duplicated_cond
293 };
294
295 return branch;
296 }
297
298 static void
299 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
300 {
301 ins->has_constants = true;
302 memcpy(&ins->constants, constants, 16);
303 }
304
305 static int
306 glsl_type_size(const struct glsl_type *type, bool bindless)
307 {
308 return glsl_count_attribute_slots(type, false);
309 }
310
311 /* Lower fdot2 to a vector multiplication followed by channel addition */
312 static void
313 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
314 {
315 if (alu->op != nir_op_fdot2)
316 return;
317
318 b->cursor = nir_before_instr(&alu->instr);
319
320 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
321 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
322
323 nir_ssa_def *product = nir_fmul(b, src0, src1);
324
325 nir_ssa_def *sum = nir_fadd(b,
326 nir_channel(b, product, 0),
327 nir_channel(b, product, 1));
328
329 /* Replace the fdot2 with this sum */
330 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
331 }
332
333 static int
334 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
335 {
336 /* This is way too meta */
337 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
338 unsigned idx_idx = is_store ? 1 : 0;
339
340 nir_src index = instr->src[idx_idx];
341 assert(nir_src_is_const(index));
342 uint32_t uindex = nir_src_as_uint(index);
343
344 return PAN_SYSVAL(SSBO, uindex);
345 }
346
347 static int
348 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
349 {
350 switch (instr->intrinsic) {
351 case nir_intrinsic_load_viewport_scale:
352 return PAN_SYSVAL_VIEWPORT_SCALE;
353 case nir_intrinsic_load_viewport_offset:
354 return PAN_SYSVAL_VIEWPORT_OFFSET;
355 case nir_intrinsic_load_num_work_groups:
356 return PAN_SYSVAL_NUM_WORK_GROUPS;
357 case nir_intrinsic_load_ssbo:
358 case nir_intrinsic_store_ssbo:
359 return midgard_sysval_for_ssbo(instr);
360 default:
361 return ~0;
362 }
363 }
364
365 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
366 unsigned *dest)
367 {
368 nir_intrinsic_instr *intr;
369 nir_dest *dst = NULL;
370 nir_tex_instr *tex;
371 int sysval = -1;
372
373 bool is_store = false;
374
375 switch (instr->type) {
376 case nir_instr_type_intrinsic:
377 intr = nir_instr_as_intrinsic(instr);
378 sysval = midgard_nir_sysval_for_intrinsic(intr);
379 dst = &intr->dest;
380 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
381 break;
382 case nir_instr_type_tex:
383 tex = nir_instr_as_tex(instr);
384 if (tex->op != nir_texop_txs)
385 break;
386
387 sysval = PAN_SYSVAL(TEXTURE_SIZE,
388 PAN_TXS_SYSVAL_ID(tex->texture_index,
389 nir_tex_instr_dest_size(tex) -
390 (tex->is_array ? 1 : 0),
391 tex->is_array));
392 dst = &tex->dest;
393 break;
394 default:
395 break;
396 }
397
398 if (dest && dst && !is_store)
399 *dest = nir_dest_index(ctx, dst);
400
401 return sysval;
402 }
403
404 static void
405 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
406 {
407 int sysval;
408
409 sysval = sysval_for_instr(ctx, instr, NULL);
410 if (sysval < 0)
411 return;
412
413 /* We have a sysval load; check if it's already been assigned */
414
415 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
416 return;
417
418 /* It hasn't -- so assign it now! */
419
420 unsigned id = ctx->sysval_count++;
421 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
422 ctx->sysvals[id] = sysval;
423 }
424
425 static void
426 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
427 {
428 ctx->sysval_count = 0;
429
430 nir_foreach_function(function, shader) {
431 if (!function->impl) continue;
432
433 nir_foreach_block(block, function->impl) {
434 nir_foreach_instr_safe(instr, block) {
435 midgard_nir_assign_sysval_body(ctx, instr);
436 }
437 }
438 }
439 }
440
441 static bool
442 midgard_nir_lower_fdot2(nir_shader *shader)
443 {
444 bool progress = false;
445
446 nir_foreach_function(function, shader) {
447 if (!function->impl) continue;
448
449 nir_builder _b;
450 nir_builder *b = &_b;
451 nir_builder_init(b, function->impl);
452
453 nir_foreach_block(block, function->impl) {
454 nir_foreach_instr_safe(instr, block) {
455 if (instr->type != nir_instr_type_alu) continue;
456
457 nir_alu_instr *alu = nir_instr_as_alu(instr);
458 midgard_nir_lower_fdot2_body(b, alu);
459
460 progress |= true;
461 }
462 }
463
464 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
465
466 }
467
468 return progress;
469 }
470
471 /* Flushes undefined values to zero */
472
473 static void
474 optimise_nir(nir_shader *nir)
475 {
476 bool progress;
477 unsigned lower_flrp =
478 (nir->options->lower_flrp16 ? 16 : 0) |
479 (nir->options->lower_flrp32 ? 32 : 0) |
480 (nir->options->lower_flrp64 ? 64 : 0);
481
482 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
483 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
484 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
485
486 nir_lower_tex_options lower_tex_options = {
487 .lower_txs_lod = true,
488 .lower_txp = ~0
489 };
490
491 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
492
493 do {
494 progress = false;
495
496 NIR_PASS(progress, nir, nir_lower_var_copies);
497 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
498
499 NIR_PASS(progress, nir, nir_copy_prop);
500 NIR_PASS(progress, nir, nir_opt_dce);
501 NIR_PASS(progress, nir, nir_opt_dead_cf);
502 NIR_PASS(progress, nir, nir_opt_cse);
503 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
504 NIR_PASS(progress, nir, nir_opt_algebraic);
505 NIR_PASS(progress, nir, nir_opt_constant_folding);
506
507 if (lower_flrp != 0) {
508 bool lower_flrp_progress = false;
509 NIR_PASS(lower_flrp_progress,
510 nir,
511 nir_lower_flrp,
512 lower_flrp,
513 false /* always_precise */,
514 nir->options->lower_ffma);
515 if (lower_flrp_progress) {
516 NIR_PASS(progress, nir,
517 nir_opt_constant_folding);
518 progress = true;
519 }
520
521 /* Nothing should rematerialize any flrps, so we only
522 * need to do this lowering once.
523 */
524 lower_flrp = 0;
525 }
526
527 NIR_PASS(progress, nir, nir_opt_undef);
528 NIR_PASS(progress, nir, nir_undef_to_zero);
529
530 NIR_PASS(progress, nir, nir_opt_loop_unroll,
531 nir_var_shader_in |
532 nir_var_shader_out |
533 nir_var_function_temp);
534
535 NIR_PASS(progress, nir, nir_opt_vectorize);
536 } while (progress);
537
538 /* Must be run at the end to prevent creation of fsin/fcos ops */
539 NIR_PASS(progress, nir, midgard_nir_scale_trig);
540
541 do {
542 progress = false;
543
544 NIR_PASS(progress, nir, nir_opt_dce);
545 NIR_PASS(progress, nir, nir_opt_algebraic);
546 NIR_PASS(progress, nir, nir_opt_constant_folding);
547 NIR_PASS(progress, nir, nir_copy_prop);
548 } while (progress);
549
550 NIR_PASS(progress, nir, nir_opt_algebraic_late);
551
552 /* We implement booleans as 32-bit 0/~0 */
553 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
554
555 /* Now that booleans are lowered, we can run out late opts */
556 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
557
558 /* Lower mods for float ops only. Integer ops don't support modifiers
559 * (saturate doesn't make sense on integers, neg/abs require dedicated
560 * instructions) */
561
562 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
563 NIR_PASS(progress, nir, nir_copy_prop);
564 NIR_PASS(progress, nir, nir_opt_dce);
565
566 /* Take us out of SSA */
567 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
568 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
569
570 /* We are a vector architecture; write combine where possible */
571 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
572 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
573
574 NIR_PASS(progress, nir, nir_opt_dce);
575 }
576
577 /* Do not actually emit a load; instead, cache the constant for inlining */
578
579 static void
580 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
581 {
582 nir_ssa_def def = instr->def;
583
584 float *v = rzalloc_array(NULL, float, 4);
585 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
586
587 /* Shifted for SSA, +1 for off-by-one */
588 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
589 }
590
591 /* Normally constants are embedded implicitly, but for I/O and such we have to
592 * explicitly emit a move with the constant source */
593
594 static void
595 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
596 {
597 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
598
599 if (constant_value) {
600 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
601 attach_constants(ctx, &ins, constant_value, node + 1);
602 emit_mir_instruction(ctx, ins);
603 }
604 }
605
606 static bool
607 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
608 {
609 unsigned comp = src->swizzle[0];
610
611 for (unsigned c = 1; c < nr_components; ++c) {
612 if (src->swizzle[c] != comp)
613 return true;
614 }
615
616 return false;
617 }
618
619 #define ALU_CASE(nir, _op) \
620 case nir_op_##nir: \
621 op = midgard_alu_op_##_op; \
622 assert(src_bitsize == dst_bitsize); \
623 break;
624
625 #define ALU_CASE_BCAST(nir, _op, count) \
626 case nir_op_##nir: \
627 op = midgard_alu_op_##_op; \
628 broadcast_swizzle = count; \
629 assert(src_bitsize == dst_bitsize); \
630 break;
631 static bool
632 nir_is_fzero_constant(nir_src src)
633 {
634 if (!nir_src_is_const(src))
635 return false;
636
637 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
638 if (nir_src_comp_as_float(src, c) != 0.0)
639 return false;
640 }
641
642 return true;
643 }
644
645 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
646 * special treatment override this anyway. */
647
648 static midgard_reg_mode
649 reg_mode_for_nir(nir_alu_instr *instr)
650 {
651 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
652
653 switch (src_bitsize) {
654 case 8:
655 return midgard_reg_mode_8;
656 case 16:
657 return midgard_reg_mode_16;
658 case 32:
659 return midgard_reg_mode_32;
660 case 64:
661 return midgard_reg_mode_64;
662 default:
663 unreachable("Invalid bit size");
664 }
665 }
666
667 static void
668 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
669 {
670 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
671 * is handled elsewhere */
672
673 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
674 midgard_emit_derivatives(ctx, instr);
675 return;
676 }
677
678 bool is_ssa = instr->dest.dest.is_ssa;
679
680 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
681 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
682 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
683
684 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
685 * supported. A few do not and are commented for now. Also, there are a
686 * number of NIR ops which Midgard does not support and need to be
687 * lowered, also TODO. This switch block emits the opcode and calling
688 * convention of the Midgard instruction; actual packing is done in
689 * emit_alu below */
690
691 unsigned op;
692
693 /* Number of components valid to check for the instruction (the rest
694 * will be forced to the last), or 0 to use as-is. Relevant as
695 * ball-type instructions have a channel count in NIR but are all vec4
696 * in Midgard */
697
698 unsigned broadcast_swizzle = 0;
699
700 /* What register mode should we operate in? */
701 midgard_reg_mode reg_mode =
702 reg_mode_for_nir(instr);
703
704 /* Do we need a destination override? Used for inline
705 * type conversion */
706
707 midgard_dest_override dest_override =
708 midgard_dest_override_none;
709
710 /* Should we use a smaller respective source and sign-extend? */
711
712 bool half_1 = false, sext_1 = false;
713 bool half_2 = false, sext_2 = false;
714
715 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
716 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
717
718 switch (instr->op) {
719 ALU_CASE(fadd, fadd);
720 ALU_CASE(fmul, fmul);
721 ALU_CASE(fmin, fmin);
722 ALU_CASE(fmax, fmax);
723 ALU_CASE(imin, imin);
724 ALU_CASE(imax, imax);
725 ALU_CASE(umin, umin);
726 ALU_CASE(umax, umax);
727 ALU_CASE(ffloor, ffloor);
728 ALU_CASE(fround_even, froundeven);
729 ALU_CASE(ftrunc, ftrunc);
730 ALU_CASE(fceil, fceil);
731 ALU_CASE(fdot3, fdot3);
732 ALU_CASE(fdot4, fdot4);
733 ALU_CASE(iadd, iadd);
734 ALU_CASE(isub, isub);
735 ALU_CASE(imul, imul);
736
737 /* Zero shoved as second-arg */
738 ALU_CASE(iabs, iabsdiff);
739
740 ALU_CASE(mov, imov);
741
742 ALU_CASE(feq32, feq);
743 ALU_CASE(fne32, fne);
744 ALU_CASE(flt32, flt);
745 ALU_CASE(ieq32, ieq);
746 ALU_CASE(ine32, ine);
747 ALU_CASE(ilt32, ilt);
748 ALU_CASE(ult32, ult);
749
750 /* We don't have a native b2f32 instruction. Instead, like many
751 * GPUs, we exploit booleans as 0/~0 for false/true, and
752 * correspondingly AND
753 * by 1.0 to do the type conversion. For the moment, prime us
754 * to emit:
755 *
756 * iand [whatever], #0
757 *
758 * At the end of emit_alu (as MIR), we'll fix-up the constant
759 */
760
761 ALU_CASE(b2f32, iand);
762 ALU_CASE(b2i32, iand);
763
764 /* Likewise, we don't have a dedicated f2b32 instruction, but
765 * we can do a "not equal to 0.0" test. */
766
767 ALU_CASE(f2b32, fne);
768 ALU_CASE(i2b32, ine);
769
770 ALU_CASE(frcp, frcp);
771 ALU_CASE(frsq, frsqrt);
772 ALU_CASE(fsqrt, fsqrt);
773 ALU_CASE(fexp2, fexp2);
774 ALU_CASE(flog2, flog2);
775
776 ALU_CASE(f2i32, f2i_rtz);
777 ALU_CASE(f2u32, f2u_rtz);
778 ALU_CASE(i2f32, i2f_rtz);
779 ALU_CASE(u2f32, u2f_rtz);
780
781 ALU_CASE(f2i16, f2i_rtz);
782 ALU_CASE(f2u16, f2u_rtz);
783 ALU_CASE(i2f16, i2f_rtz);
784 ALU_CASE(u2f16, u2f_rtz);
785
786 ALU_CASE(fsin, fsin);
787 ALU_CASE(fcos, fcos);
788
789 /* We'll set invert */
790 ALU_CASE(inot, imov);
791 ALU_CASE(iand, iand);
792 ALU_CASE(ior, ior);
793 ALU_CASE(ixor, ixor);
794 ALU_CASE(ishl, ishl);
795 ALU_CASE(ishr, iasr);
796 ALU_CASE(ushr, ilsr);
797
798 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
799 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
800 ALU_CASE(b32all_fequal4, fball_eq);
801
802 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
803 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
804 ALU_CASE(b32any_fnequal4, fbany_neq);
805
806 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
807 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
808 ALU_CASE(b32all_iequal4, iball_eq);
809
810 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
811 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
812 ALU_CASE(b32any_inequal4, ibany_neq);
813
814 /* Source mods will be shoved in later */
815 ALU_CASE(fabs, fmov);
816 ALU_CASE(fneg, fmov);
817 ALU_CASE(fsat, fmov);
818
819 /* For size conversion, we use a move. Ideally though we would squash
820 * these ops together; maybe that has to happen after in NIR as part of
821 * propagation...? An earlier algebraic pass ensured we step down by
822 * only / exactly one size. If stepping down, we use a dest override to
823 * reduce the size; if stepping up, we use a larger-sized move with a
824 * half source and a sign/zero-extension modifier */
825
826 case nir_op_i2i8:
827 case nir_op_i2i16:
828 case nir_op_i2i32:
829 /* If we end up upscale, we'll need a sign-extend on the
830 * operand (the second argument) */
831
832 sext_2 = true;
833 /* fallthrough */
834 case nir_op_u2u8:
835 case nir_op_u2u16:
836 case nir_op_u2u32: {
837 op = midgard_alu_op_imov;
838
839 if (dst_bitsize == (src_bitsize * 2)) {
840 /* Converting up */
841 half_2 = true;
842
843 /* Use a greater register mode */
844 reg_mode++;
845 } else if (src_bitsize == (dst_bitsize * 2)) {
846 /* Converting down */
847 dest_override = midgard_dest_override_lower;
848 }
849
850 break;
851 }
852
853 case nir_op_f2f16: {
854 assert(src_bitsize == 32);
855
856 op = midgard_alu_op_fmov;
857 dest_override = midgard_dest_override_lower;
858 break;
859 }
860
861 case nir_op_f2f32: {
862 assert(src_bitsize == 16);
863
864 op = midgard_alu_op_fmov;
865 half_2 = true;
866 reg_mode++;
867 break;
868 }
869
870
871 /* For greater-or-equal, we lower to less-or-equal and flip the
872 * arguments */
873
874 case nir_op_fge:
875 case nir_op_fge32:
876 case nir_op_ige32:
877 case nir_op_uge32: {
878 op =
879 instr->op == nir_op_fge ? midgard_alu_op_fle :
880 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
881 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
882 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
883 0;
884
885 /* Swap via temporary */
886 nir_alu_src temp = instr->src[1];
887 instr->src[1] = instr->src[0];
888 instr->src[0] = temp;
889
890 break;
891 }
892
893 case nir_op_b32csel: {
894 /* Midgard features both fcsel and icsel, depending on
895 * the type of the arguments/output. However, as long
896 * as we're careful we can _always_ use icsel and
897 * _never_ need fcsel, since the latter does additional
898 * floating-point-specific processing whereas the
899 * former just moves bits on the wire. It's not obvious
900 * why these are separate opcodes, save for the ability
901 * to do things like sat/pos/abs/neg for free */
902
903 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
904 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
905
906 /* The condition is the first argument; move the other
907 * arguments up one to be a binary instruction for
908 * Midgard with the condition last */
909
910 nir_alu_src temp = instr->src[2];
911
912 instr->src[2] = instr->src[0];
913 instr->src[0] = instr->src[1];
914 instr->src[1] = temp;
915
916 break;
917 }
918
919 default:
920 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
921 assert(0);
922 return;
923 }
924
925 /* Midgard can perform certain modifiers on output of an ALU op */
926 unsigned outmod;
927
928 if (midgard_is_integer_out_op(op)) {
929 outmod = midgard_outmod_int_wrap;
930 } else {
931 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
932 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
933 }
934
935 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
936
937 if (instr->op == nir_op_fmax) {
938 if (nir_is_fzero_constant(instr->src[0].src)) {
939 op = midgard_alu_op_fmov;
940 nr_inputs = 1;
941 outmod = midgard_outmod_pos;
942 instr->src[0] = instr->src[1];
943 } else if (nir_is_fzero_constant(instr->src[1].src)) {
944 op = midgard_alu_op_fmov;
945 nr_inputs = 1;
946 outmod = midgard_outmod_pos;
947 }
948 }
949
950 /* Fetch unit, quirks, etc information */
951 unsigned opcode_props = alu_opcode_props[op].props;
952 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
953
954 /* src0 will always exist afaik, but src1 will not for 1-argument
955 * instructions. The latter can only be fetched if the instruction
956 * needs it, or else we may segfault. */
957
958 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
959 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
960 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
961 assert(nr_inputs <= 3);
962
963 /* Rather than use the instruction generation helpers, we do it
964 * ourselves here to avoid the mess */
965
966 midgard_instruction ins = {
967 .type = TAG_ALU_4,
968 .src = {
969 quirk_flipped_r24 ? ~0 : src0,
970 quirk_flipped_r24 ? src0 : src1,
971 src2,
972 },
973 .dest = dest,
974 };
975
976 nir_alu_src *nirmods[3] = { NULL };
977
978 if (nr_inputs >= 2) {
979 nirmods[0] = &instr->src[0];
980 nirmods[1] = &instr->src[1];
981 } else if (nr_inputs == 1) {
982 nirmods[quirk_flipped_r24] = &instr->src[0];
983 } else {
984 assert(0);
985 }
986
987 if (nr_inputs == 3)
988 nirmods[2] = &instr->src[2];
989
990 /* These were lowered to a move, so apply the corresponding mod */
991
992 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
993 nir_alu_src *s = nirmods[quirk_flipped_r24];
994
995 if (instr->op == nir_op_fneg)
996 s->negate = !s->negate;
997
998 if (instr->op == nir_op_fabs)
999 s->abs = !s->abs;
1000 }
1001
1002 bool is_int = midgard_is_integer_op(op);
1003
1004 ins.mask = mask_of(nr_components);
1005
1006 midgard_vector_alu alu = {
1007 .op = op,
1008 .reg_mode = reg_mode,
1009 .dest_override = dest_override,
1010 .outmod = outmod,
1011
1012 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1013 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1014 };
1015
1016 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1017
1018 if (!is_ssa)
1019 ins.mask &= instr->dest.write_mask;
1020
1021 for (unsigned m = 0; m < 3; ++m) {
1022 if (!nirmods[m])
1023 continue;
1024
1025 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1026 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
1027
1028 /* Replicate. TODO: remove when vec16 lands */
1029 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
1030 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
1031 }
1032
1033 if (nr_inputs == 3) {
1034 /* Conditions can't have mods */
1035 assert(!nirmods[2]->abs);
1036 assert(!nirmods[2]->negate);
1037 }
1038
1039 ins.alu = alu;
1040
1041 /* Late fixup for emulated instructions */
1042
1043 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1044 /* Presently, our second argument is an inline #0 constant.
1045 * Switch over to an embedded 1.0 constant (that can't fit
1046 * inline, since we're 32-bit, not 16-bit like the inline
1047 * constants) */
1048
1049 ins.has_inline_constant = false;
1050 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1051 ins.has_constants = true;
1052
1053 if (instr->op == nir_op_b2f32) {
1054 float f = 1.0f;
1055 memcpy(&ins.constants, &f, sizeof(float));
1056 } else {
1057 ins.constants[0] = 1;
1058 }
1059
1060
1061 for (unsigned c = 0; c < 16; ++c)
1062 ins.swizzle[1][c] = 0;
1063 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1064 /* Lots of instructions need a 0 plonked in */
1065 ins.has_inline_constant = false;
1066 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1067 ins.has_constants = true;
1068 ins.constants[0] = 0;
1069
1070 for (unsigned c = 0; c < 16; ++c)
1071 ins.swizzle[1][c] = 0;
1072 } else if (instr->op == nir_op_inot) {
1073 ins.invert = true;
1074 }
1075
1076 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1077 /* To avoid duplicating the lookup tables (probably), true LUT
1078 * instructions can only operate as if they were scalars. Lower
1079 * them here by changing the component. */
1080
1081 unsigned orig_mask = ins.mask;
1082
1083 for (int i = 0; i < nr_components; ++i) {
1084 /* Mask the associated component, dropping the
1085 * instruction if needed */
1086
1087 ins.mask = 1 << i;
1088 ins.mask &= orig_mask;
1089
1090 if (!ins.mask)
1091 continue;
1092
1093 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1094 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1095
1096 emit_mir_instruction(ctx, ins);
1097 }
1098 } else {
1099 emit_mir_instruction(ctx, ins);
1100 }
1101 }
1102
1103 #undef ALU_CASE
1104
1105 static unsigned
1106 mir_mask_for_intr(nir_instr *instr, bool is_read)
1107 {
1108 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1109
1110 if (is_read)
1111 return mask_of(nir_intrinsic_dest_components(intr));
1112 else
1113 return nir_intrinsic_write_mask(intr);
1114 }
1115
1116 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1117 * optimized) versions of UBO #0 */
1118
1119 midgard_instruction *
1120 emit_ubo_read(
1121 compiler_context *ctx,
1122 nir_instr *instr,
1123 unsigned dest,
1124 unsigned offset,
1125 nir_src *indirect_offset,
1126 unsigned index)
1127 {
1128 /* TODO: half-floats */
1129
1130 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1131
1132 assert((offset & 0xF) == 0);
1133 offset /= 16;
1134
1135 /* TODO: Don't split */
1136 ins.load_store.varying_parameters = (offset & 7) << 7;
1137 ins.load_store.address = offset >> 3;
1138 ins.mask = mir_mask_for_intr(instr, true);
1139
1140 if (indirect_offset) {
1141 ins.src[2] = nir_src_index(ctx, indirect_offset);
1142 ins.load_store.arg_2 = 0x80;
1143 } else {
1144 ins.load_store.arg_2 = 0x1E;
1145 }
1146
1147 ins.load_store.arg_1 = index;
1148
1149 return emit_mir_instruction(ctx, ins);
1150 }
1151
1152 /* SSBO reads are like UBO reads if you squint */
1153
1154 static void
1155 emit_ssbo_access(
1156 compiler_context *ctx,
1157 nir_instr *instr,
1158 bool is_read,
1159 unsigned srcdest,
1160 unsigned offset,
1161 nir_src *indirect_offset,
1162 unsigned index)
1163 {
1164 /* TODO: types */
1165
1166 midgard_instruction ins;
1167
1168 if (is_read)
1169 ins = m_ld_int4(srcdest, offset);
1170 else
1171 ins = m_st_int4(srcdest, offset);
1172
1173 /* SSBO reads use a generic memory read interface, so we need the
1174 * address of the SSBO as the first argument. This is a sysval. */
1175
1176 unsigned addr = make_compiler_temp(ctx);
1177 emit_sysval_read(ctx, instr, addr, 2);
1178
1179 /* The source array:
1180 *
1181 * src[0] = store ? value : unused
1182 * src[1] = arg_1
1183 * src[2] = arg_2
1184 *
1185 * We would like arg_1 = the address and
1186 * arg_2 = the offset.
1187 */
1188
1189 ins.src[1] = addr;
1190
1191 /* TODO: What is this? It looks superficially like a shift << 5, but
1192 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1193 * indirect offset. */
1194
1195 if (indirect_offset) {
1196 ins.load_store.arg_1 |= 0xE0;
1197 ins.src[2] = nir_src_index(ctx, indirect_offset);
1198 } else {
1199 ins.load_store.arg_2 = 0x7E;
1200 }
1201
1202 /* TODO: Bounds check */
1203
1204 /* Finally, we emit the direct offset */
1205
1206 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1207 ins.load_store.address = (offset >> 9);
1208 ins.mask = mir_mask_for_intr(instr, is_read);
1209
1210 emit_mir_instruction(ctx, ins);
1211 }
1212
1213 static void
1214 emit_varying_read(
1215 compiler_context *ctx,
1216 unsigned dest, unsigned offset,
1217 unsigned nr_comp, unsigned component,
1218 nir_src *indirect_offset, nir_alu_type type)
1219 {
1220 /* XXX: Half-floats? */
1221 /* TODO: swizzle, mask */
1222
1223 midgard_instruction ins = m_ld_vary_32(dest, offset);
1224 ins.mask = mask_of(nr_comp);
1225
1226 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1227 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1228
1229 midgard_varying_parameter p = {
1230 .is_varying = 1,
1231 .interpolation = midgard_interp_default,
1232 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1233 };
1234
1235 unsigned u;
1236 memcpy(&u, &p, sizeof(p));
1237 ins.load_store.varying_parameters = u;
1238
1239 if (indirect_offset)
1240 ins.src[2] = nir_src_index(ctx, indirect_offset);
1241 else
1242 ins.load_store.arg_2 = 0x1E;
1243
1244 ins.load_store.arg_1 = 0x9E;
1245
1246 /* Use the type appropriate load */
1247 switch (type) {
1248 case nir_type_uint:
1249 case nir_type_bool:
1250 ins.load_store.op = midgard_op_ld_vary_32u;
1251 break;
1252 case nir_type_int:
1253 ins.load_store.op = midgard_op_ld_vary_32i;
1254 break;
1255 case nir_type_float:
1256 ins.load_store.op = midgard_op_ld_vary_32;
1257 break;
1258 default:
1259 unreachable("Attempted to load unknown type");
1260 break;
1261 }
1262
1263 emit_mir_instruction(ctx, ins);
1264 }
1265
1266 void
1267 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1268 unsigned nr_components)
1269 {
1270 unsigned dest = 0;
1271
1272 /* Figure out which uniform this is */
1273 int sysval = sysval_for_instr(ctx, instr, &dest);
1274 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1275
1276 if (dest_override >= 0)
1277 dest = dest_override;
1278
1279 /* Sysvals are prefix uniforms */
1280 unsigned uniform = ((uintptr_t) val) - 1;
1281
1282 /* Emit the read itself -- this is never indirect */
1283 midgard_instruction *ins =
1284 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1285
1286 ins->mask = mask_of(nr_components);
1287 }
1288
1289 static unsigned
1290 compute_builtin_arg(nir_op op)
1291 {
1292 switch (op) {
1293 case nir_intrinsic_load_work_group_id:
1294 return 0x14;
1295 case nir_intrinsic_load_local_invocation_id:
1296 return 0x10;
1297 default:
1298 unreachable("Invalid compute paramater loaded");
1299 }
1300 }
1301
1302 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1303 * Handle MRT here */
1304
1305 static void
1306 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1307 {
1308 emit_explicit_constant(ctx, src, src);
1309
1310 /* If we're doing MRT, we need to specify the render target */
1311
1312 midgard_instruction rt_move = {
1313 .dest = ~0
1314 };
1315
1316 if (rt != 0) {
1317 /* We'll write to r1.z */
1318 rt_move = v_mov(~0, SSA_FIXED_REGISTER(1));
1319 rt_move.mask = 1 << COMPONENT_Z;
1320 rt_move.unit = UNIT_SADD;
1321
1322 /* r1.z = (rt * 0x100) */
1323 rt_move.has_inline_constant = true;
1324 rt_move.inline_constant = (rt * 0x100);
1325
1326 /* r1 */
1327 ctx->work_registers = MAX2(ctx->work_registers, 1);
1328
1329 /* Do the write */
1330 emit_mir_instruction(ctx, rt_move);
1331 }
1332
1333 /* Next, generate the branch. For R render targets in the writeout, the
1334 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1335
1336 unsigned outputs = ctx->is_blend ? 1 : ctx->nir->num_outputs;
1337 unsigned offset = (2 * (outputs - 1)) + rt;
1338
1339 struct midgard_instruction ins =
1340 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1341
1342 /* Add dependencies */
1343 ins.src[0] = src;
1344 ins.src[1] = rt_move.dest;
1345
1346 /* Emit the branch */
1347 emit_mir_instruction(ctx, ins);
1348 }
1349
1350 static void
1351 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1352 {
1353 unsigned reg = nir_dest_index(ctx, &instr->dest);
1354 midgard_instruction ins = m_ld_compute_id(reg, 0);
1355 ins.mask = mask_of(3);
1356 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1357 emit_mir_instruction(ctx, ins);
1358 }
1359 static void
1360 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1361 {
1362 unsigned offset = 0, reg;
1363
1364 switch (instr->intrinsic) {
1365 case nir_intrinsic_discard_if:
1366 case nir_intrinsic_discard: {
1367 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1368 struct midgard_instruction discard = v_branch(conditional, false);
1369 discard.branch.target_type = TARGET_DISCARD;
1370
1371 if (conditional)
1372 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1373
1374 emit_mir_instruction(ctx, discard);
1375 schedule_barrier(ctx);
1376
1377 break;
1378 }
1379
1380 case nir_intrinsic_load_uniform:
1381 case nir_intrinsic_load_ubo:
1382 case nir_intrinsic_load_ssbo:
1383 case nir_intrinsic_load_input: {
1384 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1385 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1386 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1387
1388 /* Get the base type of the intrinsic */
1389 /* TODO: Infer type? Does it matter? */
1390 nir_alu_type t =
1391 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1392 t = nir_alu_type_get_base_type(t);
1393
1394 if (!(is_ubo || is_ssbo)) {
1395 offset = nir_intrinsic_base(instr);
1396 }
1397
1398 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1399
1400 nir_src *src_offset = nir_get_io_offset_src(instr);
1401
1402 bool direct = nir_src_is_const(*src_offset);
1403 nir_src *indirect_offset = direct ? NULL : src_offset;
1404
1405 if (direct)
1406 offset += nir_src_as_uint(*src_offset);
1407
1408 /* We may need to apply a fractional offset */
1409 int component = instr->intrinsic == nir_intrinsic_load_input ?
1410 nir_intrinsic_component(instr) : 0;
1411 reg = nir_dest_index(ctx, &instr->dest);
1412
1413 if (is_uniform && !ctx->is_blend) {
1414 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1415 } else if (is_ubo) {
1416 nir_src index = instr->src[0];
1417
1418 /* We don't yet support indirect UBOs. For indirect
1419 * block numbers (if that's possible), we don't know
1420 * enough about the hardware yet. For indirect sources,
1421 * we know what we need but we need to add some NIR
1422 * support for lowering correctly with respect to
1423 * 128-bit reads */
1424
1425 assert(nir_src_is_const(index));
1426 assert(nir_src_is_const(*src_offset));
1427
1428 uint32_t uindex = nir_src_as_uint(index) + 1;
1429 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1430 } else if (is_ssbo) {
1431 nir_src index = instr->src[0];
1432 assert(nir_src_is_const(index));
1433 uint32_t uindex = nir_src_as_uint(index);
1434
1435 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1436 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1437 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1438 } else if (ctx->is_blend) {
1439 /* For blend shaders, load the input color, which is
1440 * preloaded to r0 */
1441
1442 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1443 emit_mir_instruction(ctx, move);
1444 schedule_barrier(ctx);
1445 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1446 midgard_instruction ins = m_ld_attr_32(reg, offset);
1447 ins.load_store.arg_1 = 0x1E;
1448 ins.load_store.arg_2 = 0x1E;
1449 ins.mask = mask_of(nr_comp);
1450
1451 /* Use the type appropriate load */
1452 switch (t) {
1453 case nir_type_uint:
1454 case nir_type_bool:
1455 ins.load_store.op = midgard_op_ld_attr_32u;
1456 break;
1457 case nir_type_int:
1458 ins.load_store.op = midgard_op_ld_attr_32i;
1459 break;
1460 case nir_type_float:
1461 ins.load_store.op = midgard_op_ld_attr_32;
1462 break;
1463 default:
1464 unreachable("Attempted to load unknown type");
1465 break;
1466 }
1467
1468 emit_mir_instruction(ctx, ins);
1469 } else {
1470 DBG("Unknown load\n");
1471 assert(0);
1472 }
1473
1474 break;
1475 }
1476
1477 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1478
1479 case nir_intrinsic_load_raw_output_pan:
1480 reg = nir_dest_index(ctx, &instr->dest);
1481 assert(ctx->is_blend);
1482
1483 midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
1484 emit_mir_instruction(ctx, ld);
1485 break;
1486
1487 case nir_intrinsic_load_blend_const_color_rgba: {
1488 assert(ctx->is_blend);
1489 reg = nir_dest_index(ctx, &instr->dest);
1490
1491 /* Blend constants are embedded directly in the shader and
1492 * patched in, so we use some magic routing */
1493
1494 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1495 ins.has_constants = true;
1496 ins.has_blend_constant = true;
1497 emit_mir_instruction(ctx, ins);
1498 break;
1499 }
1500
1501 case nir_intrinsic_store_output:
1502 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1503
1504 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1505
1506 reg = nir_src_index(ctx, &instr->src[0]);
1507
1508 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1509 /* Determine number of render targets */
1510 emit_fragment_store(ctx, reg, offset);
1511 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1512 /* We should have been vectorized, though we don't
1513 * currently check that st_vary is emitted only once
1514 * per slot (this is relevant, since there's not a mask
1515 * parameter available on the store [set to 0 by the
1516 * blob]). We do respect the component by adjusting the
1517 * swizzle. If this is a constant source, we'll need to
1518 * emit that explicitly. */
1519
1520 emit_explicit_constant(ctx, reg, reg);
1521
1522 unsigned component = nir_intrinsic_component(instr);
1523 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1524
1525 midgard_instruction st = m_st_vary_32(reg, offset);
1526 st.load_store.arg_1 = 0x9E;
1527 st.load_store.arg_2 = 0x1E;
1528
1529 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle[0]); ++i)
1530 st.swizzle[0][i] = MIN2(i + component, nr_comp);
1531
1532 emit_mir_instruction(ctx, st);
1533 } else {
1534 DBG("Unknown store\n");
1535 assert(0);
1536 }
1537
1538 break;
1539
1540 /* Special case of store_output for lowered blend shaders */
1541 case nir_intrinsic_store_raw_output_pan:
1542 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1543 reg = nir_src_index(ctx, &instr->src[0]);
1544 emit_fragment_store(ctx, reg, 0);
1545
1546 break;
1547
1548 case nir_intrinsic_store_ssbo:
1549 assert(nir_src_is_const(instr->src[1]));
1550
1551 bool direct_offset = nir_src_is_const(instr->src[2]);
1552 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1553 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1554 reg = nir_src_index(ctx, &instr->src[0]);
1555
1556 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1557
1558 emit_explicit_constant(ctx, reg, reg);
1559 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1560 break;
1561
1562 case nir_intrinsic_load_viewport_scale:
1563 case nir_intrinsic_load_viewport_offset:
1564 case nir_intrinsic_load_num_work_groups:
1565 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1566 break;
1567
1568 case nir_intrinsic_load_work_group_id:
1569 case nir_intrinsic_load_local_invocation_id:
1570 emit_compute_builtin(ctx, instr);
1571 break;
1572
1573 default:
1574 printf ("Unhandled intrinsic\n");
1575 assert(0);
1576 break;
1577 }
1578 }
1579
1580 static unsigned
1581 midgard_tex_format(enum glsl_sampler_dim dim)
1582 {
1583 switch (dim) {
1584 case GLSL_SAMPLER_DIM_1D:
1585 case GLSL_SAMPLER_DIM_BUF:
1586 return MALI_TEX_1D;
1587
1588 case GLSL_SAMPLER_DIM_2D:
1589 case GLSL_SAMPLER_DIM_EXTERNAL:
1590 case GLSL_SAMPLER_DIM_RECT:
1591 return MALI_TEX_2D;
1592
1593 case GLSL_SAMPLER_DIM_3D:
1594 return MALI_TEX_3D;
1595
1596 case GLSL_SAMPLER_DIM_CUBE:
1597 return MALI_TEX_CUBE;
1598
1599 default:
1600 DBG("Unknown sampler dim type\n");
1601 assert(0);
1602 return 0;
1603 }
1604 }
1605
1606 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1607 * was successful */
1608
1609 static bool
1610 pan_attach_constant_bias(
1611 compiler_context *ctx,
1612 nir_src lod,
1613 midgard_texture_word *word)
1614 {
1615 /* To attach as constant, it has to *be* constant */
1616
1617 if (!nir_src_is_const(lod))
1618 return false;
1619
1620 float f = nir_src_as_float(lod);
1621
1622 /* Break into fixed-point */
1623 signed lod_int = f;
1624 float lod_frac = f - lod_int;
1625
1626 /* Carry over negative fractions */
1627 if (lod_frac < 0.0) {
1628 lod_int--;
1629 lod_frac += 1.0;
1630 }
1631
1632 /* Encode */
1633 word->bias = float_to_ubyte(lod_frac);
1634 word->bias_int = lod_int;
1635
1636 return true;
1637 }
1638
1639 static enum mali_sampler_type
1640 midgard_sampler_type(nir_alu_type t) {
1641 switch (nir_alu_type_get_base_type(t))
1642 {
1643 case nir_type_float:
1644 return MALI_SAMPLER_FLOAT;
1645 case nir_type_int:
1646 return MALI_SAMPLER_SIGNED;
1647 case nir_type_uint:
1648 return MALI_SAMPLER_UNSIGNED;
1649 default:
1650 unreachable("Unknown sampler type");
1651 }
1652 }
1653
1654 static void
1655 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1656 unsigned midgard_texop)
1657 {
1658 /* TODO */
1659 //assert (!instr->sampler);
1660 //assert (!instr->texture_array_size);
1661
1662 int texture_index = instr->texture_index;
1663 int sampler_index = texture_index;
1664
1665 /* No helper to build texture words -- we do it all here */
1666 midgard_instruction ins = {
1667 .type = TAG_TEXTURE_4,
1668 .mask = 0xF,
1669 .dest = nir_dest_index(ctx, &instr->dest),
1670 .src = { ~0, ~0, ~0 },
1671 .swizzle = SWIZZLE_IDENTITY_4,
1672 .texture = {
1673 .op = midgard_texop,
1674 .format = midgard_tex_format(instr->sampler_dim),
1675 .texture_handle = texture_index,
1676 .sampler_handle = sampler_index,
1677
1678 /* TODO: half */
1679 .in_reg_full = 1,
1680 .out_full = 1,
1681
1682 .sampler_type = midgard_sampler_type(instr->dest_type),
1683 }
1684 };
1685
1686 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1687 int index = nir_src_index(ctx, &instr->src[i].src);
1688 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1689
1690 switch (instr->src[i].src_type) {
1691 case nir_tex_src_coord: {
1692 emit_explicit_constant(ctx, index, index);
1693
1694 /* Texelfetch coordinates uses all four elements
1695 * (xyz/index) regardless of texture dimensionality,
1696 * which means it's necessary to zero the unused
1697 * components to keep everything happy */
1698
1699 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1700 unsigned old_index = index;
1701
1702 index = make_compiler_temp(ctx);
1703
1704 /* mov index, old_index */
1705 midgard_instruction mov = v_mov(old_index, index);
1706 mov.mask = 0x3;
1707 emit_mir_instruction(ctx, mov);
1708
1709 /* mov index.zw, #0 */
1710 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), index);
1711 mov.has_constants = true;
1712 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1713 emit_mir_instruction(ctx, mov);
1714 }
1715
1716 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1717 /* texelFetch is undefined on samplerCube */
1718 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1719
1720 /* For cubemaps, we use a special ld/st op to
1721 * select the face and copy the xy into the
1722 * texture register */
1723
1724 unsigned temp = make_compiler_temp(ctx);
1725 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1726 ld.src[1] = index;
1727 ld.mask = 0x3; /* xy */
1728 ld.load_store.arg_1 = 0x20;
1729 ld.swizzle[1][3] = COMPONENT_X;
1730 emit_mir_instruction(ctx, ld);
1731
1732 ins.src[1] = temp;
1733 /* xyzw -> xyxx */
1734 ins.swizzle[1][2] = COMPONENT_X;
1735 ins.swizzle[1][3] = COMPONENT_X;
1736 } else {
1737 ins.src[1] = index;
1738 }
1739
1740 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1741 /* Array component in w but NIR wants it in z */
1742 if (nr_components == 3) {
1743 ins.swizzle[1][2] = COMPONENT_Z;
1744 ins.swizzle[1][3] = COMPONENT_Z;
1745 } else if (nr_components == 2) {
1746 ins.swizzle[1][2] = COMPONENT_X;
1747 ins.swizzle[1][3] = COMPONENT_X;
1748 } else
1749 unreachable("Invalid texture 2D components");
1750 }
1751
1752 break;
1753 }
1754
1755 case nir_tex_src_bias:
1756 case nir_tex_src_lod: {
1757 /* Try as a constant if we can */
1758
1759 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1760 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1761 break;
1762
1763 ins.texture.lod_register = true;
1764 ins.src[2] = index;
1765 emit_explicit_constant(ctx, index, index);
1766
1767 break;
1768 };
1769
1770 default:
1771 unreachable("Unknown texture source type\n");
1772 }
1773 }
1774
1775 emit_mir_instruction(ctx, ins);
1776
1777 /* Used for .cont and .last hinting */
1778 ctx->texture_op_count++;
1779 }
1780
1781 static void
1782 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1783 {
1784 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1785 * generic tex in some cases (which confuses the hardware) */
1786
1787 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1788
1789 if (is_vertex && instr->op == nir_texop_tex)
1790 instr->op = nir_texop_txl;
1791
1792 switch (instr->op) {
1793 case nir_texop_tex:
1794 case nir_texop_txb:
1795 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1796 break;
1797 case nir_texop_txl:
1798 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1799 break;
1800 case nir_texop_txf:
1801 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1802 break;
1803 case nir_texop_txs:
1804 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1805 break;
1806 default:
1807 unreachable("Unhanlded texture op");
1808 }
1809 }
1810
1811 static void
1812 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1813 {
1814 switch (instr->type) {
1815 case nir_jump_break: {
1816 /* Emit a branch out of the loop */
1817 struct midgard_instruction br = v_branch(false, false);
1818 br.branch.target_type = TARGET_BREAK;
1819 br.branch.target_break = ctx->current_loop_depth;
1820 emit_mir_instruction(ctx, br);
1821 break;
1822 }
1823
1824 default:
1825 DBG("Unknown jump type %d\n", instr->type);
1826 break;
1827 }
1828 }
1829
1830 static void
1831 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1832 {
1833 switch (instr->type) {
1834 case nir_instr_type_load_const:
1835 emit_load_const(ctx, nir_instr_as_load_const(instr));
1836 break;
1837
1838 case nir_instr_type_intrinsic:
1839 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1840 break;
1841
1842 case nir_instr_type_alu:
1843 emit_alu(ctx, nir_instr_as_alu(instr));
1844 break;
1845
1846 case nir_instr_type_tex:
1847 emit_tex(ctx, nir_instr_as_tex(instr));
1848 break;
1849
1850 case nir_instr_type_jump:
1851 emit_jump(ctx, nir_instr_as_jump(instr));
1852 break;
1853
1854 case nir_instr_type_ssa_undef:
1855 /* Spurious */
1856 break;
1857
1858 default:
1859 DBG("Unhandled instruction type\n");
1860 break;
1861 }
1862 }
1863
1864
1865 /* ALU instructions can inline or embed constants, which decreases register
1866 * pressure and saves space. */
1867
1868 #define CONDITIONAL_ATTACH(idx) { \
1869 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1870 \
1871 if (entry) { \
1872 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1873 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1874 } \
1875 }
1876
1877 static void
1878 inline_alu_constants(compiler_context *ctx, midgard_block *block)
1879 {
1880 mir_foreach_instr_in_block(block, alu) {
1881 /* Other instructions cannot inline constants */
1882 if (alu->type != TAG_ALU_4) continue;
1883 if (alu->compact_branch) continue;
1884
1885 /* If there is already a constant here, we can do nothing */
1886 if (alu->has_constants) continue;
1887
1888 CONDITIONAL_ATTACH(0);
1889
1890 if (!alu->has_constants) {
1891 CONDITIONAL_ATTACH(1)
1892 } else if (!alu->inline_constant) {
1893 /* Corner case: _two_ vec4 constants, for instance with a
1894 * csel. For this case, we can only use a constant
1895 * register for one, we'll have to emit a move for the
1896 * other. Note, if both arguments are constants, then
1897 * necessarily neither argument depends on the value of
1898 * any particular register. As the destination register
1899 * will be wiped, that means we can spill the constant
1900 * to the destination register.
1901 */
1902
1903 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1904 unsigned scratch = alu->dest;
1905
1906 if (entry) {
1907 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
1908 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1909
1910 /* Set the source */
1911 alu->src[1] = scratch;
1912
1913 /* Inject us -before- the last instruction which set r31 */
1914 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
1915 }
1916 }
1917 }
1918 }
1919
1920 /* Being a little silly with the names, but returns the op that is the bitwise
1921 * inverse of the op with the argument switched. I.e. (f and g are
1922 * contrapositives):
1923 *
1924 * f(a, b) = ~g(b, a)
1925 *
1926 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1927 *
1928 * f(a, b) = ~g(b, a)
1929 * ~f(a, b) = g(b, a)
1930 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1931 * f(a, b) = h(a, b)
1932 *
1933 * Thus we define this function in pairs.
1934 */
1935
1936 static inline midgard_alu_op
1937 mir_contrapositive(midgard_alu_op op)
1938 {
1939 switch (op) {
1940 case midgard_alu_op_flt:
1941 return midgard_alu_op_fle;
1942 case midgard_alu_op_fle:
1943 return midgard_alu_op_flt;
1944
1945 case midgard_alu_op_ilt:
1946 return midgard_alu_op_ile;
1947 case midgard_alu_op_ile:
1948 return midgard_alu_op_ilt;
1949
1950 default:
1951 unreachable("No known contrapositive");
1952 }
1953 }
1954
1955 /* Midgard supports two types of constants, embedded constants (128-bit) and
1956 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1957 * constants can be demoted to inline constants, for space savings and
1958 * sometimes a performance boost */
1959
1960 static void
1961 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
1962 {
1963 mir_foreach_instr_in_block(block, ins) {
1964 if (!ins->has_constants) continue;
1965 if (ins->has_inline_constant) continue;
1966
1967 /* Blend constants must not be inlined by definition */
1968 if (ins->has_blend_constant) continue;
1969
1970 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1971 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1972 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1973
1974 if (!(is_16 || is_32))
1975 continue;
1976
1977 /* src1 cannot be an inline constant due to encoding
1978 * restrictions. So, if possible we try to flip the arguments
1979 * in that case */
1980
1981 int op = ins->alu.op;
1982
1983 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1984 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
1985
1986 switch (op) {
1987 /* Conditionals can be inverted */
1988 case midgard_alu_op_flt:
1989 case midgard_alu_op_ilt:
1990 case midgard_alu_op_fle:
1991 case midgard_alu_op_ile:
1992 ins->alu.op = mir_contrapositive(ins->alu.op);
1993 ins->invert = true;
1994 flip = true;
1995 break;
1996
1997 case midgard_alu_op_fcsel:
1998 case midgard_alu_op_icsel:
1999 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2000 default:
2001 break;
2002 }
2003
2004 if (flip)
2005 mir_flip(ins);
2006 }
2007
2008 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2009 /* Extract the source information */
2010
2011 midgard_vector_alu_src *src;
2012 int q = ins->alu.src2;
2013 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2014 src = m;
2015
2016 /* Component is from the swizzle. Take a nonzero component */
2017 assert(ins->mask);
2018 unsigned first_comp = ffs(ins->mask) - 1;
2019 unsigned component = ins->swizzle[1][first_comp];
2020
2021 /* Scale constant appropriately, if we can legally */
2022 uint16_t scaled_constant = 0;
2023
2024 if (midgard_is_integer_op(op) || is_16) {
2025 unsigned int *iconstants = (unsigned int *) ins->constants;
2026 scaled_constant = (uint16_t) iconstants[component];
2027
2028 /* Constant overflow after resize */
2029 if (scaled_constant != iconstants[component])
2030 continue;
2031 } else {
2032 float *f = (float *) ins->constants;
2033 float original = f[component];
2034 scaled_constant = _mesa_float_to_half(original);
2035
2036 /* Check for loss of precision. If this is
2037 * mediump, we don't care, but for a highp
2038 * shader, we need to pay attention. NIR
2039 * doesn't yet tell us which mode we're in!
2040 * Practically this prevents most constants
2041 * from being inlined, sadly. */
2042
2043 float fp32 = _mesa_half_to_float(scaled_constant);
2044
2045 if (fp32 != original)
2046 continue;
2047 }
2048
2049 /* We don't know how to handle these with a constant */
2050
2051 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2052 DBG("Bailing inline constant...\n");
2053 continue;
2054 }
2055
2056 /* Make sure that the constant is not itself a vector
2057 * by checking if all accessed values are the same. */
2058
2059 uint32_t *cons = ins->constants;
2060 uint32_t value = cons[component];
2061
2062 bool is_vector = false;
2063 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2064
2065 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2066 /* We only care if this component is actually used */
2067 if (!(mask & (1 << c)))
2068 continue;
2069
2070 uint32_t test = cons[ins->swizzle[1][c]];
2071
2072 if (test != value) {
2073 is_vector = true;
2074 break;
2075 }
2076 }
2077
2078 if (is_vector)
2079 continue;
2080
2081 /* Get rid of the embedded constant */
2082 ins->has_constants = false;
2083 ins->src[1] = ~0;
2084 ins->has_inline_constant = true;
2085 ins->inline_constant = scaled_constant;
2086 }
2087 }
2088 }
2089
2090 /* Dead code elimination for branches at the end of a block - only one branch
2091 * per block is legal semantically */
2092
2093 static void
2094 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2095 {
2096 bool branched = false;
2097
2098 mir_foreach_instr_in_block_safe(block, ins) {
2099 if (!midgard_is_branch_unit(ins->unit)) continue;
2100
2101 if (branched)
2102 mir_remove_instruction(ins);
2103
2104 branched = true;
2105 }
2106 }
2107
2108 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2109 * the move can be propagated away entirely */
2110
2111 static bool
2112 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2113 {
2114 /* Nothing to do */
2115 if (comp == midgard_outmod_none)
2116 return true;
2117
2118 if (*outmod == midgard_outmod_none) {
2119 *outmod = comp;
2120 return true;
2121 }
2122
2123 /* TODO: Compose rules */
2124 return false;
2125 }
2126
2127 static bool
2128 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2129 {
2130 bool progress = false;
2131
2132 mir_foreach_instr_in_block_safe(block, ins) {
2133 if (ins->type != TAG_ALU_4) continue;
2134 if (ins->alu.op != midgard_alu_op_fmov) continue;
2135 if (ins->alu.outmod != midgard_outmod_pos) continue;
2136
2137 /* TODO: Registers? */
2138 unsigned src = ins->src[1];
2139 if (src & IS_REG) continue;
2140
2141 /* There might be a source modifier, too */
2142 if (mir_nontrivial_source2_mod(ins)) continue;
2143
2144 /* Backpropagate the modifier */
2145 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2146 if (v->type != TAG_ALU_4) continue;
2147 if (v->dest != src) continue;
2148
2149 /* Can we even take a float outmod? */
2150 if (midgard_is_integer_out_op(v->alu.op)) continue;
2151
2152 midgard_outmod_float temp = v->alu.outmod;
2153 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2154
2155 /* Throw in the towel.. */
2156 if (!progress) break;
2157
2158 /* Otherwise, transfer the modifier */
2159 v->alu.outmod = temp;
2160 ins->alu.outmod = midgard_outmod_none;
2161
2162 break;
2163 }
2164 }
2165
2166 return progress;
2167 }
2168
2169 static void
2170 emit_fragment_epilogue(compiler_context *ctx)
2171 {
2172 /* Just emit the last chunk with the branch */
2173 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2174 }
2175
2176 static midgard_block *
2177 emit_block(compiler_context *ctx, nir_block *block)
2178 {
2179 midgard_block *this_block = ctx->after_block;
2180 ctx->after_block = NULL;
2181
2182 if (!this_block)
2183 this_block = create_empty_block(ctx);
2184
2185 list_addtail(&this_block->link, &ctx->blocks);
2186
2187 this_block->is_scheduled = false;
2188 ++ctx->block_count;
2189
2190 /* Set up current block */
2191 list_inithead(&this_block->instructions);
2192 ctx->current_block = this_block;
2193
2194 nir_foreach_instr(instr, block) {
2195 emit_instr(ctx, instr);
2196 ++ctx->instruction_count;
2197 }
2198
2199 return this_block;
2200 }
2201
2202 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2203
2204 static void
2205 emit_if(struct compiler_context *ctx, nir_if *nif)
2206 {
2207 midgard_block *before_block = ctx->current_block;
2208
2209 /* Speculatively emit the branch, but we can't fill it in until later */
2210 EMIT(branch, true, true);
2211 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2212 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2213
2214 /* Emit the two subblocks. */
2215 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2216 midgard_block *end_then_block = ctx->current_block;
2217
2218 /* Emit a jump from the end of the then block to the end of the else */
2219 EMIT(branch, false, false);
2220 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2221
2222 /* Emit second block, and check if it's empty */
2223
2224 int else_idx = ctx->block_count;
2225 int count_in = ctx->instruction_count;
2226 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2227 midgard_block *end_else_block = ctx->current_block;
2228 int after_else_idx = ctx->block_count;
2229
2230 /* Now that we have the subblocks emitted, fix up the branches */
2231
2232 assert(then_block);
2233 assert(else_block);
2234
2235 if (ctx->instruction_count == count_in) {
2236 /* The else block is empty, so don't emit an exit jump */
2237 mir_remove_instruction(then_exit);
2238 then_branch->branch.target_block = after_else_idx;
2239 } else {
2240 then_branch->branch.target_block = else_idx;
2241 then_exit->branch.target_block = after_else_idx;
2242 }
2243
2244 /* Wire up the successors */
2245
2246 ctx->after_block = create_empty_block(ctx);
2247
2248 midgard_block_add_successor(before_block, then_block);
2249 midgard_block_add_successor(before_block, else_block);
2250
2251 midgard_block_add_successor(end_then_block, ctx->after_block);
2252 midgard_block_add_successor(end_else_block, ctx->after_block);
2253 }
2254
2255 static void
2256 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2257 {
2258 /* Remember where we are */
2259 midgard_block *start_block = ctx->current_block;
2260
2261 /* Allocate a loop number, growing the current inner loop depth */
2262 int loop_idx = ++ctx->current_loop_depth;
2263
2264 /* Get index from before the body so we can loop back later */
2265 int start_idx = ctx->block_count;
2266
2267 /* Emit the body itself */
2268 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2269
2270 /* Branch back to loop back */
2271 struct midgard_instruction br_back = v_branch(false, false);
2272 br_back.branch.target_block = start_idx;
2273 emit_mir_instruction(ctx, br_back);
2274
2275 /* Mark down that branch in the graph. */
2276 midgard_block_add_successor(start_block, loop_block);
2277 midgard_block_add_successor(ctx->current_block, loop_block);
2278
2279 /* Find the index of the block about to follow us (note: we don't add
2280 * one; blocks are 0-indexed so we get a fencepost problem) */
2281 int break_block_idx = ctx->block_count;
2282
2283 /* Fix up the break statements we emitted to point to the right place,
2284 * now that we can allocate a block number for them */
2285 ctx->after_block = create_empty_block(ctx);
2286
2287 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2288 mir_foreach_instr_in_block(block, ins) {
2289 if (ins->type != TAG_ALU_4) continue;
2290 if (!ins->compact_branch) continue;
2291 if (ins->prepacked_branch) continue;
2292
2293 /* We found a branch -- check the type to see if we need to do anything */
2294 if (ins->branch.target_type != TARGET_BREAK) continue;
2295
2296 /* It's a break! Check if it's our break */
2297 if (ins->branch.target_break != loop_idx) continue;
2298
2299 /* Okay, cool, we're breaking out of this loop.
2300 * Rewrite from a break to a goto */
2301
2302 ins->branch.target_type = TARGET_GOTO;
2303 ins->branch.target_block = break_block_idx;
2304
2305 midgard_block_add_successor(block, ctx->after_block);
2306 }
2307 }
2308
2309 /* Now that we've finished emitting the loop, free up the depth again
2310 * so we play nice with recursion amid nested loops */
2311 --ctx->current_loop_depth;
2312
2313 /* Dump loop stats */
2314 ++ctx->loop_count;
2315 }
2316
2317 static midgard_block *
2318 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2319 {
2320 midgard_block *start_block = NULL;
2321
2322 foreach_list_typed(nir_cf_node, node, node, list) {
2323 switch (node->type) {
2324 case nir_cf_node_block: {
2325 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2326
2327 if (!start_block)
2328 start_block = block;
2329
2330 break;
2331 }
2332
2333 case nir_cf_node_if:
2334 emit_if(ctx, nir_cf_node_as_if(node));
2335 break;
2336
2337 case nir_cf_node_loop:
2338 emit_loop(ctx, nir_cf_node_as_loop(node));
2339 break;
2340
2341 case nir_cf_node_function:
2342 assert(0);
2343 break;
2344 }
2345 }
2346
2347 return start_block;
2348 }
2349
2350 /* Due to lookahead, we need to report the first tag executed in the command
2351 * stream and in branch targets. An initial block might be empty, so iterate
2352 * until we find one that 'works' */
2353
2354 static unsigned
2355 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2356 {
2357 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2358
2359 unsigned first_tag = 0;
2360
2361 mir_foreach_block_from(ctx, initial_block, v) {
2362 if (v->quadword_count) {
2363 midgard_bundle *initial_bundle =
2364 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2365
2366 first_tag = initial_bundle->tag;
2367 break;
2368 }
2369 }
2370
2371 return first_tag;
2372 }
2373
2374 int
2375 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend, unsigned gpu_id)
2376 {
2377 struct util_dynarray *compiled = &program->compiled;
2378
2379 midgard_debug = debug_get_option_midgard_debug();
2380
2381 /* TODO: Bound against what? */
2382 compiler_context *ctx = rzalloc(NULL, compiler_context);
2383
2384 ctx->nir = nir;
2385 ctx->screen = screen;
2386 ctx->stage = nir->info.stage;
2387 ctx->is_blend = is_blend;
2388 ctx->alpha_ref = program->alpha_ref;
2389 ctx->gpu_id = gpu_id;
2390
2391 /* Start off with a safe cutoff, allowing usage of all 16 work
2392 * registers. Later, we'll promote uniform reads to uniform registers
2393 * if we determine it is beneficial to do so */
2394 ctx->uniform_cutoff = 8;
2395
2396 /* Initialize at a global (not block) level hash tables */
2397
2398 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2399 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2400 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2401
2402 /* Record the varying mapping for the command stream's bookkeeping */
2403
2404 struct exec_list *varyings =
2405 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2406
2407 unsigned max_varying = 0;
2408 nir_foreach_variable(var, varyings) {
2409 unsigned loc = var->data.driver_location;
2410 unsigned sz = glsl_type_size(var->type, FALSE);
2411
2412 for (int c = 0; c < sz; ++c) {
2413 program->varyings[loc + c] = var->data.location + c;
2414 max_varying = MAX2(max_varying, loc + c);
2415 }
2416 }
2417
2418 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2419 * (so we don't accidentally duplicate the epilogue since mesa/st has
2420 * messed with our I/O quite a bit already) */
2421
2422 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2423
2424 if (ctx->stage == MESA_SHADER_VERTEX) {
2425 NIR_PASS_V(nir, nir_lower_viewport_transform);
2426 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2427 }
2428
2429 NIR_PASS_V(nir, nir_lower_var_copies);
2430 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2431 NIR_PASS_V(nir, nir_split_var_copies);
2432 NIR_PASS_V(nir, nir_lower_var_copies);
2433 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2434 NIR_PASS_V(nir, nir_lower_var_copies);
2435 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2436
2437 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2438
2439 /* Optimisation passes */
2440
2441 optimise_nir(nir);
2442
2443 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2444 nir_print_shader(nir, stdout);
2445 }
2446
2447 /* Assign sysvals and counts, now that we're sure
2448 * (post-optimisation) */
2449
2450 midgard_nir_assign_sysvals(ctx, nir);
2451
2452 program->uniform_count = nir->num_uniforms;
2453 program->sysval_count = ctx->sysval_count;
2454 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2455
2456 nir_foreach_function(func, nir) {
2457 if (!func->impl)
2458 continue;
2459
2460 list_inithead(&ctx->blocks);
2461 ctx->block_count = 0;
2462 ctx->func = func;
2463
2464 emit_cf_list(ctx, &func->impl->body);
2465
2466 /* Emit empty exit block with successor */
2467
2468 struct midgard_block *semi_end = ctx->current_block;
2469
2470 struct midgard_block *end =
2471 emit_block(ctx, func->impl->end_block);
2472
2473 if (ctx->stage == MESA_SHADER_FRAGMENT)
2474 emit_fragment_epilogue(ctx);
2475
2476 midgard_block_add_successor(semi_end, end);
2477
2478 break; /* TODO: Multi-function shaders */
2479 }
2480
2481 util_dynarray_init(compiled, NULL);
2482
2483 /* Per-block lowering before opts */
2484
2485 mir_foreach_block(ctx, block) {
2486 inline_alu_constants(ctx, block);
2487 midgard_opt_promote_fmov(ctx, block);
2488 embedded_to_inline_constant(ctx, block);
2489 }
2490 /* MIR-level optimizations */
2491
2492 bool progress = false;
2493
2494 do {
2495 progress = false;
2496
2497 mir_foreach_block(ctx, block) {
2498 progress |= midgard_opt_pos_propagate(ctx, block);
2499 progress |= midgard_opt_copy_prop(ctx, block);
2500 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2501 progress |= midgard_opt_combine_projection(ctx, block);
2502 progress |= midgard_opt_varying_projection(ctx, block);
2503 progress |= midgard_opt_not_propagate(ctx, block);
2504 progress |= midgard_opt_fuse_src_invert(ctx, block);
2505 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2506 progress |= midgard_opt_csel_invert(ctx, block);
2507 }
2508 } while (progress);
2509
2510 mir_foreach_block(ctx, block) {
2511 midgard_lower_invert(ctx, block);
2512 midgard_lower_derivatives(ctx, block);
2513 }
2514
2515 /* Nested control-flow can result in dead branches at the end of the
2516 * block. This messes with our analysis and is just dead code, so cull
2517 * them */
2518 mir_foreach_block(ctx, block) {
2519 midgard_opt_cull_dead_branch(ctx, block);
2520 }
2521
2522 /* Ensure we were lowered */
2523 mir_foreach_instr_global(ctx, ins) {
2524 assert(!ins->invert);
2525 }
2526
2527 /* Schedule! */
2528 schedule_program(ctx);
2529
2530 /* Now that all the bundles are scheduled and we can calculate block
2531 * sizes, emit actual branch instructions rather than placeholders */
2532
2533 int br_block_idx = 0;
2534
2535 mir_foreach_block(ctx, block) {
2536 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2537 for (int c = 0; c < bundle->instruction_count; ++c) {
2538 midgard_instruction *ins = bundle->instructions[c];
2539
2540 if (!midgard_is_branch_unit(ins->unit)) continue;
2541
2542 if (ins->prepacked_branch) continue;
2543
2544 /* Parse some basic branch info */
2545 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2546 bool is_conditional = ins->branch.conditional;
2547 bool is_inverted = ins->branch.invert_conditional;
2548 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2549
2550 /* Determine the block we're jumping to */
2551 int target_number = ins->branch.target_block;
2552
2553 /* Report the destination tag */
2554 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2555
2556 /* Count up the number of quadwords we're
2557 * jumping over = number of quadwords until
2558 * (br_block_idx, target_number) */
2559
2560 int quadword_offset = 0;
2561
2562 if (is_discard) {
2563 /* Ignored */
2564 } else if (target_number > br_block_idx) {
2565 /* Jump forward */
2566
2567 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2568 midgard_block *blk = mir_get_block(ctx, idx);
2569 assert(blk);
2570
2571 quadword_offset += blk->quadword_count;
2572 }
2573 } else {
2574 /* Jump backwards */
2575
2576 for (int idx = br_block_idx; idx >= target_number; --idx) {
2577 midgard_block *blk = mir_get_block(ctx, idx);
2578 assert(blk);
2579
2580 quadword_offset -= blk->quadword_count;
2581 }
2582 }
2583
2584 /* Unconditional extended branches (far jumps)
2585 * have issues, so we always use a conditional
2586 * branch, setting the condition to always for
2587 * unconditional. For compact unconditional
2588 * branches, cond isn't used so it doesn't
2589 * matter what we pick. */
2590
2591 midgard_condition cond =
2592 !is_conditional ? midgard_condition_always :
2593 is_inverted ? midgard_condition_false :
2594 midgard_condition_true;
2595
2596 midgard_jmp_writeout_op op =
2597 is_discard ? midgard_jmp_writeout_op_discard :
2598 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2599 midgard_jmp_writeout_op_branch_cond;
2600
2601 if (!is_compact) {
2602 midgard_branch_extended branch =
2603 midgard_create_branch_extended(
2604 cond, op,
2605 dest_tag,
2606 quadword_offset);
2607
2608 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2609 } else if (is_conditional || is_discard) {
2610 midgard_branch_cond branch = {
2611 .op = op,
2612 .dest_tag = dest_tag,
2613 .offset = quadword_offset,
2614 .cond = cond
2615 };
2616
2617 assert(branch.offset == quadword_offset);
2618
2619 memcpy(&ins->br_compact, &branch, sizeof(branch));
2620 } else {
2621 assert(op == midgard_jmp_writeout_op_branch_uncond);
2622
2623 midgard_branch_uncond branch = {
2624 .op = op,
2625 .dest_tag = dest_tag,
2626 .offset = quadword_offset,
2627 .unknown = 1
2628 };
2629
2630 assert(branch.offset == quadword_offset);
2631
2632 memcpy(&ins->br_compact, &branch, sizeof(branch));
2633 }
2634 }
2635 }
2636
2637 ++br_block_idx;
2638 }
2639
2640 /* Emit flat binary from the instruction arrays. Iterate each block in
2641 * sequence. Save instruction boundaries such that lookahead tags can
2642 * be assigned easily */
2643
2644 /* Cache _all_ bundles in source order for lookahead across failed branches */
2645
2646 int bundle_count = 0;
2647 mir_foreach_block(ctx, block) {
2648 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2649 }
2650 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2651 int bundle_idx = 0;
2652 mir_foreach_block(ctx, block) {
2653 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2654 source_order_bundles[bundle_idx++] = bundle;
2655 }
2656 }
2657
2658 int current_bundle = 0;
2659
2660 /* Midgard prefetches instruction types, so during emission we
2661 * need to lookahead. Unless this is the last instruction, in
2662 * which we return 1. Or if this is the second to last and the
2663 * last is an ALU, then it's also 1... */
2664
2665 mir_foreach_block(ctx, block) {
2666 mir_foreach_bundle_in_block(block, bundle) {
2667 int lookahead = 1;
2668
2669 if (current_bundle + 1 < bundle_count) {
2670 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2671
2672 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2673 lookahead = 1;
2674 } else {
2675 lookahead = next;
2676 }
2677 }
2678
2679 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2680 ++current_bundle;
2681 }
2682
2683 /* TODO: Free deeper */
2684 //util_dynarray_fini(&block->instructions);
2685 }
2686
2687 free(source_order_bundles);
2688
2689 /* Report the very first tag executed */
2690 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2691
2692 /* Deal with off-by-one related to the fencepost problem */
2693 program->work_register_count = ctx->work_registers + 1;
2694 program->uniform_cutoff = ctx->uniform_cutoff;
2695
2696 program->blend_patch_offset = ctx->blend_constant_offset;
2697 program->tls_size = ctx->tls_size;
2698
2699 if (midgard_debug & MIDGARD_DBG_SHADERS)
2700 disassemble_midgard(program->compiled.data, program->compiled.size, gpu_id);
2701
2702 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2703 unsigned nr_bundles = 0, nr_ins = 0;
2704
2705 /* Count instructions and bundles */
2706
2707 mir_foreach_block(ctx, block) {
2708 nr_bundles += util_dynarray_num_elements(
2709 &block->bundles, midgard_bundle);
2710
2711 mir_foreach_bundle_in_block(block, bun)
2712 nr_ins += bun->instruction_count;
2713 }
2714
2715 /* Calculate thread count. There are certain cutoffs by
2716 * register count for thread count */
2717
2718 unsigned nr_registers = program->work_register_count;
2719
2720 unsigned nr_threads =
2721 (nr_registers <= 4) ? 4 :
2722 (nr_registers <= 8) ? 2 :
2723 1;
2724
2725 /* Dump stats */
2726
2727 fprintf(stderr, "shader%d - %s shader: "
2728 "%u inst, %u bundles, %u quadwords, "
2729 "%u registers, %u threads, %u loops, "
2730 "%u:%u spills:fills\n",
2731 SHADER_DB_COUNT++,
2732 gl_shader_stage_name(ctx->stage),
2733 nr_ins, nr_bundles, ctx->quadword_count,
2734 nr_registers, nr_threads,
2735 ctx->loop_count,
2736 ctx->spills, ctx->fills);
2737 }
2738
2739 ralloc_free(ctx);
2740
2741 return 0;
2742 }