pan/midgard: De-special-case branching
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_LOAD(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact,
197 .ssa_args = {
198 .dest = -1,
199 .src0 = -1,
200 .src1 = -1,
201 }
202 };
203
204 if (op == midgard_jmp_writeout_op_writeout)
205 ins.writeout = true;
206
207 return ins;
208 }
209
210 static midgard_instruction
211 v_branch(bool conditional, bool invert)
212 {
213 midgard_instruction ins = {
214 .type = TAG_ALU_4,
215 .unit = ALU_ENAB_BRANCH,
216 .compact_branch = true,
217 .branch = {
218 .conditional = conditional,
219 .invert_conditional = invert
220 },
221 .ssa_args = {
222 .dest = -1,
223 .src0 = -1,
224 .src1 = -1
225 }
226 };
227
228 return ins;
229 }
230
231 static midgard_branch_extended
232 midgard_create_branch_extended( midgard_condition cond,
233 midgard_jmp_writeout_op op,
234 unsigned dest_tag,
235 signed quadword_offset)
236 {
237 /* The condition code is actually a LUT describing a function to
238 * combine multiple condition codes. However, we only support a single
239 * condition code at the moment, so we just duplicate over a bunch of
240 * times. */
241
242 uint16_t duplicated_cond =
243 (cond << 14) |
244 (cond << 12) |
245 (cond << 10) |
246 (cond << 8) |
247 (cond << 6) |
248 (cond << 4) |
249 (cond << 2) |
250 (cond << 0);
251
252 midgard_branch_extended branch = {
253 .op = op,
254 .dest_tag = dest_tag,
255 .offset = quadword_offset,
256 .cond = duplicated_cond
257 };
258
259 return branch;
260 }
261
262 static void
263 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
264 {
265 ins->has_constants = true;
266 memcpy(&ins->constants, constants, 16);
267 }
268
269 static int
270 glsl_type_size(const struct glsl_type *type, bool bindless)
271 {
272 return glsl_count_attribute_slots(type, false);
273 }
274
275 /* Lower fdot2 to a vector multiplication followed by channel addition */
276 static void
277 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
278 {
279 if (alu->op != nir_op_fdot2)
280 return;
281
282 b->cursor = nir_before_instr(&alu->instr);
283
284 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
285 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
286
287 nir_ssa_def *product = nir_fmul(b, src0, src1);
288
289 nir_ssa_def *sum = nir_fadd(b,
290 nir_channel(b, product, 0),
291 nir_channel(b, product, 1));
292
293 /* Replace the fdot2 with this sum */
294 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
295 }
296
297 static int
298 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
299 {
300 switch (instr->intrinsic) {
301 case nir_intrinsic_load_viewport_scale:
302 return PAN_SYSVAL_VIEWPORT_SCALE;
303 case nir_intrinsic_load_viewport_offset:
304 return PAN_SYSVAL_VIEWPORT_OFFSET;
305 default:
306 return -1;
307 }
308 }
309
310 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
311 unsigned *dest)
312 {
313 nir_intrinsic_instr *intr;
314 nir_dest *dst = NULL;
315 nir_tex_instr *tex;
316 int sysval = -1;
317
318 switch (instr->type) {
319 case nir_instr_type_intrinsic:
320 intr = nir_instr_as_intrinsic(instr);
321 sysval = midgard_nir_sysval_for_intrinsic(intr);
322 dst = &intr->dest;
323 break;
324 case nir_instr_type_tex:
325 tex = nir_instr_as_tex(instr);
326 if (tex->op != nir_texop_txs)
327 break;
328
329 sysval = PAN_SYSVAL(TEXTURE_SIZE,
330 PAN_TXS_SYSVAL_ID(tex->texture_index,
331 nir_tex_instr_dest_size(tex) -
332 (tex->is_array ? 1 : 0),
333 tex->is_array));
334 dst = &tex->dest;
335 break;
336 default:
337 break;
338 }
339
340 if (dest && dst)
341 *dest = nir_dest_index(ctx, dst);
342
343 return sysval;
344 }
345
346 static void
347 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
348 {
349 int sysval;
350
351 sysval = sysval_for_instr(ctx, instr, NULL);
352 if (sysval < 0)
353 return;
354
355 /* We have a sysval load; check if it's already been assigned */
356
357 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
358 return;
359
360 /* It hasn't -- so assign it now! */
361
362 unsigned id = ctx->sysval_count++;
363 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
364 ctx->sysvals[id] = sysval;
365 }
366
367 static void
368 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
369 {
370 ctx->sysval_count = 0;
371
372 nir_foreach_function(function, shader) {
373 if (!function->impl) continue;
374
375 nir_foreach_block(block, function->impl) {
376 nir_foreach_instr_safe(instr, block) {
377 midgard_nir_assign_sysval_body(ctx, instr);
378 }
379 }
380 }
381 }
382
383 static bool
384 midgard_nir_lower_fdot2(nir_shader *shader)
385 {
386 bool progress = false;
387
388 nir_foreach_function(function, shader) {
389 if (!function->impl) continue;
390
391 nir_builder _b;
392 nir_builder *b = &_b;
393 nir_builder_init(b, function->impl);
394
395 nir_foreach_block(block, function->impl) {
396 nir_foreach_instr_safe(instr, block) {
397 if (instr->type != nir_instr_type_alu) continue;
398
399 nir_alu_instr *alu = nir_instr_as_alu(instr);
400 midgard_nir_lower_fdot2_body(b, alu);
401
402 progress |= true;
403 }
404 }
405
406 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
407
408 }
409
410 return progress;
411 }
412
413 /* Flushes undefined values to zero */
414
415 static void
416 optimise_nir(nir_shader *nir)
417 {
418 bool progress;
419 unsigned lower_flrp =
420 (nir->options->lower_flrp16 ? 16 : 0) |
421 (nir->options->lower_flrp32 ? 32 : 0) |
422 (nir->options->lower_flrp64 ? 64 : 0);
423
424 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
425 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
426 NIR_PASS(progress, nir, nir_lower_idiv);
427
428 nir_lower_tex_options lower_tex_1st_pass_options = {
429 .lower_rect = true,
430 .lower_txp = ~0
431 };
432
433 nir_lower_tex_options lower_tex_2nd_pass_options = {
434 .lower_txs_lod = true,
435 };
436
437 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
438 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
439
440 do {
441 progress = false;
442
443 NIR_PASS(progress, nir, nir_lower_var_copies);
444 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
445
446 NIR_PASS(progress, nir, nir_copy_prop);
447 NIR_PASS(progress, nir, nir_opt_dce);
448 NIR_PASS(progress, nir, nir_opt_dead_cf);
449 NIR_PASS(progress, nir, nir_opt_cse);
450 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
451 NIR_PASS(progress, nir, nir_opt_algebraic);
452 NIR_PASS(progress, nir, nir_opt_constant_folding);
453
454 if (lower_flrp != 0) {
455 bool lower_flrp_progress = false;
456 NIR_PASS(lower_flrp_progress,
457 nir,
458 nir_lower_flrp,
459 lower_flrp,
460 false /* always_precise */,
461 nir->options->lower_ffma);
462 if (lower_flrp_progress) {
463 NIR_PASS(progress, nir,
464 nir_opt_constant_folding);
465 progress = true;
466 }
467
468 /* Nothing should rematerialize any flrps, so we only
469 * need to do this lowering once.
470 */
471 lower_flrp = 0;
472 }
473
474 NIR_PASS(progress, nir, nir_opt_undef);
475 NIR_PASS(progress, nir, nir_undef_to_zero);
476
477 NIR_PASS(progress, nir, nir_opt_loop_unroll,
478 nir_var_shader_in |
479 nir_var_shader_out |
480 nir_var_function_temp);
481
482 NIR_PASS(progress, nir, nir_opt_vectorize);
483 } while (progress);
484
485 /* Must be run at the end to prevent creation of fsin/fcos ops */
486 NIR_PASS(progress, nir, midgard_nir_scale_trig);
487
488 do {
489 progress = false;
490
491 NIR_PASS(progress, nir, nir_opt_dce);
492 NIR_PASS(progress, nir, nir_opt_algebraic);
493 NIR_PASS(progress, nir, nir_opt_constant_folding);
494 NIR_PASS(progress, nir, nir_copy_prop);
495 } while (progress);
496
497 NIR_PASS(progress, nir, nir_opt_algebraic_late);
498
499 /* We implement booleans as 32-bit 0/~0 */
500 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
501
502 /* Now that booleans are lowered, we can run out late opts */
503 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
504
505 /* Lower mods for float ops only. Integer ops don't support modifiers
506 * (saturate doesn't make sense on integers, neg/abs require dedicated
507 * instructions) */
508
509 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
510 NIR_PASS(progress, nir, nir_copy_prop);
511 NIR_PASS(progress, nir, nir_opt_dce);
512
513 /* Take us out of SSA */
514 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
515 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
516
517 /* We are a vector architecture; write combine where possible */
518 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
519 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
520
521 NIR_PASS(progress, nir, nir_opt_dce);
522 }
523
524 /* Do not actually emit a load; instead, cache the constant for inlining */
525
526 static void
527 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
528 {
529 nir_ssa_def def = instr->def;
530
531 float *v = rzalloc_array(NULL, float, 4);
532 nir_const_load_to_arr(v, instr, f32);
533
534 /* Shifted for SSA, +1 for off-by-one */
535 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
536 }
537
538 /* Normally constants are embedded implicitly, but for I/O and such we have to
539 * explicitly emit a move with the constant source */
540
541 static void
542 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
543 {
544 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
545
546 if (constant_value) {
547 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
548 attach_constants(ctx, &ins, constant_value, node + 1);
549 emit_mir_instruction(ctx, ins);
550 }
551 }
552
553 static bool
554 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
555 {
556 unsigned comp = src->swizzle[0];
557
558 for (unsigned c = 1; c < nr_components; ++c) {
559 if (src->swizzle[c] != comp)
560 return true;
561 }
562
563 return false;
564 }
565
566 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
567 * output of a conditional test) into that register */
568
569 static void
570 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
571 {
572 int condition = nir_src_index(ctx, src);
573
574 /* Source to swizzle the desired component into w */
575
576 const midgard_vector_alu_src alu_src = {
577 .swizzle = SWIZZLE(component, component, component, component),
578 };
579
580 /* There is no boolean move instruction. Instead, we simulate a move by
581 * ANDing the condition with itself to get it into r31.w */
582
583 midgard_instruction ins = {
584 .type = TAG_ALU_4,
585
586 /* We need to set the conditional as close as possible */
587 .precede_break = true,
588 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
589 .mask = 1 << COMPONENT_W,
590
591 .ssa_args = {
592 .src0 = condition,
593 .src1 = condition,
594 .dest = SSA_FIXED_REGISTER(31),
595 },
596
597 .alu = {
598 .op = midgard_alu_op_iand,
599 .outmod = midgard_outmod_int_wrap,
600 .reg_mode = midgard_reg_mode_32,
601 .dest_override = midgard_dest_override_none,
602 .src1 = vector_alu_srco_unsigned(alu_src),
603 .src2 = vector_alu_srco_unsigned(alu_src)
604 },
605 };
606
607 emit_mir_instruction(ctx, ins);
608 }
609
610 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
611 * r31 instead */
612
613 static void
614 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
615 {
616 int condition = nir_src_index(ctx, &src->src);
617
618 /* Source to swizzle the desired component into w */
619
620 const midgard_vector_alu_src alu_src = {
621 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
622 };
623
624 /* There is no boolean move instruction. Instead, we simulate a move by
625 * ANDing the condition with itself to get it into r31.w */
626
627 midgard_instruction ins = {
628 .type = TAG_ALU_4,
629 .precede_break = true,
630 .mask = mask_of(nr_comp),
631 .ssa_args = {
632 .src0 = condition,
633 .src1 = condition,
634 .dest = SSA_FIXED_REGISTER(31),
635 },
636 .alu = {
637 .op = midgard_alu_op_iand,
638 .outmod = midgard_outmod_int_wrap,
639 .reg_mode = midgard_reg_mode_32,
640 .dest_override = midgard_dest_override_none,
641 .src1 = vector_alu_srco_unsigned(alu_src),
642 .src2 = vector_alu_srco_unsigned(alu_src)
643 },
644 };
645
646 emit_mir_instruction(ctx, ins);
647 }
648
649
650
651 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
652 * pinning to eliminate this move in all known cases */
653
654 static void
655 emit_indirect_offset(compiler_context *ctx, nir_src *src)
656 {
657 int offset = nir_src_index(ctx, src);
658
659 midgard_instruction ins = {
660 .type = TAG_ALU_4,
661 .mask = 1 << COMPONENT_W,
662 .ssa_args = {
663 .src0 = SSA_UNUSED_1,
664 .src1 = offset,
665 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
666 },
667 .alu = {
668 .op = midgard_alu_op_imov,
669 .outmod = midgard_outmod_int_wrap,
670 .reg_mode = midgard_reg_mode_32,
671 .dest_override = midgard_dest_override_none,
672 .src1 = vector_alu_srco_unsigned(zero_alu_src),
673 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
674 },
675 };
676
677 emit_mir_instruction(ctx, ins);
678 }
679
680 #define ALU_CASE(nir, _op) \
681 case nir_op_##nir: \
682 op = midgard_alu_op_##_op; \
683 assert(src_bitsize == dst_bitsize); \
684 break;
685
686 #define ALU_CASE_BCAST(nir, _op, count) \
687 case nir_op_##nir: \
688 op = midgard_alu_op_##_op; \
689 broadcast_swizzle = count; \
690 assert(src_bitsize == dst_bitsize); \
691 break;
692 static bool
693 nir_is_fzero_constant(nir_src src)
694 {
695 if (!nir_src_is_const(src))
696 return false;
697
698 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
699 if (nir_src_comp_as_float(src, c) != 0.0)
700 return false;
701 }
702
703 return true;
704 }
705
706 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
707 * special treatment override this anyway. */
708
709 static midgard_reg_mode
710 reg_mode_for_nir(nir_alu_instr *instr)
711 {
712 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
713
714 switch (src_bitsize) {
715 case 8:
716 return midgard_reg_mode_8;
717 case 16:
718 return midgard_reg_mode_16;
719 case 32:
720 return midgard_reg_mode_32;
721 case 64:
722 return midgard_reg_mode_64;
723 default:
724 unreachable("Invalid bit size");
725 }
726 }
727
728 static void
729 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
730 {
731 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
732 * is handled elsewhere */
733
734 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
735 midgard_emit_derivatives(ctx, instr);
736 return;
737 }
738
739 bool is_ssa = instr->dest.dest.is_ssa;
740
741 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
742 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
743 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
744
745 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
746 * supported. A few do not and are commented for now. Also, there are a
747 * number of NIR ops which Midgard does not support and need to be
748 * lowered, also TODO. This switch block emits the opcode and calling
749 * convention of the Midgard instruction; actual packing is done in
750 * emit_alu below */
751
752 unsigned op;
753
754 /* Number of components valid to check for the instruction (the rest
755 * will be forced to the last), or 0 to use as-is. Relevant as
756 * ball-type instructions have a channel count in NIR but are all vec4
757 * in Midgard */
758
759 unsigned broadcast_swizzle = 0;
760
761 /* What register mode should we operate in? */
762 midgard_reg_mode reg_mode =
763 reg_mode_for_nir(instr);
764
765 /* Do we need a destination override? Used for inline
766 * type conversion */
767
768 midgard_dest_override dest_override =
769 midgard_dest_override_none;
770
771 /* Should we use a smaller respective source and sign-extend? */
772
773 bool half_1 = false, sext_1 = false;
774 bool half_2 = false, sext_2 = false;
775
776 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
777 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
778
779 switch (instr->op) {
780 ALU_CASE(fadd, fadd);
781 ALU_CASE(fmul, fmul);
782 ALU_CASE(fmin, fmin);
783 ALU_CASE(fmax, fmax);
784 ALU_CASE(imin, imin);
785 ALU_CASE(imax, imax);
786 ALU_CASE(umin, umin);
787 ALU_CASE(umax, umax);
788 ALU_CASE(ffloor, ffloor);
789 ALU_CASE(fround_even, froundeven);
790 ALU_CASE(ftrunc, ftrunc);
791 ALU_CASE(fceil, fceil);
792 ALU_CASE(fdot3, fdot3);
793 ALU_CASE(fdot4, fdot4);
794 ALU_CASE(iadd, iadd);
795 ALU_CASE(isub, isub);
796 ALU_CASE(imul, imul);
797
798 /* Zero shoved as second-arg */
799 ALU_CASE(iabs, iabsdiff);
800
801 ALU_CASE(mov, imov);
802
803 ALU_CASE(feq32, feq);
804 ALU_CASE(fne32, fne);
805 ALU_CASE(flt32, flt);
806 ALU_CASE(ieq32, ieq);
807 ALU_CASE(ine32, ine);
808 ALU_CASE(ilt32, ilt);
809 ALU_CASE(ult32, ult);
810
811 /* We don't have a native b2f32 instruction. Instead, like many
812 * GPUs, we exploit booleans as 0/~0 for false/true, and
813 * correspondingly AND
814 * by 1.0 to do the type conversion. For the moment, prime us
815 * to emit:
816 *
817 * iand [whatever], #0
818 *
819 * At the end of emit_alu (as MIR), we'll fix-up the constant
820 */
821
822 ALU_CASE(b2f32, iand);
823 ALU_CASE(b2i32, iand);
824
825 /* Likewise, we don't have a dedicated f2b32 instruction, but
826 * we can do a "not equal to 0.0" test. */
827
828 ALU_CASE(f2b32, fne);
829 ALU_CASE(i2b32, ine);
830
831 ALU_CASE(frcp, frcp);
832 ALU_CASE(frsq, frsqrt);
833 ALU_CASE(fsqrt, fsqrt);
834 ALU_CASE(fexp2, fexp2);
835 ALU_CASE(flog2, flog2);
836
837 ALU_CASE(f2i32, f2i_rtz);
838 ALU_CASE(f2u32, f2u_rtz);
839 ALU_CASE(i2f32, i2f_rtz);
840 ALU_CASE(u2f32, u2f_rtz);
841
842 ALU_CASE(f2i16, f2i_rtz);
843 ALU_CASE(f2u16, f2u_rtz);
844 ALU_CASE(i2f16, i2f_rtz);
845 ALU_CASE(u2f16, u2f_rtz);
846
847 ALU_CASE(fsin, fsin);
848 ALU_CASE(fcos, fcos);
849
850 /* We'll set invert */
851 ALU_CASE(inot, imov);
852 ALU_CASE(iand, iand);
853 ALU_CASE(ior, ior);
854 ALU_CASE(ixor, ixor);
855 ALU_CASE(ishl, ishl);
856 ALU_CASE(ishr, iasr);
857 ALU_CASE(ushr, ilsr);
858
859 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
860 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
861 ALU_CASE(b32all_fequal4, fball_eq);
862
863 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
864 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
865 ALU_CASE(b32any_fnequal4, fbany_neq);
866
867 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
868 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
869 ALU_CASE(b32all_iequal4, iball_eq);
870
871 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
872 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
873 ALU_CASE(b32any_inequal4, ibany_neq);
874
875 /* Source mods will be shoved in later */
876 ALU_CASE(fabs, fmov);
877 ALU_CASE(fneg, fmov);
878 ALU_CASE(fsat, fmov);
879
880 /* For size conversion, we use a move. Ideally though we would squash
881 * these ops together; maybe that has to happen after in NIR as part of
882 * propagation...? An earlier algebraic pass ensured we step down by
883 * only / exactly one size. If stepping down, we use a dest override to
884 * reduce the size; if stepping up, we use a larger-sized move with a
885 * half source and a sign/zero-extension modifier */
886
887 case nir_op_i2i8:
888 case nir_op_i2i16:
889 case nir_op_i2i32:
890 /* If we end up upscale, we'll need a sign-extend on the
891 * operand (the second argument) */
892
893 sext_2 = true;
894 case nir_op_u2u8:
895 case nir_op_u2u16:
896 case nir_op_u2u32: {
897 op = midgard_alu_op_imov;
898
899 if (dst_bitsize == (src_bitsize * 2)) {
900 /* Converting up */
901 half_2 = true;
902
903 /* Use a greater register mode */
904 reg_mode++;
905 } else if (src_bitsize == (dst_bitsize * 2)) {
906 /* Converting down */
907 dest_override = midgard_dest_override_lower;
908 }
909
910 break;
911 }
912
913 case nir_op_f2f16: {
914 assert(src_bitsize == 32);
915
916 op = midgard_alu_op_fmov;
917 dest_override = midgard_dest_override_lower;
918 break;
919 }
920
921 case nir_op_f2f32: {
922 assert(src_bitsize == 16);
923
924 op = midgard_alu_op_fmov;
925 half_2 = true;
926 reg_mode++;
927 break;
928 }
929
930
931 /* For greater-or-equal, we lower to less-or-equal and flip the
932 * arguments */
933
934 case nir_op_fge:
935 case nir_op_fge32:
936 case nir_op_ige32:
937 case nir_op_uge32: {
938 op =
939 instr->op == nir_op_fge ? midgard_alu_op_fle :
940 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
941 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
942 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
943 0;
944
945 /* Swap via temporary */
946 nir_alu_src temp = instr->src[1];
947 instr->src[1] = instr->src[0];
948 instr->src[0] = temp;
949
950 break;
951 }
952
953 case nir_op_b32csel: {
954 /* Midgard features both fcsel and icsel, depending on
955 * the type of the arguments/output. However, as long
956 * as we're careful we can _always_ use icsel and
957 * _never_ need fcsel, since the latter does additional
958 * floating-point-specific processing whereas the
959 * former just moves bits on the wire. It's not obvious
960 * why these are separate opcodes, save for the ability
961 * to do things like sat/pos/abs/neg for free */
962
963 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
964 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
965
966 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
967 nr_inputs = 2;
968
969 /* Emit the condition into r31 */
970
971 if (mixed)
972 emit_condition_mixed(ctx, &instr->src[0], nr_components);
973 else
974 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
975
976 /* The condition is the first argument; move the other
977 * arguments up one to be a binary instruction for
978 * Midgard */
979
980 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
981 break;
982 }
983
984 default:
985 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
986 assert(0);
987 return;
988 }
989
990 /* Midgard can perform certain modifiers on output of an ALU op */
991 unsigned outmod;
992
993 if (midgard_is_integer_out_op(op)) {
994 outmod = midgard_outmod_int_wrap;
995 } else {
996 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
997 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
998 }
999
1000 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1001
1002 if (instr->op == nir_op_fmax) {
1003 if (nir_is_fzero_constant(instr->src[0].src)) {
1004 op = midgard_alu_op_fmov;
1005 nr_inputs = 1;
1006 outmod = midgard_outmod_pos;
1007 instr->src[0] = instr->src[1];
1008 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1009 op = midgard_alu_op_fmov;
1010 nr_inputs = 1;
1011 outmod = midgard_outmod_pos;
1012 }
1013 }
1014
1015 /* Fetch unit, quirks, etc information */
1016 unsigned opcode_props = alu_opcode_props[op].props;
1017 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1018
1019 /* src0 will always exist afaik, but src1 will not for 1-argument
1020 * instructions. The latter can only be fetched if the instruction
1021 * needs it, or else we may segfault. */
1022
1023 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1024 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1025
1026 /* Rather than use the instruction generation helpers, we do it
1027 * ourselves here to avoid the mess */
1028
1029 midgard_instruction ins = {
1030 .type = TAG_ALU_4,
1031 .ssa_args = {
1032 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1033 .src1 = quirk_flipped_r24 ? src0 : src1,
1034 .dest = dest,
1035 }
1036 };
1037
1038 nir_alu_src *nirmods[2] = { NULL };
1039
1040 if (nr_inputs == 2) {
1041 nirmods[0] = &instr->src[0];
1042 nirmods[1] = &instr->src[1];
1043 } else if (nr_inputs == 1) {
1044 nirmods[quirk_flipped_r24] = &instr->src[0];
1045 } else {
1046 assert(0);
1047 }
1048
1049 /* These were lowered to a move, so apply the corresponding mod */
1050
1051 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1052 nir_alu_src *s = nirmods[quirk_flipped_r24];
1053
1054 if (instr->op == nir_op_fneg)
1055 s->negate = !s->negate;
1056
1057 if (instr->op == nir_op_fabs)
1058 s->abs = !s->abs;
1059 }
1060
1061 bool is_int = midgard_is_integer_op(op);
1062
1063 ins.mask = mask_of(nr_components);
1064
1065 midgard_vector_alu alu = {
1066 .op = op,
1067 .reg_mode = reg_mode,
1068 .dest_override = dest_override,
1069 .outmod = outmod,
1070
1071 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1072 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1073 };
1074
1075 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1076
1077 if (!is_ssa)
1078 ins.mask &= instr->dest.write_mask;
1079
1080 ins.alu = alu;
1081
1082 /* Late fixup for emulated instructions */
1083
1084 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1085 /* Presently, our second argument is an inline #0 constant.
1086 * Switch over to an embedded 1.0 constant (that can't fit
1087 * inline, since we're 32-bit, not 16-bit like the inline
1088 * constants) */
1089
1090 ins.ssa_args.inline_constant = false;
1091 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1092 ins.has_constants = true;
1093
1094 if (instr->op == nir_op_b2f32) {
1095 ins.constants[0] = 1.0f;
1096 } else {
1097 /* Type pun it into place */
1098 uint32_t one = 0x1;
1099 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1100 }
1101
1102 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1103 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1104 /* Lots of instructions need a 0 plonked in */
1105 ins.ssa_args.inline_constant = false;
1106 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1107 ins.has_constants = true;
1108 ins.constants[0] = 0.0f;
1109 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1110 } else if (instr->op == nir_op_inot) {
1111 ins.invert = true;
1112 }
1113
1114 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1115 /* To avoid duplicating the lookup tables (probably), true LUT
1116 * instructions can only operate as if they were scalars. Lower
1117 * them here by changing the component. */
1118
1119 uint8_t original_swizzle[4];
1120 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1121 unsigned orig_mask = ins.mask;
1122
1123 for (int i = 0; i < nr_components; ++i) {
1124 /* Mask the associated component, dropping the
1125 * instruction if needed */
1126
1127 ins.mask = 1 << i;
1128 ins.mask &= orig_mask;
1129
1130 if (!ins.mask)
1131 continue;
1132
1133 for (int j = 0; j < 4; ++j)
1134 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1135
1136 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1137 emit_mir_instruction(ctx, ins);
1138 }
1139 } else {
1140 emit_mir_instruction(ctx, ins);
1141 }
1142 }
1143
1144 #undef ALU_CASE
1145
1146 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1147 * optimized) versions of UBO #0 */
1148
1149 void
1150 emit_ubo_read(
1151 compiler_context *ctx,
1152 unsigned dest,
1153 unsigned offset,
1154 nir_src *indirect_offset,
1155 unsigned index)
1156 {
1157 /* TODO: half-floats */
1158
1159 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1160
1161 /* TODO: Don't split */
1162 ins.load_store.varying_parameters = (offset & 7) << 7;
1163 ins.load_store.address = offset >> 3;
1164
1165 if (indirect_offset) {
1166 emit_indirect_offset(ctx, indirect_offset);
1167 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1168 } else {
1169 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1170 }
1171
1172 emit_mir_instruction(ctx, ins);
1173 }
1174
1175 static void
1176 emit_varying_read(
1177 compiler_context *ctx,
1178 unsigned dest, unsigned offset,
1179 unsigned nr_comp, unsigned component,
1180 nir_src *indirect_offset, nir_alu_type type)
1181 {
1182 /* XXX: Half-floats? */
1183 /* TODO: swizzle, mask */
1184
1185 midgard_instruction ins = m_ld_vary_32(dest, offset);
1186 ins.mask = mask_of(nr_comp);
1187 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1188
1189 midgard_varying_parameter p = {
1190 .is_varying = 1,
1191 .interpolation = midgard_interp_default,
1192 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1193 };
1194
1195 unsigned u;
1196 memcpy(&u, &p, sizeof(p));
1197 ins.load_store.varying_parameters = u;
1198
1199 if (indirect_offset) {
1200 /* We need to add in the dynamic index, moved to r27.w */
1201 emit_indirect_offset(ctx, indirect_offset);
1202 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1203 } else {
1204 /* Just a direct load */
1205 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1206 }
1207
1208 /* Use the type appropriate load */
1209 switch (type) {
1210 case nir_type_uint:
1211 case nir_type_bool:
1212 ins.load_store.op = midgard_op_ld_vary_32u;
1213 break;
1214 case nir_type_int:
1215 ins.load_store.op = midgard_op_ld_vary_32i;
1216 break;
1217 case nir_type_float:
1218 ins.load_store.op = midgard_op_ld_vary_32;
1219 break;
1220 default:
1221 unreachable("Attempted to load unknown type");
1222 break;
1223 }
1224
1225 emit_mir_instruction(ctx, ins);
1226 }
1227
1228 static void
1229 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1230 {
1231 unsigned dest = 0;
1232
1233 /* Figure out which uniform this is */
1234 int sysval = sysval_for_instr(ctx, instr, &dest);
1235 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1236
1237 /* Sysvals are prefix uniforms */
1238 unsigned uniform = ((uintptr_t) val) - 1;
1239
1240 /* Emit the read itself -- this is never indirect */
1241 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1242 }
1243
1244 static void
1245 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1246 {
1247 unsigned offset = 0, reg;
1248
1249 switch (instr->intrinsic) {
1250 case nir_intrinsic_discard_if:
1251 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1252
1253 /* fallthrough */
1254
1255 case nir_intrinsic_discard: {
1256 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1257 struct midgard_instruction discard = v_branch(conditional, false);
1258 discard.branch.target_type = TARGET_DISCARD;
1259 emit_mir_instruction(ctx, discard);
1260 break;
1261 }
1262
1263 case nir_intrinsic_load_uniform:
1264 case nir_intrinsic_load_ubo:
1265 case nir_intrinsic_load_input: {
1266 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1267 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1268
1269 /* Get the base type of the intrinsic */
1270 /* TODO: Infer type? Does it matter? */
1271 nir_alu_type t =
1272 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1273 t = nir_alu_type_get_base_type(t);
1274
1275 if (!is_ubo) {
1276 offset = nir_intrinsic_base(instr);
1277 }
1278
1279 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1280
1281 nir_src *src_offset = nir_get_io_offset_src(instr);
1282
1283 bool direct = nir_src_is_const(*src_offset);
1284
1285 if (direct)
1286 offset += nir_src_as_uint(*src_offset);
1287
1288 /* We may need to apply a fractional offset */
1289 int component = instr->intrinsic == nir_intrinsic_load_input ?
1290 nir_intrinsic_component(instr) : 0;
1291 reg = nir_dest_index(ctx, &instr->dest);
1292
1293 if (is_uniform && !ctx->is_blend) {
1294 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1295 } else if (is_ubo) {
1296 nir_src index = instr->src[0];
1297
1298 /* We don't yet support indirect UBOs. For indirect
1299 * block numbers (if that's possible), we don't know
1300 * enough about the hardware yet. For indirect sources,
1301 * we know what we need but we need to add some NIR
1302 * support for lowering correctly with respect to
1303 * 128-bit reads */
1304
1305 assert(nir_src_is_const(index));
1306 assert(nir_src_is_const(*src_offset));
1307
1308 /* TODO: Alignment */
1309 assert((offset & 0xF) == 0);
1310
1311 uint32_t uindex = nir_src_as_uint(index) + 1;
1312 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1313 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1314 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1315 } else if (ctx->is_blend) {
1316 /* For blend shaders, load the input color, which is
1317 * preloaded to r0 */
1318
1319 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1320 emit_mir_instruction(ctx, move);
1321 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1322 midgard_instruction ins = m_ld_attr_32(reg, offset);
1323 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1324 ins.mask = mask_of(nr_comp);
1325
1326 /* Use the type appropriate load */
1327 switch (t) {
1328 case nir_type_uint:
1329 case nir_type_bool:
1330 ins.load_store.op = midgard_op_ld_attr_32u;
1331 break;
1332 case nir_type_int:
1333 ins.load_store.op = midgard_op_ld_attr_32i;
1334 break;
1335 case nir_type_float:
1336 ins.load_store.op = midgard_op_ld_attr_32;
1337 break;
1338 default:
1339 unreachable("Attempted to load unknown type");
1340 break;
1341 }
1342
1343 emit_mir_instruction(ctx, ins);
1344 } else {
1345 DBG("Unknown load\n");
1346 assert(0);
1347 }
1348
1349 break;
1350 }
1351
1352 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1353
1354 case nir_intrinsic_load_raw_output_pan:
1355 reg = nir_dest_index(ctx, &instr->dest);
1356 assert(ctx->is_blend);
1357
1358 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1359 emit_mir_instruction(ctx, ins);
1360 break;
1361
1362 case nir_intrinsic_load_blend_const_color_rgba: {
1363 assert(ctx->is_blend);
1364 reg = nir_dest_index(ctx, &instr->dest);
1365
1366 /* Blend constants are embedded directly in the shader and
1367 * patched in, so we use some magic routing */
1368
1369 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1370 ins.has_constants = true;
1371 ins.has_blend_constant = true;
1372 emit_mir_instruction(ctx, ins);
1373 break;
1374 }
1375
1376 case nir_intrinsic_store_output:
1377 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1378
1379 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1380
1381 reg = nir_src_index(ctx, &instr->src[0]);
1382
1383 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1384 /* gl_FragColor is not emitted with load/store
1385 * instructions. Instead, it gets plonked into
1386 * r0 at the end of the shader and we do the
1387 * framebuffer writeout dance. TODO: Defer
1388 * writes */
1389
1390 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1391 emit_mir_instruction(ctx, move);
1392
1393 /* Save the index we're writing to for later reference
1394 * in the epilogue */
1395
1396 ctx->fragment_output = reg;
1397 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1398 /* We should have been vectorized, though we don't
1399 * currently check that st_vary is emitted only once
1400 * per slot (this is relevant, since there's not a mask
1401 * parameter available on the store [set to 0 by the
1402 * blob]). We do respect the component by adjusting the
1403 * swizzle. If this is a constant source, we'll need to
1404 * emit that explicitly. */
1405
1406 emit_explicit_constant(ctx, reg, reg);
1407
1408 unsigned component = nir_intrinsic_component(instr);
1409
1410 midgard_instruction st = m_st_vary_32(reg, offset);
1411 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1412 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1413 emit_mir_instruction(ctx, st);
1414 } else {
1415 DBG("Unknown store\n");
1416 assert(0);
1417 }
1418
1419 break;
1420
1421 /* Special case of store_output for lowered blend shaders */
1422 case nir_intrinsic_store_raw_output_pan:
1423 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1424 reg = nir_src_index(ctx, &instr->src[0]);
1425
1426 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1427 emit_mir_instruction(ctx, move);
1428 ctx->fragment_output = reg;
1429
1430 break;
1431
1432 case nir_intrinsic_load_alpha_ref_float:
1433 assert(instr->dest.is_ssa);
1434
1435 float ref_value = ctx->alpha_ref;
1436
1437 /* See emit_load_const */
1438 float *v = ralloc_array(NULL, float, 4);
1439 memcpy(v, &ref_value, sizeof(float));
1440 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1441 break;
1442
1443 case nir_intrinsic_load_viewport_scale:
1444 case nir_intrinsic_load_viewport_offset:
1445 emit_sysval_read(ctx, &instr->instr);
1446 break;
1447
1448 default:
1449 printf ("Unhandled intrinsic\n");
1450 assert(0);
1451 break;
1452 }
1453 }
1454
1455 static unsigned
1456 midgard_tex_format(enum glsl_sampler_dim dim)
1457 {
1458 switch (dim) {
1459 case GLSL_SAMPLER_DIM_1D:
1460 case GLSL_SAMPLER_DIM_BUF:
1461 return MALI_TEX_1D;
1462
1463 case GLSL_SAMPLER_DIM_2D:
1464 case GLSL_SAMPLER_DIM_EXTERNAL:
1465 return MALI_TEX_2D;
1466
1467 case GLSL_SAMPLER_DIM_3D:
1468 return MALI_TEX_3D;
1469
1470 case GLSL_SAMPLER_DIM_CUBE:
1471 return MALI_TEX_CUBE;
1472
1473 default:
1474 DBG("Unknown sampler dim type\n");
1475 assert(0);
1476 return 0;
1477 }
1478 }
1479
1480 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1481 * was successful */
1482
1483 static bool
1484 pan_attach_constant_bias(
1485 compiler_context *ctx,
1486 nir_src lod,
1487 midgard_texture_word *word)
1488 {
1489 /* To attach as constant, it has to *be* constant */
1490
1491 if (!nir_src_is_const(lod))
1492 return false;
1493
1494 float f = nir_src_as_float(lod);
1495
1496 /* Break into fixed-point */
1497 signed lod_int = f;
1498 float lod_frac = f - lod_int;
1499
1500 /* Carry over negative fractions */
1501 if (lod_frac < 0.0) {
1502 lod_int--;
1503 lod_frac += 1.0;
1504 }
1505
1506 /* Encode */
1507 word->bias = float_to_ubyte(lod_frac);
1508 word->bias_int = lod_int;
1509
1510 return true;
1511 }
1512
1513 static enum mali_sampler_type
1514 midgard_sampler_type(nir_alu_type t) {
1515 switch (nir_alu_type_get_base_type(t))
1516 {
1517 case nir_type_float:
1518 return MALI_SAMPLER_FLOAT;
1519 case nir_type_int:
1520 return MALI_SAMPLER_SIGNED;
1521 case nir_type_uint:
1522 return MALI_SAMPLER_UNSIGNED;
1523 default:
1524 unreachable("Unknown sampler type");
1525 }
1526 }
1527
1528 static void
1529 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1530 unsigned midgard_texop)
1531 {
1532 /* TODO */
1533 //assert (!instr->sampler);
1534 //assert (!instr->texture_array_size);
1535
1536 int texture_index = instr->texture_index;
1537 int sampler_index = texture_index;
1538
1539 /* No helper to build texture words -- we do it all here */
1540 midgard_instruction ins = {
1541 .type = TAG_TEXTURE_4,
1542 .mask = 0xF,
1543 .ssa_args = {
1544 .dest = nir_dest_index(ctx, &instr->dest),
1545 .src0 = -1,
1546 .src1 = -1,
1547 },
1548 .texture = {
1549 .op = midgard_texop,
1550 .format = midgard_tex_format(instr->sampler_dim),
1551 .texture_handle = texture_index,
1552 .sampler_handle = sampler_index,
1553 .swizzle = SWIZZLE_XYZW,
1554 .in_reg_swizzle = SWIZZLE_XYZW,
1555
1556 /* TODO: half */
1557 .in_reg_full = 1,
1558 .out_full = 1,
1559
1560 .sampler_type = midgard_sampler_type(instr->dest_type),
1561 }
1562 };
1563
1564 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1565 int index = nir_src_index(ctx, &instr->src[i].src);
1566 midgard_vector_alu_src alu_src = blank_alu_src;
1567
1568 switch (instr->src[i].src_type) {
1569 case nir_tex_src_coord: {
1570 emit_explicit_constant(ctx, index, index);
1571
1572 /* Texelfetch coordinates uses all four elements
1573 * (xyz/index) regardless of texture dimensionality,
1574 * which means it's necessary to zero the unused
1575 * components to keep everything happy */
1576
1577 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1578 unsigned old_index = index;
1579
1580 index = make_compiler_temp(ctx);
1581
1582 /* mov index, old_index */
1583 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1584 mov.mask = 0x3;
1585 emit_mir_instruction(ctx, mov);
1586
1587 /* mov index.zw, #0 */
1588 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1589 blank_alu_src, index);
1590 mov.has_constants = true;
1591 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1592 emit_mir_instruction(ctx, mov);
1593 }
1594
1595 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1596 /* texelFetch is undefined on samplerCube */
1597 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1598
1599 /* For cubemaps, we use a special ld/st op to
1600 * select the face and copy the xy into the
1601 * texture register */
1602
1603 unsigned temp = make_compiler_temp(ctx);
1604
1605 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1606 st.ssa_args.src0 = index;
1607 st.load_store.unknown = 0x24; /* XXX: What is this? */
1608 st.mask = 0x3; /* xy */
1609 st.load_store.swizzle = alu_src.swizzle;
1610 emit_mir_instruction(ctx, st);
1611
1612 ins.ssa_args.src0 = temp;
1613 } else {
1614 ins.ssa_args.src0 = index;
1615 }
1616
1617 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1618 /* Array component in w but NIR wants it in z */
1619 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1620 }
1621
1622 break;
1623 }
1624
1625 case nir_tex_src_bias:
1626 case nir_tex_src_lod: {
1627 /* Try as a constant if we can */
1628
1629 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1630 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1631 break;
1632
1633 ins.texture.lod_register = true;
1634 ins.ssa_args.src1 = index;
1635 emit_explicit_constant(ctx, index, index);
1636
1637 break;
1638 };
1639
1640 default:
1641 unreachable("Unknown texture source type\n");
1642 }
1643 }
1644
1645 emit_mir_instruction(ctx, ins);
1646
1647 /* Used for .cont and .last hinting */
1648 ctx->texture_op_count++;
1649 }
1650
1651 static void
1652 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1653 {
1654 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1655 * generic tex in some cases (which confuses the hardware) */
1656
1657 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1658
1659 if (is_vertex && instr->op == nir_texop_tex)
1660 instr->op = nir_texop_txl;
1661
1662 switch (instr->op) {
1663 case nir_texop_tex:
1664 case nir_texop_txb:
1665 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1666 break;
1667 case nir_texop_txl:
1668 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1669 break;
1670 case nir_texop_txf:
1671 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1672 break;
1673 case nir_texop_txs:
1674 emit_sysval_read(ctx, &instr->instr);
1675 break;
1676 default:
1677 unreachable("Unhanlded texture op");
1678 }
1679 }
1680
1681 static void
1682 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1683 {
1684 switch (instr->type) {
1685 case nir_jump_break: {
1686 /* Emit a branch out of the loop */
1687 struct midgard_instruction br = v_branch(false, false);
1688 br.branch.target_type = TARGET_BREAK;
1689 br.branch.target_break = ctx->current_loop_depth;
1690 emit_mir_instruction(ctx, br);
1691 break;
1692 }
1693
1694 default:
1695 DBG("Unknown jump type %d\n", instr->type);
1696 break;
1697 }
1698 }
1699
1700 static void
1701 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1702 {
1703 switch (instr->type) {
1704 case nir_instr_type_load_const:
1705 emit_load_const(ctx, nir_instr_as_load_const(instr));
1706 break;
1707
1708 case nir_instr_type_intrinsic:
1709 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1710 break;
1711
1712 case nir_instr_type_alu:
1713 emit_alu(ctx, nir_instr_as_alu(instr));
1714 break;
1715
1716 case nir_instr_type_tex:
1717 emit_tex(ctx, nir_instr_as_tex(instr));
1718 break;
1719
1720 case nir_instr_type_jump:
1721 emit_jump(ctx, nir_instr_as_jump(instr));
1722 break;
1723
1724 case nir_instr_type_ssa_undef:
1725 /* Spurious */
1726 break;
1727
1728 default:
1729 DBG("Unhandled instruction type\n");
1730 break;
1731 }
1732 }
1733
1734
1735 /* ALU instructions can inline or embed constants, which decreases register
1736 * pressure and saves space. */
1737
1738 #define CONDITIONAL_ATTACH(src) { \
1739 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1740 \
1741 if (entry) { \
1742 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1743 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1744 } \
1745 }
1746
1747 static void
1748 inline_alu_constants(compiler_context *ctx)
1749 {
1750 mir_foreach_instr(ctx, alu) {
1751 /* Other instructions cannot inline constants */
1752 if (alu->type != TAG_ALU_4) continue;
1753
1754 /* If there is already a constant here, we can do nothing */
1755 if (alu->has_constants) continue;
1756
1757 CONDITIONAL_ATTACH(src0);
1758
1759 if (!alu->has_constants) {
1760 CONDITIONAL_ATTACH(src1)
1761 } else if (!alu->inline_constant) {
1762 /* Corner case: _two_ vec4 constants, for instance with a
1763 * csel. For this case, we can only use a constant
1764 * register for one, we'll have to emit a move for the
1765 * other. Note, if both arguments are constants, then
1766 * necessarily neither argument depends on the value of
1767 * any particular register. As the destination register
1768 * will be wiped, that means we can spill the constant
1769 * to the destination register.
1770 */
1771
1772 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1773 unsigned scratch = alu->ssa_args.dest;
1774
1775 if (entry) {
1776 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1777 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1778
1779 /* Force a break XXX Defer r31 writes */
1780 ins.unit = UNIT_VLUT;
1781
1782 /* Set the source */
1783 alu->ssa_args.src1 = scratch;
1784
1785 /* Inject us -before- the last instruction which set r31 */
1786 mir_insert_instruction_before(mir_prev_op(alu), ins);
1787 }
1788 }
1789 }
1790 }
1791
1792 /* Midgard supports two types of constants, embedded constants (128-bit) and
1793 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1794 * constants can be demoted to inline constants, for space savings and
1795 * sometimes a performance boost */
1796
1797 static void
1798 embedded_to_inline_constant(compiler_context *ctx)
1799 {
1800 mir_foreach_instr(ctx, ins) {
1801 if (!ins->has_constants) continue;
1802
1803 if (ins->ssa_args.inline_constant) continue;
1804
1805 /* Blend constants must not be inlined by definition */
1806 if (ins->has_blend_constant) continue;
1807
1808 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1809 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1810 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1811
1812 if (!(is_16 || is_32))
1813 continue;
1814
1815 /* src1 cannot be an inline constant due to encoding
1816 * restrictions. So, if possible we try to flip the arguments
1817 * in that case */
1818
1819 int op = ins->alu.op;
1820
1821 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1822 switch (op) {
1823 /* These ops require an operational change to flip
1824 * their arguments TODO */
1825 case midgard_alu_op_flt:
1826 case midgard_alu_op_fle:
1827 case midgard_alu_op_ilt:
1828 case midgard_alu_op_ile:
1829 case midgard_alu_op_fcsel:
1830 case midgard_alu_op_icsel:
1831 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1832 default:
1833 break;
1834 }
1835
1836 if (alu_opcode_props[op].props & OP_COMMUTES) {
1837 /* Flip the SSA numbers */
1838 ins->ssa_args.src0 = ins->ssa_args.src1;
1839 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1840
1841 /* And flip the modifiers */
1842
1843 unsigned src_temp;
1844
1845 src_temp = ins->alu.src2;
1846 ins->alu.src2 = ins->alu.src1;
1847 ins->alu.src1 = src_temp;
1848 }
1849 }
1850
1851 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1852 /* Extract the source information */
1853
1854 midgard_vector_alu_src *src;
1855 int q = ins->alu.src2;
1856 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1857 src = m;
1858
1859 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1860 int component = src->swizzle & 3;
1861
1862 /* Scale constant appropriately, if we can legally */
1863 uint16_t scaled_constant = 0;
1864
1865 if (midgard_is_integer_op(op) || is_16) {
1866 unsigned int *iconstants = (unsigned int *) ins->constants;
1867 scaled_constant = (uint16_t) iconstants[component];
1868
1869 /* Constant overflow after resize */
1870 if (scaled_constant != iconstants[component])
1871 continue;
1872 } else {
1873 float original = (float) ins->constants[component];
1874 scaled_constant = _mesa_float_to_half(original);
1875
1876 /* Check for loss of precision. If this is
1877 * mediump, we don't care, but for a highp
1878 * shader, we need to pay attention. NIR
1879 * doesn't yet tell us which mode we're in!
1880 * Practically this prevents most constants
1881 * from being inlined, sadly. */
1882
1883 float fp32 = _mesa_half_to_float(scaled_constant);
1884
1885 if (fp32 != original)
1886 continue;
1887 }
1888
1889 /* We don't know how to handle these with a constant */
1890
1891 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
1892 DBG("Bailing inline constant...\n");
1893 continue;
1894 }
1895
1896 /* Make sure that the constant is not itself a
1897 * vector by checking if all accessed values
1898 * (by the swizzle) are the same. */
1899
1900 uint32_t *cons = (uint32_t *) ins->constants;
1901 uint32_t value = cons[component];
1902
1903 bool is_vector = false;
1904 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1905
1906 for (int c = 1; c < 4; ++c) {
1907 /* We only care if this component is actually used */
1908 if (!(mask & (1 << c)))
1909 continue;
1910
1911 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1912
1913 if (test != value) {
1914 is_vector = true;
1915 break;
1916 }
1917 }
1918
1919 if (is_vector)
1920 continue;
1921
1922 /* Get rid of the embedded constant */
1923 ins->has_constants = false;
1924 ins->ssa_args.src1 = SSA_UNUSED_0;
1925 ins->ssa_args.inline_constant = true;
1926 ins->inline_constant = scaled_constant;
1927 }
1928 }
1929 }
1930
1931 /* Dead code elimination for branches at the end of a block - only one branch
1932 * per block is legal semantically */
1933
1934 static void
1935 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1936 {
1937 bool branched = false;
1938
1939 mir_foreach_instr_in_block_safe(block, ins) {
1940 if (!midgard_is_branch_unit(ins->unit)) continue;
1941
1942 /* We ignore prepacked branches since the fragment epilogue is
1943 * just generally special */
1944 if (ins->prepacked_branch) continue;
1945
1946 /* Discards are similarly special and may not correspond to the
1947 * end of a block */
1948
1949 if (ins->branch.target_type == TARGET_DISCARD) continue;
1950
1951 if (branched) {
1952 /* We already branched, so this is dead */
1953 mir_remove_instruction(ins);
1954 }
1955
1956 branched = true;
1957 }
1958 }
1959
1960 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
1961 * the move can be propagated away entirely */
1962
1963 static bool
1964 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
1965 {
1966 /* Nothing to do */
1967 if (comp == midgard_outmod_none)
1968 return true;
1969
1970 if (*outmod == midgard_outmod_none) {
1971 *outmod = comp;
1972 return true;
1973 }
1974
1975 /* TODO: Compose rules */
1976 return false;
1977 }
1978
1979 static bool
1980 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
1981 {
1982 bool progress = false;
1983
1984 mir_foreach_instr_in_block_safe(block, ins) {
1985 if (ins->type != TAG_ALU_4) continue;
1986 if (ins->alu.op != midgard_alu_op_fmov) continue;
1987 if (ins->alu.outmod != midgard_outmod_pos) continue;
1988
1989 /* TODO: Registers? */
1990 unsigned src = ins->ssa_args.src1;
1991 if (src & IS_REG) continue;
1992 assert(!mir_has_multiple_writes(ctx, src));
1993
1994 /* There might be a source modifier, too */
1995 if (mir_nontrivial_source2_mod(ins)) continue;
1996
1997 /* Backpropagate the modifier */
1998 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
1999 if (v->type != TAG_ALU_4) continue;
2000 if (v->ssa_args.dest != src) continue;
2001
2002 /* Can we even take a float outmod? */
2003 if (midgard_is_integer_out_op(v->alu.op)) continue;
2004
2005 midgard_outmod_float temp = v->alu.outmod;
2006 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2007
2008 /* Throw in the towel.. */
2009 if (!progress) break;
2010
2011 /* Otherwise, transfer the modifier */
2012 v->alu.outmod = temp;
2013 ins->alu.outmod = midgard_outmod_none;
2014
2015 break;
2016 }
2017 }
2018
2019 return progress;
2020 }
2021
2022 static void
2023 emit_fragment_epilogue(compiler_context *ctx)
2024 {
2025 emit_explicit_constant(ctx, ctx->fragment_output, SSA_FIXED_REGISTER(0));
2026
2027 /* Perform the actual fragment writeout. We have two writeout/branch
2028 * instructions, forming a loop until writeout is successful as per the
2029 * docs. TODO: gl_FragDepth */
2030
2031 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2032 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2033 }
2034
2035 static midgard_block *
2036 emit_block(compiler_context *ctx, nir_block *block)
2037 {
2038 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2039 list_addtail(&this_block->link, &ctx->blocks);
2040
2041 this_block->is_scheduled = false;
2042 ++ctx->block_count;
2043
2044 ctx->texture_index[0] = -1;
2045 ctx->texture_index[1] = -1;
2046
2047 /* Add us as a successor to the block we are following */
2048 if (ctx->current_block)
2049 midgard_block_add_successor(ctx->current_block, this_block);
2050
2051 /* Set up current block */
2052 list_inithead(&this_block->instructions);
2053 ctx->current_block = this_block;
2054
2055 nir_foreach_instr(instr, block) {
2056 emit_instr(ctx, instr);
2057 ++ctx->instruction_count;
2058 }
2059
2060 inline_alu_constants(ctx);
2061 embedded_to_inline_constant(ctx);
2062
2063 /* Append fragment shader epilogue (value writeout) */
2064 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2065 if (block == nir_impl_last_block(ctx->func->impl)) {
2066 emit_fragment_epilogue(ctx);
2067 }
2068 }
2069
2070 if (block == nir_start_block(ctx->func->impl))
2071 ctx->initial_block = this_block;
2072
2073 if (block == nir_impl_last_block(ctx->func->impl))
2074 ctx->final_block = this_block;
2075
2076 /* Allow the next control flow to access us retroactively, for
2077 * branching etc */
2078 ctx->current_block = this_block;
2079
2080 /* Document the fallthrough chain */
2081 ctx->previous_source_block = this_block;
2082
2083 return this_block;
2084 }
2085
2086 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2087
2088 static void
2089 emit_if(struct compiler_context *ctx, nir_if *nif)
2090 {
2091 /* Conditional branches expect the condition in r31.w; emit a move for
2092 * that in the _previous_ block (which is the current block). */
2093 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2094
2095 /* Speculatively emit the branch, but we can't fill it in until later */
2096 EMIT(branch, true, true);
2097 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2098
2099 /* Emit the two subblocks */
2100 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2101
2102 /* Emit a jump from the end of the then block to the end of the else */
2103 EMIT(branch, false, false);
2104 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2105
2106 /* Emit second block, and check if it's empty */
2107
2108 int else_idx = ctx->block_count;
2109 int count_in = ctx->instruction_count;
2110 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2111 int after_else_idx = ctx->block_count;
2112
2113 /* Now that we have the subblocks emitted, fix up the branches */
2114
2115 assert(then_block);
2116 assert(else_block);
2117
2118 if (ctx->instruction_count == count_in) {
2119 /* The else block is empty, so don't emit an exit jump */
2120 mir_remove_instruction(then_exit);
2121 then_branch->branch.target_block = after_else_idx;
2122 } else {
2123 then_branch->branch.target_block = else_idx;
2124 then_exit->branch.target_block = after_else_idx;
2125 }
2126 }
2127
2128 static void
2129 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2130 {
2131 /* Remember where we are */
2132 midgard_block *start_block = ctx->current_block;
2133
2134 /* Allocate a loop number, growing the current inner loop depth */
2135 int loop_idx = ++ctx->current_loop_depth;
2136
2137 /* Get index from before the body so we can loop back later */
2138 int start_idx = ctx->block_count;
2139
2140 /* Emit the body itself */
2141 emit_cf_list(ctx, &nloop->body);
2142
2143 /* Branch back to loop back */
2144 struct midgard_instruction br_back = v_branch(false, false);
2145 br_back.branch.target_block = start_idx;
2146 emit_mir_instruction(ctx, br_back);
2147
2148 /* Mark down that branch in the graph. Note that we're really branching
2149 * to the block *after* we started in. TODO: Why doesn't the branch
2150 * itself have an off-by-one then...? */
2151 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2152
2153 /* Find the index of the block about to follow us (note: we don't add
2154 * one; blocks are 0-indexed so we get a fencepost problem) */
2155 int break_block_idx = ctx->block_count;
2156
2157 /* Fix up the break statements we emitted to point to the right place,
2158 * now that we can allocate a block number for them */
2159
2160 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2161 mir_foreach_instr_in_block(block, ins) {
2162 if (ins->type != TAG_ALU_4) continue;
2163 if (!ins->compact_branch) continue;
2164 if (ins->prepacked_branch) continue;
2165
2166 /* We found a branch -- check the type to see if we need to do anything */
2167 if (ins->branch.target_type != TARGET_BREAK) continue;
2168
2169 /* It's a break! Check if it's our break */
2170 if (ins->branch.target_break != loop_idx) continue;
2171
2172 /* Okay, cool, we're breaking out of this loop.
2173 * Rewrite from a break to a goto */
2174
2175 ins->branch.target_type = TARGET_GOTO;
2176 ins->branch.target_block = break_block_idx;
2177 }
2178 }
2179
2180 /* Now that we've finished emitting the loop, free up the depth again
2181 * so we play nice with recursion amid nested loops */
2182 --ctx->current_loop_depth;
2183
2184 /* Dump loop stats */
2185 ++ctx->loop_count;
2186 }
2187
2188 static midgard_block *
2189 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2190 {
2191 midgard_block *start_block = NULL;
2192
2193 foreach_list_typed(nir_cf_node, node, node, list) {
2194 switch (node->type) {
2195 case nir_cf_node_block: {
2196 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2197
2198 if (!start_block)
2199 start_block = block;
2200
2201 break;
2202 }
2203
2204 case nir_cf_node_if:
2205 emit_if(ctx, nir_cf_node_as_if(node));
2206 break;
2207
2208 case nir_cf_node_loop:
2209 emit_loop(ctx, nir_cf_node_as_loop(node));
2210 break;
2211
2212 case nir_cf_node_function:
2213 assert(0);
2214 break;
2215 }
2216 }
2217
2218 return start_block;
2219 }
2220
2221 /* Due to lookahead, we need to report the first tag executed in the command
2222 * stream and in branch targets. An initial block might be empty, so iterate
2223 * until we find one that 'works' */
2224
2225 static unsigned
2226 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2227 {
2228 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2229
2230 unsigned first_tag = 0;
2231
2232 do {
2233 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2234
2235 if (initial_bundle) {
2236 first_tag = initial_bundle->tag;
2237 break;
2238 }
2239
2240 /* Initial block is empty, try the next block */
2241 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2242 } while(initial_block != NULL);
2243
2244 assert(first_tag);
2245 return first_tag;
2246 }
2247
2248 int
2249 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2250 {
2251 struct util_dynarray *compiled = &program->compiled;
2252
2253 midgard_debug = debug_get_option_midgard_debug();
2254
2255 compiler_context ictx = {
2256 .nir = nir,
2257 .screen = screen,
2258 .stage = nir->info.stage,
2259 .temp_alloc = 0,
2260
2261 .is_blend = is_blend,
2262 .blend_constant_offset = 0,
2263
2264 .alpha_ref = program->alpha_ref
2265 };
2266
2267 compiler_context *ctx = &ictx;
2268
2269 /* Start off with a safe cutoff, allowing usage of all 16 work
2270 * registers. Later, we'll promote uniform reads to uniform registers
2271 * if we determine it is beneficial to do so */
2272 ctx->uniform_cutoff = 8;
2273
2274 /* Initialize at a global (not block) level hash tables */
2275
2276 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2277 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2278 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2279
2280 /* Record the varying mapping for the command stream's bookkeeping */
2281
2282 struct exec_list *varyings =
2283 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2284
2285 unsigned max_varying = 0;
2286 nir_foreach_variable(var, varyings) {
2287 unsigned loc = var->data.driver_location;
2288 unsigned sz = glsl_type_size(var->type, FALSE);
2289
2290 for (int c = 0; c < sz; ++c) {
2291 program->varyings[loc + c] = var->data.location + c;
2292 max_varying = MAX2(max_varying, loc + c);
2293 }
2294 }
2295
2296 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2297 * (so we don't accidentally duplicate the epilogue since mesa/st has
2298 * messed with our I/O quite a bit already) */
2299
2300 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2301
2302 if (ctx->stage == MESA_SHADER_VERTEX) {
2303 NIR_PASS_V(nir, nir_lower_viewport_transform);
2304 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2305 }
2306
2307 NIR_PASS_V(nir, nir_lower_var_copies);
2308 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2309 NIR_PASS_V(nir, nir_split_var_copies);
2310 NIR_PASS_V(nir, nir_lower_var_copies);
2311 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2312 NIR_PASS_V(nir, nir_lower_var_copies);
2313 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2314
2315 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2316
2317 /* Optimisation passes */
2318
2319 optimise_nir(nir);
2320
2321 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2322 nir_print_shader(nir, stdout);
2323 }
2324
2325 /* Assign sysvals and counts, now that we're sure
2326 * (post-optimisation) */
2327
2328 midgard_nir_assign_sysvals(ctx, nir);
2329
2330 program->uniform_count = nir->num_uniforms;
2331 program->sysval_count = ctx->sysval_count;
2332 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2333
2334 nir_foreach_function(func, nir) {
2335 if (!func->impl)
2336 continue;
2337
2338 list_inithead(&ctx->blocks);
2339 ctx->block_count = 0;
2340 ctx->func = func;
2341
2342 emit_cf_list(ctx, &func->impl->body);
2343 emit_block(ctx, func->impl->end_block);
2344
2345 break; /* TODO: Multi-function shaders */
2346 }
2347
2348 util_dynarray_init(compiled, NULL);
2349
2350 /* MIR-level optimizations */
2351
2352 bool progress = false;
2353
2354 do {
2355 progress = false;
2356
2357 mir_foreach_block(ctx, block) {
2358 progress |= midgard_opt_pos_propagate(ctx, block);
2359 progress |= midgard_opt_copy_prop(ctx, block);
2360 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2361 progress |= midgard_opt_combine_projection(ctx, block);
2362 progress |= midgard_opt_varying_projection(ctx, block);
2363 }
2364 } while (progress);
2365
2366 mir_foreach_block(ctx, block) {
2367 midgard_lower_invert(ctx, block);
2368 midgard_lower_derivatives(ctx, block);
2369 }
2370
2371 /* Nested control-flow can result in dead branches at the end of the
2372 * block. This messes with our analysis and is just dead code, so cull
2373 * them */
2374 mir_foreach_block(ctx, block) {
2375 midgard_opt_cull_dead_branch(ctx, block);
2376 }
2377
2378 /* Ensure we were lowered */
2379 mir_foreach_instr_global(ctx, ins) {
2380 assert(!ins->invert);
2381 }
2382
2383 /* Schedule! */
2384 schedule_program(ctx);
2385
2386 /* Now that all the bundles are scheduled and we can calculate block
2387 * sizes, emit actual branch instructions rather than placeholders */
2388
2389 int br_block_idx = 0;
2390
2391 mir_foreach_block(ctx, block) {
2392 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2393 for (int c = 0; c < bundle->instruction_count; ++c) {
2394 midgard_instruction *ins = bundle->instructions[c];
2395
2396 if (!midgard_is_branch_unit(ins->unit)) continue;
2397
2398 if (ins->prepacked_branch) continue;
2399
2400 /* Parse some basic branch info */
2401 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2402 bool is_conditional = ins->branch.conditional;
2403 bool is_inverted = ins->branch.invert_conditional;
2404 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2405
2406 /* Determine the block we're jumping to */
2407 int target_number = ins->branch.target_block;
2408
2409 /* Report the destination tag */
2410 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2411
2412 /* Count up the number of quadwords we're
2413 * jumping over = number of quadwords until
2414 * (br_block_idx, target_number) */
2415
2416 int quadword_offset = 0;
2417
2418 if (is_discard) {
2419 /* Ignored */
2420 } else if (target_number > br_block_idx) {
2421 /* Jump forward */
2422
2423 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2424 midgard_block *blk = mir_get_block(ctx, idx);
2425 assert(blk);
2426
2427 quadword_offset += blk->quadword_count;
2428 }
2429 } else {
2430 /* Jump backwards */
2431
2432 for (int idx = br_block_idx; idx >= target_number; --idx) {
2433 midgard_block *blk = mir_get_block(ctx, idx);
2434 assert(blk);
2435
2436 quadword_offset -= blk->quadword_count;
2437 }
2438 }
2439
2440 /* Unconditional extended branches (far jumps)
2441 * have issues, so we always use a conditional
2442 * branch, setting the condition to always for
2443 * unconditional. For compact unconditional
2444 * branches, cond isn't used so it doesn't
2445 * matter what we pick. */
2446
2447 midgard_condition cond =
2448 !is_conditional ? midgard_condition_always :
2449 is_inverted ? midgard_condition_false :
2450 midgard_condition_true;
2451
2452 midgard_jmp_writeout_op op =
2453 is_discard ? midgard_jmp_writeout_op_discard :
2454 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2455 midgard_jmp_writeout_op_branch_cond;
2456
2457 if (!is_compact) {
2458 midgard_branch_extended branch =
2459 midgard_create_branch_extended(
2460 cond, op,
2461 dest_tag,
2462 quadword_offset);
2463
2464 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2465 } else if (is_conditional || is_discard) {
2466 midgard_branch_cond branch = {
2467 .op = op,
2468 .dest_tag = dest_tag,
2469 .offset = quadword_offset,
2470 .cond = cond
2471 };
2472
2473 assert(branch.offset == quadword_offset);
2474
2475 memcpy(&ins->br_compact, &branch, sizeof(branch));
2476 } else {
2477 assert(op == midgard_jmp_writeout_op_branch_uncond);
2478
2479 midgard_branch_uncond branch = {
2480 .op = op,
2481 .dest_tag = dest_tag,
2482 .offset = quadword_offset,
2483 .unknown = 1
2484 };
2485
2486 assert(branch.offset == quadword_offset);
2487
2488 memcpy(&ins->br_compact, &branch, sizeof(branch));
2489 }
2490 }
2491 }
2492
2493 ++br_block_idx;
2494 }
2495
2496 /* Emit flat binary from the instruction arrays. Iterate each block in
2497 * sequence. Save instruction boundaries such that lookahead tags can
2498 * be assigned easily */
2499
2500 /* Cache _all_ bundles in source order for lookahead across failed branches */
2501
2502 int bundle_count = 0;
2503 mir_foreach_block(ctx, block) {
2504 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2505 }
2506 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2507 int bundle_idx = 0;
2508 mir_foreach_block(ctx, block) {
2509 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2510 source_order_bundles[bundle_idx++] = bundle;
2511 }
2512 }
2513
2514 int current_bundle = 0;
2515
2516 /* Midgard prefetches instruction types, so during emission we
2517 * need to lookahead. Unless this is the last instruction, in
2518 * which we return 1. Or if this is the second to last and the
2519 * last is an ALU, then it's also 1... */
2520
2521 mir_foreach_block(ctx, block) {
2522 mir_foreach_bundle_in_block(block, bundle) {
2523 int lookahead = 1;
2524
2525 if (current_bundle + 1 < bundle_count) {
2526 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2527
2528 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2529 lookahead = 1;
2530 } else {
2531 lookahead = next;
2532 }
2533 }
2534
2535 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2536 ++current_bundle;
2537 }
2538
2539 /* TODO: Free deeper */
2540 //util_dynarray_fini(&block->instructions);
2541 }
2542
2543 free(source_order_bundles);
2544
2545 /* Report the very first tag executed */
2546 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2547
2548 /* Deal with off-by-one related to the fencepost problem */
2549 program->work_register_count = ctx->work_registers + 1;
2550 program->uniform_cutoff = ctx->uniform_cutoff;
2551
2552 program->blend_patch_offset = ctx->blend_constant_offset;
2553 program->tls_size = ctx->tls_size;
2554
2555 if (midgard_debug & MIDGARD_DBG_SHADERS)
2556 disassemble_midgard(program->compiled.data, program->compiled.size);
2557
2558 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2559 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2560
2561 /* Count instructions and bundles */
2562
2563 mir_foreach_instr_global(ctx, ins) {
2564 nr_ins++;
2565 }
2566
2567 mir_foreach_block(ctx, block) {
2568 nr_bundles += util_dynarray_num_elements(
2569 &block->bundles, midgard_bundle);
2570
2571 nr_quadwords += block->quadword_count;
2572 }
2573
2574 /* Calculate thread count. There are certain cutoffs by
2575 * register count for thread count */
2576
2577 unsigned nr_registers = program->work_register_count;
2578
2579 unsigned nr_threads =
2580 (nr_registers <= 4) ? 4 :
2581 (nr_registers <= 8) ? 2 :
2582 1;
2583
2584 /* Dump stats */
2585
2586 fprintf(stderr, "shader%d - %s shader: "
2587 "%u inst, %u bundles, %u quadwords, "
2588 "%u registers, %u threads, %u loops, "
2589 "%d:%d spills:fills\n",
2590 SHADER_DB_COUNT++,
2591 gl_shader_stage_name(ctx->stage),
2592 nr_ins, nr_bundles, nr_quadwords,
2593 nr_registers, nr_threads,
2594 ctx->loop_count,
2595 ctx->spills, ctx->fills);
2596 }
2597
2598
2599 return 0;
2600 }