857e6c701128b6d5548d058c6426f5b5a85a39a0
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static midgard_block *
79 create_empty_block(compiler_context *ctx)
80 {
81 midgard_block *blk = rzalloc(ctx, midgard_block);
82
83 blk->predecessors = _mesa_set_create(blk,
84 _mesa_hash_pointer,
85 _mesa_key_pointer_equal);
86
87 blk->source_id = ctx->block_source_count++;
88
89 return blk;
90 }
91
92 static void
93 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
94 {
95 assert(block);
96 assert(successor);
97
98 /* Deduplicate */
99 for (unsigned i = 0; i < block->nr_successors; ++i) {
100 if (block->successors[i] == successor)
101 return;
102 }
103
104 block->successors[block->nr_successors++] = successor;
105 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
106
107 /* Note the predecessor in the other direction */
108 _mesa_set_add(successor->predecessors, block);
109 }
110
111 static void
112 schedule_barrier(compiler_context *ctx)
113 {
114 midgard_block *temp = ctx->after_block;
115 ctx->after_block = create_empty_block(ctx);
116 ctx->block_count++;
117 list_addtail(&ctx->after_block->link, &ctx->blocks);
118 list_inithead(&ctx->after_block->instructions);
119 midgard_block_add_successor(ctx->current_block, ctx->after_block);
120 ctx->current_block = ctx->after_block;
121 ctx->after_block = temp;
122 }
123
124 /* Helpers to generate midgard_instruction's using macro magic, since every
125 * driver seems to do it that way */
126
127 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
128
129 #define M_LOAD_STORE(name, store) \
130 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
131 midgard_instruction i = { \
132 .type = TAG_LOAD_STORE_4, \
133 .mask = 0xF, \
134 .dest = ~0, \
135 .src = { ~0, ~0, ~0 }, \
136 .load_store = { \
137 .op = midgard_op_##name, \
138 .swizzle = SWIZZLE_XYZW, \
139 .address = address \
140 } \
141 }; \
142 \
143 if (store) \
144 i.src[0] = ssa; \
145 else \
146 i.dest = ssa; \
147 \
148 return i; \
149 }
150
151 #define M_LOAD(name) M_LOAD_STORE(name, false)
152 #define M_STORE(name) M_LOAD_STORE(name, true)
153
154 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
155 * the corresponding Midgard source */
156
157 static midgard_vector_alu_src
158 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
159 bool half, bool sext)
160 {
161 if (!src) return blank_alu_src;
162
163 /* Figure out how many components there are so we can adjust the
164 * swizzle. Specifically we want to broadcast the last channel so
165 * things like ball2/3 work
166 */
167
168 if (broadcast_count) {
169 uint8_t last_component = src->swizzle[broadcast_count - 1];
170
171 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
172 src->swizzle[c] = last_component;
173 }
174 }
175
176 midgard_vector_alu_src alu_src = {
177 .rep_low = 0,
178 .rep_high = 0,
179 .half = half,
180 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
181 };
182
183 if (is_int) {
184 alu_src.mod = midgard_int_normal;
185
186 /* Sign/zero-extend if needed */
187
188 if (half) {
189 alu_src.mod = sext ?
190 midgard_int_sign_extend
191 : midgard_int_zero_extend;
192 }
193
194 /* These should have been lowered away */
195 assert(!(src->abs || src->negate));
196 } else {
197 alu_src.mod = (src->abs << 0) | (src->negate << 1);
198 }
199
200 return alu_src;
201 }
202
203 /* load/store instructions have both 32-bit and 16-bit variants, depending on
204 * whether we are using vectors composed of highp or mediump. At the moment, we
205 * don't support half-floats -- this requires changes in other parts of the
206 * compiler -- therefore the 16-bit versions are commented out. */
207
208 //M_LOAD(ld_attr_16);
209 M_LOAD(ld_attr_32);
210 //M_LOAD(ld_vary_16);
211 M_LOAD(ld_vary_32);
212 M_LOAD(ld_ubo_int4);
213 M_LOAD(ld_int4);
214 M_STORE(st_int4);
215 M_LOAD(ld_color_buffer_8);
216 //M_STORE(st_vary_16);
217 M_STORE(st_vary_32);
218 M_LOAD(ld_cubemap_coords);
219 M_LOAD(ld_compute_id);
220
221 static midgard_instruction
222 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
223 {
224 midgard_branch_cond branch = {
225 .op = op,
226 .dest_tag = tag,
227 .offset = offset,
228 .cond = cond
229 };
230
231 uint16_t compact;
232 memcpy(&compact, &branch, sizeof(branch));
233
234 midgard_instruction ins = {
235 .type = TAG_ALU_4,
236 .unit = ALU_ENAB_BR_COMPACT,
237 .prepacked_branch = true,
238 .compact_branch = true,
239 .br_compact = compact,
240 .dest = ~0,
241 .src = { ~0, ~0, ~0 },
242 };
243
244 if (op == midgard_jmp_writeout_op_writeout)
245 ins.writeout = true;
246
247 return ins;
248 }
249
250 static midgard_instruction
251 v_branch(bool conditional, bool invert)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .unit = ALU_ENAB_BRANCH,
256 .compact_branch = true,
257 .branch = {
258 .conditional = conditional,
259 .invert_conditional = invert
260 },
261 .dest = ~0,
262 .src = { ~0, ~0, ~0 },
263 };
264
265 return ins;
266 }
267
268 static midgard_branch_extended
269 midgard_create_branch_extended( midgard_condition cond,
270 midgard_jmp_writeout_op op,
271 unsigned dest_tag,
272 signed quadword_offset)
273 {
274 /* The condition code is actually a LUT describing a function to
275 * combine multiple condition codes. However, we only support a single
276 * condition code at the moment, so we just duplicate over a bunch of
277 * times. */
278
279 uint16_t duplicated_cond =
280 (cond << 14) |
281 (cond << 12) |
282 (cond << 10) |
283 (cond << 8) |
284 (cond << 6) |
285 (cond << 4) |
286 (cond << 2) |
287 (cond << 0);
288
289 midgard_branch_extended branch = {
290 .op = op,
291 .dest_tag = dest_tag,
292 .offset = quadword_offset,
293 .cond = duplicated_cond
294 };
295
296 return branch;
297 }
298
299 static void
300 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
301 {
302 ins->has_constants = true;
303 memcpy(&ins->constants, constants, 16);
304 }
305
306 static int
307 glsl_type_size(const struct glsl_type *type, bool bindless)
308 {
309 return glsl_count_attribute_slots(type, false);
310 }
311
312 /* Lower fdot2 to a vector multiplication followed by channel addition */
313 static void
314 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
315 {
316 if (alu->op != nir_op_fdot2)
317 return;
318
319 b->cursor = nir_before_instr(&alu->instr);
320
321 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
322 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
323
324 nir_ssa_def *product = nir_fmul(b, src0, src1);
325
326 nir_ssa_def *sum = nir_fadd(b,
327 nir_channel(b, product, 0),
328 nir_channel(b, product, 1));
329
330 /* Replace the fdot2 with this sum */
331 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
332 }
333
334 static int
335 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
336 {
337 /* This is way too meta */
338 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
339 unsigned idx_idx = is_store ? 1 : 0;
340
341 nir_src index = instr->src[idx_idx];
342 assert(nir_src_is_const(index));
343 uint32_t uindex = nir_src_as_uint(index);
344
345 return PAN_SYSVAL(SSBO, uindex);
346 }
347
348 static int
349 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
350 {
351 switch (instr->intrinsic) {
352 case nir_intrinsic_load_viewport_scale:
353 return PAN_SYSVAL_VIEWPORT_SCALE;
354 case nir_intrinsic_load_viewport_offset:
355 return PAN_SYSVAL_VIEWPORT_OFFSET;
356 case nir_intrinsic_load_num_work_groups:
357 return PAN_SYSVAL_NUM_WORK_GROUPS;
358 case nir_intrinsic_load_ssbo:
359 case nir_intrinsic_store_ssbo:
360 return midgard_sysval_for_ssbo(instr);
361 default:
362 return ~0;
363 }
364 }
365
366 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
367 unsigned *dest)
368 {
369 nir_intrinsic_instr *intr;
370 nir_dest *dst = NULL;
371 nir_tex_instr *tex;
372 int sysval = -1;
373
374 bool is_store = false;
375
376 switch (instr->type) {
377 case nir_instr_type_intrinsic:
378 intr = nir_instr_as_intrinsic(instr);
379 sysval = midgard_nir_sysval_for_intrinsic(intr);
380 dst = &intr->dest;
381 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
382 break;
383 case nir_instr_type_tex:
384 tex = nir_instr_as_tex(instr);
385 if (tex->op != nir_texop_txs)
386 break;
387
388 sysval = PAN_SYSVAL(TEXTURE_SIZE,
389 PAN_TXS_SYSVAL_ID(tex->texture_index,
390 nir_tex_instr_dest_size(tex) -
391 (tex->is_array ? 1 : 0),
392 tex->is_array));
393 dst = &tex->dest;
394 break;
395 default:
396 break;
397 }
398
399 if (dest && dst && !is_store)
400 *dest = nir_dest_index(ctx, dst);
401
402 return sysval;
403 }
404
405 static void
406 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
407 {
408 int sysval;
409
410 sysval = sysval_for_instr(ctx, instr, NULL);
411 if (sysval < 0)
412 return;
413
414 /* We have a sysval load; check if it's already been assigned */
415
416 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
417 return;
418
419 /* It hasn't -- so assign it now! */
420
421 unsigned id = ctx->sysval_count++;
422 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
423 ctx->sysvals[id] = sysval;
424 }
425
426 static void
427 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
428 {
429 ctx->sysval_count = 0;
430
431 nir_foreach_function(function, shader) {
432 if (!function->impl) continue;
433
434 nir_foreach_block(block, function->impl) {
435 nir_foreach_instr_safe(instr, block) {
436 midgard_nir_assign_sysval_body(ctx, instr);
437 }
438 }
439 }
440 }
441
442 static bool
443 midgard_nir_lower_fdot2(nir_shader *shader)
444 {
445 bool progress = false;
446
447 nir_foreach_function(function, shader) {
448 if (!function->impl) continue;
449
450 nir_builder _b;
451 nir_builder *b = &_b;
452 nir_builder_init(b, function->impl);
453
454 nir_foreach_block(block, function->impl) {
455 nir_foreach_instr_safe(instr, block) {
456 if (instr->type != nir_instr_type_alu) continue;
457
458 nir_alu_instr *alu = nir_instr_as_alu(instr);
459 midgard_nir_lower_fdot2_body(b, alu);
460
461 progress |= true;
462 }
463 }
464
465 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
466
467 }
468
469 return progress;
470 }
471
472 /* Flushes undefined values to zero */
473
474 static void
475 optimise_nir(nir_shader *nir)
476 {
477 bool progress;
478 unsigned lower_flrp =
479 (nir->options->lower_flrp16 ? 16 : 0) |
480 (nir->options->lower_flrp32 ? 32 : 0) |
481 (nir->options->lower_flrp64 ? 64 : 0);
482
483 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
484 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
485 NIR_PASS(progress, nir, nir_lower_idiv);
486
487 nir_lower_tex_options lower_tex_options = {
488 .lower_txs_lod = true,
489 .lower_txp = ~0
490 };
491
492 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
493
494 do {
495 progress = false;
496
497 NIR_PASS(progress, nir, nir_lower_var_copies);
498 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
499
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502 NIR_PASS(progress, nir, nir_opt_dead_cf);
503 NIR_PASS(progress, nir, nir_opt_cse);
504 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
505 NIR_PASS(progress, nir, nir_opt_algebraic);
506 NIR_PASS(progress, nir, nir_opt_constant_folding);
507
508 if (lower_flrp != 0) {
509 bool lower_flrp_progress = false;
510 NIR_PASS(lower_flrp_progress,
511 nir,
512 nir_lower_flrp,
513 lower_flrp,
514 false /* always_precise */,
515 nir->options->lower_ffma);
516 if (lower_flrp_progress) {
517 NIR_PASS(progress, nir,
518 nir_opt_constant_folding);
519 progress = true;
520 }
521
522 /* Nothing should rematerialize any flrps, so we only
523 * need to do this lowering once.
524 */
525 lower_flrp = 0;
526 }
527
528 NIR_PASS(progress, nir, nir_opt_undef);
529 NIR_PASS(progress, nir, nir_undef_to_zero);
530
531 NIR_PASS(progress, nir, nir_opt_loop_unroll,
532 nir_var_shader_in |
533 nir_var_shader_out |
534 nir_var_function_temp);
535
536 NIR_PASS(progress, nir, nir_opt_vectorize);
537 } while (progress);
538
539 /* Must be run at the end to prevent creation of fsin/fcos ops */
540 NIR_PASS(progress, nir, midgard_nir_scale_trig);
541
542 do {
543 progress = false;
544
545 NIR_PASS(progress, nir, nir_opt_dce);
546 NIR_PASS(progress, nir, nir_opt_algebraic);
547 NIR_PASS(progress, nir, nir_opt_constant_folding);
548 NIR_PASS(progress, nir, nir_copy_prop);
549 } while (progress);
550
551 NIR_PASS(progress, nir, nir_opt_algebraic_late);
552
553 /* We implement booleans as 32-bit 0/~0 */
554 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
555
556 /* Now that booleans are lowered, we can run out late opts */
557 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
558
559 /* Lower mods for float ops only. Integer ops don't support modifiers
560 * (saturate doesn't make sense on integers, neg/abs require dedicated
561 * instructions) */
562
563 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
564 NIR_PASS(progress, nir, nir_copy_prop);
565 NIR_PASS(progress, nir, nir_opt_dce);
566
567 /* Take us out of SSA */
568 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
569 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
570
571 /* We are a vector architecture; write combine where possible */
572 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
573 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
574
575 NIR_PASS(progress, nir, nir_opt_dce);
576 }
577
578 /* Do not actually emit a load; instead, cache the constant for inlining */
579
580 static void
581 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
582 {
583 nir_ssa_def def = instr->def;
584
585 float *v = rzalloc_array(NULL, float, 4);
586 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
587
588 /* Shifted for SSA, +1 for off-by-one */
589 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
590 }
591
592 /* Normally constants are embedded implicitly, but for I/O and such we have to
593 * explicitly emit a move with the constant source */
594
595 static void
596 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
597 {
598 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
599
600 if (constant_value) {
601 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
602 attach_constants(ctx, &ins, constant_value, node + 1);
603 emit_mir_instruction(ctx, ins);
604 }
605 }
606
607 static bool
608 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
609 {
610 unsigned comp = src->swizzle[0];
611
612 for (unsigned c = 1; c < nr_components; ++c) {
613 if (src->swizzle[c] != comp)
614 return true;
615 }
616
617 return false;
618 }
619
620 #define ALU_CASE(nir, _op) \
621 case nir_op_##nir: \
622 op = midgard_alu_op_##_op; \
623 assert(src_bitsize == dst_bitsize); \
624 break;
625
626 #define ALU_CASE_BCAST(nir, _op, count) \
627 case nir_op_##nir: \
628 op = midgard_alu_op_##_op; \
629 broadcast_swizzle = count; \
630 assert(src_bitsize == dst_bitsize); \
631 break;
632 static bool
633 nir_is_fzero_constant(nir_src src)
634 {
635 if (!nir_src_is_const(src))
636 return false;
637
638 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
639 if (nir_src_comp_as_float(src, c) != 0.0)
640 return false;
641 }
642
643 return true;
644 }
645
646 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
647 * special treatment override this anyway. */
648
649 static midgard_reg_mode
650 reg_mode_for_nir(nir_alu_instr *instr)
651 {
652 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
653
654 switch (src_bitsize) {
655 case 8:
656 return midgard_reg_mode_8;
657 case 16:
658 return midgard_reg_mode_16;
659 case 32:
660 return midgard_reg_mode_32;
661 case 64:
662 return midgard_reg_mode_64;
663 default:
664 unreachable("Invalid bit size");
665 }
666 }
667
668 static void
669 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
670 {
671 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
672 * is handled elsewhere */
673
674 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
675 midgard_emit_derivatives(ctx, instr);
676 return;
677 }
678
679 bool is_ssa = instr->dest.dest.is_ssa;
680
681 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
682 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
683 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
684
685 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
686 * supported. A few do not and are commented for now. Also, there are a
687 * number of NIR ops which Midgard does not support and need to be
688 * lowered, also TODO. This switch block emits the opcode and calling
689 * convention of the Midgard instruction; actual packing is done in
690 * emit_alu below */
691
692 unsigned op;
693
694 /* Number of components valid to check for the instruction (the rest
695 * will be forced to the last), or 0 to use as-is. Relevant as
696 * ball-type instructions have a channel count in NIR but are all vec4
697 * in Midgard */
698
699 unsigned broadcast_swizzle = 0;
700
701 /* What register mode should we operate in? */
702 midgard_reg_mode reg_mode =
703 reg_mode_for_nir(instr);
704
705 /* Do we need a destination override? Used for inline
706 * type conversion */
707
708 midgard_dest_override dest_override =
709 midgard_dest_override_none;
710
711 /* Should we use a smaller respective source and sign-extend? */
712
713 bool half_1 = false, sext_1 = false;
714 bool half_2 = false, sext_2 = false;
715
716 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
717 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
718
719 switch (instr->op) {
720 ALU_CASE(fadd, fadd);
721 ALU_CASE(fmul, fmul);
722 ALU_CASE(fmin, fmin);
723 ALU_CASE(fmax, fmax);
724 ALU_CASE(imin, imin);
725 ALU_CASE(imax, imax);
726 ALU_CASE(umin, umin);
727 ALU_CASE(umax, umax);
728 ALU_CASE(ffloor, ffloor);
729 ALU_CASE(fround_even, froundeven);
730 ALU_CASE(ftrunc, ftrunc);
731 ALU_CASE(fceil, fceil);
732 ALU_CASE(fdot3, fdot3);
733 ALU_CASE(fdot4, fdot4);
734 ALU_CASE(iadd, iadd);
735 ALU_CASE(isub, isub);
736 ALU_CASE(imul, imul);
737
738 /* Zero shoved as second-arg */
739 ALU_CASE(iabs, iabsdiff);
740
741 ALU_CASE(mov, imov);
742
743 ALU_CASE(feq32, feq);
744 ALU_CASE(fne32, fne);
745 ALU_CASE(flt32, flt);
746 ALU_CASE(ieq32, ieq);
747 ALU_CASE(ine32, ine);
748 ALU_CASE(ilt32, ilt);
749 ALU_CASE(ult32, ult);
750
751 /* We don't have a native b2f32 instruction. Instead, like many
752 * GPUs, we exploit booleans as 0/~0 for false/true, and
753 * correspondingly AND
754 * by 1.0 to do the type conversion. For the moment, prime us
755 * to emit:
756 *
757 * iand [whatever], #0
758 *
759 * At the end of emit_alu (as MIR), we'll fix-up the constant
760 */
761
762 ALU_CASE(b2f32, iand);
763 ALU_CASE(b2i32, iand);
764
765 /* Likewise, we don't have a dedicated f2b32 instruction, but
766 * we can do a "not equal to 0.0" test. */
767
768 ALU_CASE(f2b32, fne);
769 ALU_CASE(i2b32, ine);
770
771 ALU_CASE(frcp, frcp);
772 ALU_CASE(frsq, frsqrt);
773 ALU_CASE(fsqrt, fsqrt);
774 ALU_CASE(fexp2, fexp2);
775 ALU_CASE(flog2, flog2);
776
777 ALU_CASE(f2i32, f2i_rtz);
778 ALU_CASE(f2u32, f2u_rtz);
779 ALU_CASE(i2f32, i2f_rtz);
780 ALU_CASE(u2f32, u2f_rtz);
781
782 ALU_CASE(f2i16, f2i_rtz);
783 ALU_CASE(f2u16, f2u_rtz);
784 ALU_CASE(i2f16, i2f_rtz);
785 ALU_CASE(u2f16, u2f_rtz);
786
787 ALU_CASE(fsin, fsin);
788 ALU_CASE(fcos, fcos);
789
790 /* We'll set invert */
791 ALU_CASE(inot, imov);
792 ALU_CASE(iand, iand);
793 ALU_CASE(ior, ior);
794 ALU_CASE(ixor, ixor);
795 ALU_CASE(ishl, ishl);
796 ALU_CASE(ishr, iasr);
797 ALU_CASE(ushr, ilsr);
798
799 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
800 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
801 ALU_CASE(b32all_fequal4, fball_eq);
802
803 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
804 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
805 ALU_CASE(b32any_fnequal4, fbany_neq);
806
807 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
808 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
809 ALU_CASE(b32all_iequal4, iball_eq);
810
811 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
812 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
813 ALU_CASE(b32any_inequal4, ibany_neq);
814
815 /* Source mods will be shoved in later */
816 ALU_CASE(fabs, fmov);
817 ALU_CASE(fneg, fmov);
818 ALU_CASE(fsat, fmov);
819
820 /* For size conversion, we use a move. Ideally though we would squash
821 * these ops together; maybe that has to happen after in NIR as part of
822 * propagation...? An earlier algebraic pass ensured we step down by
823 * only / exactly one size. If stepping down, we use a dest override to
824 * reduce the size; if stepping up, we use a larger-sized move with a
825 * half source and a sign/zero-extension modifier */
826
827 case nir_op_i2i8:
828 case nir_op_i2i16:
829 case nir_op_i2i32:
830 /* If we end up upscale, we'll need a sign-extend on the
831 * operand (the second argument) */
832
833 sext_2 = true;
834 /* fallthrough */
835 case nir_op_u2u8:
836 case nir_op_u2u16:
837 case nir_op_u2u32: {
838 op = midgard_alu_op_imov;
839
840 if (dst_bitsize == (src_bitsize * 2)) {
841 /* Converting up */
842 half_2 = true;
843
844 /* Use a greater register mode */
845 reg_mode++;
846 } else if (src_bitsize == (dst_bitsize * 2)) {
847 /* Converting down */
848 dest_override = midgard_dest_override_lower;
849 }
850
851 break;
852 }
853
854 case nir_op_f2f16: {
855 assert(src_bitsize == 32);
856
857 op = midgard_alu_op_fmov;
858 dest_override = midgard_dest_override_lower;
859 break;
860 }
861
862 case nir_op_f2f32: {
863 assert(src_bitsize == 16);
864
865 op = midgard_alu_op_fmov;
866 half_2 = true;
867 reg_mode++;
868 break;
869 }
870
871
872 /* For greater-or-equal, we lower to less-or-equal and flip the
873 * arguments */
874
875 case nir_op_fge:
876 case nir_op_fge32:
877 case nir_op_ige32:
878 case nir_op_uge32: {
879 op =
880 instr->op == nir_op_fge ? midgard_alu_op_fle :
881 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
882 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
883 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
884 0;
885
886 /* Swap via temporary */
887 nir_alu_src temp = instr->src[1];
888 instr->src[1] = instr->src[0];
889 instr->src[0] = temp;
890
891 break;
892 }
893
894 case nir_op_b32csel: {
895 /* Midgard features both fcsel and icsel, depending on
896 * the type of the arguments/output. However, as long
897 * as we're careful we can _always_ use icsel and
898 * _never_ need fcsel, since the latter does additional
899 * floating-point-specific processing whereas the
900 * former just moves bits on the wire. It's not obvious
901 * why these are separate opcodes, save for the ability
902 * to do things like sat/pos/abs/neg for free */
903
904 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
905 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
906
907 /* The condition is the first argument; move the other
908 * arguments up one to be a binary instruction for
909 * Midgard with the condition last */
910
911 nir_alu_src temp = instr->src[2];
912
913 instr->src[2] = instr->src[0];
914 instr->src[0] = instr->src[1];
915 instr->src[1] = temp;
916
917 break;
918 }
919
920 default:
921 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
922 assert(0);
923 return;
924 }
925
926 /* Midgard can perform certain modifiers on output of an ALU op */
927 unsigned outmod;
928
929 if (midgard_is_integer_out_op(op)) {
930 outmod = midgard_outmod_int_wrap;
931 } else {
932 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
933 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
934 }
935
936 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
937
938 if (instr->op == nir_op_fmax) {
939 if (nir_is_fzero_constant(instr->src[0].src)) {
940 op = midgard_alu_op_fmov;
941 nr_inputs = 1;
942 outmod = midgard_outmod_pos;
943 instr->src[0] = instr->src[1];
944 } else if (nir_is_fzero_constant(instr->src[1].src)) {
945 op = midgard_alu_op_fmov;
946 nr_inputs = 1;
947 outmod = midgard_outmod_pos;
948 }
949 }
950
951 /* Fetch unit, quirks, etc information */
952 unsigned opcode_props = alu_opcode_props[op].props;
953 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
954
955 /* src0 will always exist afaik, but src1 will not for 1-argument
956 * instructions. The latter can only be fetched if the instruction
957 * needs it, or else we may segfault. */
958
959 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
960 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
961 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
962
963 /* Rather than use the instruction generation helpers, we do it
964 * ourselves here to avoid the mess */
965
966 midgard_instruction ins = {
967 .type = TAG_ALU_4,
968 .src = {
969 quirk_flipped_r24 ? ~0 : src0,
970 quirk_flipped_r24 ? src0 : src1,
971 src2,
972 },
973 .dest = dest,
974 };
975
976 nir_alu_src *nirmods[3] = { NULL };
977
978 if (nr_inputs >= 2) {
979 nirmods[0] = &instr->src[0];
980 nirmods[1] = &instr->src[1];
981 } else if (nr_inputs == 1) {
982 nirmods[quirk_flipped_r24] = &instr->src[0];
983 } else {
984 assert(0);
985 }
986
987 if (nr_inputs == 3)
988 nirmods[2] = &instr->src[2];
989
990 /* These were lowered to a move, so apply the corresponding mod */
991
992 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
993 nir_alu_src *s = nirmods[quirk_flipped_r24];
994
995 if (instr->op == nir_op_fneg)
996 s->negate = !s->negate;
997
998 if (instr->op == nir_op_fabs)
999 s->abs = !s->abs;
1000 }
1001
1002 bool is_int = midgard_is_integer_op(op);
1003
1004 ins.mask = mask_of(nr_components);
1005
1006 midgard_vector_alu alu = {
1007 .op = op,
1008 .reg_mode = reg_mode,
1009 .dest_override = dest_override,
1010 .outmod = outmod,
1011
1012 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1013 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1014 };
1015
1016 if (nr_inputs == 3) {
1017 ins.cond_swizzle = SWIZZLE_FROM_ARRAY(nirmods[2]->swizzle);
1018 assert(!nirmods[2]->abs);
1019 assert(!nirmods[2]->negate);
1020 }
1021
1022 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1023
1024 if (!is_ssa)
1025 ins.mask &= instr->dest.write_mask;
1026
1027 ins.alu = alu;
1028
1029 /* Late fixup for emulated instructions */
1030
1031 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1032 /* Presently, our second argument is an inline #0 constant.
1033 * Switch over to an embedded 1.0 constant (that can't fit
1034 * inline, since we're 32-bit, not 16-bit like the inline
1035 * constants) */
1036
1037 ins.has_inline_constant = false;
1038 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1039 ins.has_constants = true;
1040
1041 if (instr->op == nir_op_b2f32) {
1042 float f = 1.0f;
1043 memcpy(&ins.constants, &f, sizeof(float));
1044 } else {
1045 ins.constants[0] = 1;
1046 }
1047
1048 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1049 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1050 /* Lots of instructions need a 0 plonked in */
1051 ins.has_inline_constant = false;
1052 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1053 ins.has_constants = true;
1054 ins.constants[0] = 0;
1055 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1056 } else if (instr->op == nir_op_inot) {
1057 ins.invert = true;
1058 }
1059
1060 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1061 /* To avoid duplicating the lookup tables (probably), true LUT
1062 * instructions can only operate as if they were scalars. Lower
1063 * them here by changing the component. */
1064
1065 uint8_t original_swizzle[4];
1066 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1067 unsigned orig_mask = ins.mask;
1068
1069 for (int i = 0; i < nr_components; ++i) {
1070 /* Mask the associated component, dropping the
1071 * instruction if needed */
1072
1073 ins.mask = 1 << i;
1074 ins.mask &= orig_mask;
1075
1076 if (!ins.mask)
1077 continue;
1078
1079 for (int j = 0; j < 4; ++j)
1080 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1081
1082 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1083 emit_mir_instruction(ctx, ins);
1084 }
1085 } else {
1086 emit_mir_instruction(ctx, ins);
1087 }
1088 }
1089
1090 #undef ALU_CASE
1091
1092 static unsigned
1093 mir_mask_for_intr(nir_instr *instr, bool is_read)
1094 {
1095 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1096
1097 if (is_read)
1098 return mask_of(nir_intrinsic_dest_components(intr));
1099 else
1100 return nir_intrinsic_write_mask(intr);
1101 }
1102
1103 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1104 * optimized) versions of UBO #0 */
1105
1106 midgard_instruction *
1107 emit_ubo_read(
1108 compiler_context *ctx,
1109 nir_instr *instr,
1110 unsigned dest,
1111 unsigned offset,
1112 nir_src *indirect_offset,
1113 unsigned index)
1114 {
1115 /* TODO: half-floats */
1116
1117 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1118
1119 assert((offset & 0xF) == 0);
1120 offset /= 16;
1121
1122 /* TODO: Don't split */
1123 ins.load_store.varying_parameters = (offset & 7) << 7;
1124 ins.load_store.address = offset >> 3;
1125 ins.mask = mir_mask_for_intr(instr, true);
1126
1127 if (indirect_offset) {
1128 ins.src[1] = nir_src_index(ctx, indirect_offset);
1129 ins.load_store.arg_2 = 0x80;
1130 } else {
1131 ins.load_store.arg_2 = 0x1E;
1132 }
1133
1134 ins.load_store.arg_1 = index;
1135
1136 return emit_mir_instruction(ctx, ins);
1137 }
1138
1139 /* SSBO reads are like UBO reads if you squint */
1140
1141 static void
1142 emit_ssbo_access(
1143 compiler_context *ctx,
1144 nir_instr *instr,
1145 bool is_read,
1146 unsigned srcdest,
1147 unsigned offset,
1148 nir_src *indirect_offset,
1149 unsigned index)
1150 {
1151 /* TODO: types */
1152
1153 midgard_instruction ins;
1154
1155 if (is_read)
1156 ins = m_ld_int4(srcdest, offset);
1157 else
1158 ins = m_st_int4(srcdest, offset);
1159
1160 /* SSBO reads use a generic memory read interface, so we need the
1161 * address of the SSBO as the first argument. This is a sysval. */
1162
1163 unsigned addr = make_compiler_temp(ctx);
1164 emit_sysval_read(ctx, instr, addr, 2);
1165
1166 /* The source array is a bit of a leaky abstraction for SSBOs.
1167 * Nevertheless, for loads:
1168 *
1169 * src[0] = arg_1
1170 * src[1] = arg_2
1171 * src[2] = unused
1172 *
1173 * Whereas for stores:
1174 *
1175 * src[0] = value
1176 * src[1] = arg_1
1177 * src[2] = arg_2
1178 *
1179 * We would like arg_1 = the address and
1180 * arg_2 = the offset.
1181 */
1182
1183 ins.src[is_read ? 0 : 1] = addr;
1184
1185 /* TODO: What is this? It looks superficially like a shift << 5, but
1186 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1187 * indirect offset. */
1188
1189 if (indirect_offset) {
1190 ins.load_store.arg_1 |= 0xE0;
1191 ins.src[is_read ? 1 : 2] = nir_src_index(ctx, indirect_offset);
1192 } else {
1193 ins.load_store.arg_2 = 0x7E;
1194 }
1195
1196 /* TODO: Bounds check */
1197
1198 /* Finally, we emit the direct offset */
1199
1200 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1201 ins.load_store.address = (offset >> 9);
1202 ins.mask = mir_mask_for_intr(instr, is_read);
1203
1204 emit_mir_instruction(ctx, ins);
1205 }
1206
1207 static void
1208 emit_varying_read(
1209 compiler_context *ctx,
1210 unsigned dest, unsigned offset,
1211 unsigned nr_comp, unsigned component,
1212 nir_src *indirect_offset, nir_alu_type type)
1213 {
1214 /* XXX: Half-floats? */
1215 /* TODO: swizzle, mask */
1216
1217 midgard_instruction ins = m_ld_vary_32(dest, offset);
1218 ins.mask = mask_of(nr_comp);
1219 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1220
1221 midgard_varying_parameter p = {
1222 .is_varying = 1,
1223 .interpolation = midgard_interp_default,
1224 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1225 };
1226
1227 unsigned u;
1228 memcpy(&u, &p, sizeof(p));
1229 ins.load_store.varying_parameters = u;
1230
1231 if (indirect_offset)
1232 ins.src[1] = nir_src_index(ctx, indirect_offset);
1233 else
1234 ins.load_store.arg_2 = 0x1E;
1235
1236 ins.load_store.arg_1 = 0x9E;
1237
1238 /* Use the type appropriate load */
1239 switch (type) {
1240 case nir_type_uint:
1241 case nir_type_bool:
1242 ins.load_store.op = midgard_op_ld_vary_32u;
1243 break;
1244 case nir_type_int:
1245 ins.load_store.op = midgard_op_ld_vary_32i;
1246 break;
1247 case nir_type_float:
1248 ins.load_store.op = midgard_op_ld_vary_32;
1249 break;
1250 default:
1251 unreachable("Attempted to load unknown type");
1252 break;
1253 }
1254
1255 emit_mir_instruction(ctx, ins);
1256 }
1257
1258 void
1259 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1260 unsigned nr_components)
1261 {
1262 unsigned dest = 0;
1263
1264 /* Figure out which uniform this is */
1265 int sysval = sysval_for_instr(ctx, instr, &dest);
1266 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1267
1268 if (dest_override >= 0)
1269 dest = dest_override;
1270
1271 /* Sysvals are prefix uniforms */
1272 unsigned uniform = ((uintptr_t) val) - 1;
1273
1274 /* Emit the read itself -- this is never indirect */
1275 midgard_instruction *ins =
1276 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1277
1278 ins->mask = mask_of(nr_components);
1279 }
1280
1281 static unsigned
1282 compute_builtin_arg(nir_op op)
1283 {
1284 switch (op) {
1285 case nir_intrinsic_load_work_group_id:
1286 return 0x14;
1287 case nir_intrinsic_load_local_invocation_id:
1288 return 0x10;
1289 default:
1290 unreachable("Invalid compute paramater loaded");
1291 }
1292 }
1293
1294 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1295 * Handle MRT here */
1296
1297 static void
1298 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1299 {
1300 emit_explicit_constant(ctx, src, src);
1301
1302 /* If we're doing MRT, we need to specify the render target */
1303
1304 midgard_instruction rt_move = {
1305 .dest = ~0
1306 };
1307
1308 if (rt != 0) {
1309 /* We'll write to r1.z */
1310 rt_move = v_mov(~0, blank_alu_src, SSA_FIXED_REGISTER(1));
1311 rt_move.mask = 1 << COMPONENT_Z;
1312 rt_move.unit = UNIT_SADD;
1313
1314 /* r1.z = (rt * 0x100) */
1315 rt_move.has_inline_constant = true;
1316 rt_move.inline_constant = (rt * 0x100);
1317
1318 /* r1 */
1319 ctx->work_registers = MAX2(ctx->work_registers, 1);
1320
1321 /* Do the write */
1322 emit_mir_instruction(ctx, rt_move);
1323 }
1324
1325 /* Next, generate the branch. For R render targets in the writeout, the
1326 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1327
1328 unsigned outputs = ctx->is_blend ? 1 : ctx->nir->num_outputs;
1329 unsigned offset = (2 * (outputs - 1)) + rt;
1330
1331 struct midgard_instruction ins =
1332 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1333
1334 /* Add dependencies */
1335 ins.src[0] = src;
1336 ins.src[1] = rt_move.dest;
1337
1338 /* Emit the branch */
1339 emit_mir_instruction(ctx, ins);
1340 }
1341
1342 static void
1343 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1344 {
1345 unsigned reg = nir_dest_index(ctx, &instr->dest);
1346 midgard_instruction ins = m_ld_compute_id(reg, 0);
1347 ins.mask = mask_of(3);
1348 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1349 emit_mir_instruction(ctx, ins);
1350 }
1351 static void
1352 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1353 {
1354 unsigned offset = 0, reg;
1355
1356 switch (instr->intrinsic) {
1357 case nir_intrinsic_discard_if:
1358 case nir_intrinsic_discard: {
1359 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1360 struct midgard_instruction discard = v_branch(conditional, false);
1361 discard.branch.target_type = TARGET_DISCARD;
1362
1363 if (conditional)
1364 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1365
1366 emit_mir_instruction(ctx, discard);
1367 schedule_barrier(ctx);
1368
1369 break;
1370 }
1371
1372 case nir_intrinsic_load_uniform:
1373 case nir_intrinsic_load_ubo:
1374 case nir_intrinsic_load_ssbo:
1375 case nir_intrinsic_load_input: {
1376 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1377 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1378 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1379
1380 /* Get the base type of the intrinsic */
1381 /* TODO: Infer type? Does it matter? */
1382 nir_alu_type t =
1383 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1384 t = nir_alu_type_get_base_type(t);
1385
1386 if (!(is_ubo || is_ssbo)) {
1387 offset = nir_intrinsic_base(instr);
1388 }
1389
1390 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1391
1392 nir_src *src_offset = nir_get_io_offset_src(instr);
1393
1394 bool direct = nir_src_is_const(*src_offset);
1395 nir_src *indirect_offset = direct ? NULL : src_offset;
1396
1397 if (direct)
1398 offset += nir_src_as_uint(*src_offset);
1399
1400 /* We may need to apply a fractional offset */
1401 int component = instr->intrinsic == nir_intrinsic_load_input ?
1402 nir_intrinsic_component(instr) : 0;
1403 reg = nir_dest_index(ctx, &instr->dest);
1404
1405 if (is_uniform && !ctx->is_blend) {
1406 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1407 } else if (is_ubo) {
1408 nir_src index = instr->src[0];
1409
1410 /* We don't yet support indirect UBOs. For indirect
1411 * block numbers (if that's possible), we don't know
1412 * enough about the hardware yet. For indirect sources,
1413 * we know what we need but we need to add some NIR
1414 * support for lowering correctly with respect to
1415 * 128-bit reads */
1416
1417 assert(nir_src_is_const(index));
1418 assert(nir_src_is_const(*src_offset));
1419
1420 uint32_t uindex = nir_src_as_uint(index) + 1;
1421 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1422 } else if (is_ssbo) {
1423 nir_src index = instr->src[0];
1424 assert(nir_src_is_const(index));
1425 uint32_t uindex = nir_src_as_uint(index);
1426
1427 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1428 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1429 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1430 } else if (ctx->is_blend) {
1431 /* For blend shaders, load the input color, which is
1432 * preloaded to r0 */
1433
1434 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1435 emit_mir_instruction(ctx, move);
1436 schedule_barrier(ctx);
1437 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1438 midgard_instruction ins = m_ld_attr_32(reg, offset);
1439 ins.load_store.arg_1 = 0x1E;
1440 ins.load_store.arg_2 = 0x1E;
1441 ins.mask = mask_of(nr_comp);
1442
1443 /* Use the type appropriate load */
1444 switch (t) {
1445 case nir_type_uint:
1446 case nir_type_bool:
1447 ins.load_store.op = midgard_op_ld_attr_32u;
1448 break;
1449 case nir_type_int:
1450 ins.load_store.op = midgard_op_ld_attr_32i;
1451 break;
1452 case nir_type_float:
1453 ins.load_store.op = midgard_op_ld_attr_32;
1454 break;
1455 default:
1456 unreachable("Attempted to load unknown type");
1457 break;
1458 }
1459
1460 emit_mir_instruction(ctx, ins);
1461 } else {
1462 DBG("Unknown load\n");
1463 assert(0);
1464 }
1465
1466 break;
1467 }
1468
1469 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1470
1471 case nir_intrinsic_load_raw_output_pan:
1472 reg = nir_dest_index(ctx, &instr->dest);
1473 assert(ctx->is_blend);
1474
1475 midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
1476 emit_mir_instruction(ctx, ld);
1477 break;
1478
1479 case nir_intrinsic_load_blend_const_color_rgba: {
1480 assert(ctx->is_blend);
1481 reg = nir_dest_index(ctx, &instr->dest);
1482
1483 /* Blend constants are embedded directly in the shader and
1484 * patched in, so we use some magic routing */
1485
1486 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1487 ins.has_constants = true;
1488 ins.has_blend_constant = true;
1489 emit_mir_instruction(ctx, ins);
1490 break;
1491 }
1492
1493 case nir_intrinsic_store_output:
1494 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1495
1496 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1497
1498 reg = nir_src_index(ctx, &instr->src[0]);
1499
1500 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1501 /* Determine number of render targets */
1502 emit_fragment_store(ctx, reg, offset);
1503 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1504 /* We should have been vectorized, though we don't
1505 * currently check that st_vary is emitted only once
1506 * per slot (this is relevant, since there's not a mask
1507 * parameter available on the store [set to 0 by the
1508 * blob]). We do respect the component by adjusting the
1509 * swizzle. If this is a constant source, we'll need to
1510 * emit that explicitly. */
1511
1512 emit_explicit_constant(ctx, reg, reg);
1513
1514 unsigned component = nir_intrinsic_component(instr);
1515 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1516
1517 midgard_instruction st = m_st_vary_32(reg, offset);
1518 st.load_store.arg_1 = 0x9E;
1519 st.load_store.arg_2 = 0x1E;
1520 st.load_store.swizzle = swizzle_of(nr_comp) << (2*component);
1521 emit_mir_instruction(ctx, st);
1522 } else {
1523 DBG("Unknown store\n");
1524 assert(0);
1525 }
1526
1527 break;
1528
1529 /* Special case of store_output for lowered blend shaders */
1530 case nir_intrinsic_store_raw_output_pan:
1531 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1532 reg = nir_src_index(ctx, &instr->src[0]);
1533 emit_fragment_store(ctx, reg, 0);
1534
1535 break;
1536
1537 case nir_intrinsic_store_ssbo:
1538 assert(nir_src_is_const(instr->src[1]));
1539
1540 bool direct_offset = nir_src_is_const(instr->src[2]);
1541 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1542 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1543 reg = nir_src_index(ctx, &instr->src[0]);
1544
1545 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1546
1547 emit_explicit_constant(ctx, reg, reg);
1548 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1549 break;
1550
1551 case nir_intrinsic_load_alpha_ref_float:
1552 assert(instr->dest.is_ssa);
1553
1554 float ref_value = ctx->alpha_ref;
1555
1556 /* See emit_load_const */
1557 float *v = ralloc_array(NULL, float, 4);
1558 memcpy(v, &ref_value, sizeof(float));
1559 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1560 break;
1561
1562 case nir_intrinsic_load_viewport_scale:
1563 case nir_intrinsic_load_viewport_offset:
1564 case nir_intrinsic_load_num_work_groups:
1565 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1566 break;
1567
1568 case nir_intrinsic_load_work_group_id:
1569 case nir_intrinsic_load_local_invocation_id:
1570 emit_compute_builtin(ctx, instr);
1571 break;
1572
1573 default:
1574 printf ("Unhandled intrinsic\n");
1575 assert(0);
1576 break;
1577 }
1578 }
1579
1580 static unsigned
1581 midgard_tex_format(enum glsl_sampler_dim dim)
1582 {
1583 switch (dim) {
1584 case GLSL_SAMPLER_DIM_1D:
1585 case GLSL_SAMPLER_DIM_BUF:
1586 return MALI_TEX_1D;
1587
1588 case GLSL_SAMPLER_DIM_2D:
1589 case GLSL_SAMPLER_DIM_EXTERNAL:
1590 case GLSL_SAMPLER_DIM_RECT:
1591 return MALI_TEX_2D;
1592
1593 case GLSL_SAMPLER_DIM_3D:
1594 return MALI_TEX_3D;
1595
1596 case GLSL_SAMPLER_DIM_CUBE:
1597 return MALI_TEX_CUBE;
1598
1599 default:
1600 DBG("Unknown sampler dim type\n");
1601 assert(0);
1602 return 0;
1603 }
1604 }
1605
1606 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1607 * was successful */
1608
1609 static bool
1610 pan_attach_constant_bias(
1611 compiler_context *ctx,
1612 nir_src lod,
1613 midgard_texture_word *word)
1614 {
1615 /* To attach as constant, it has to *be* constant */
1616
1617 if (!nir_src_is_const(lod))
1618 return false;
1619
1620 float f = nir_src_as_float(lod);
1621
1622 /* Break into fixed-point */
1623 signed lod_int = f;
1624 float lod_frac = f - lod_int;
1625
1626 /* Carry over negative fractions */
1627 if (lod_frac < 0.0) {
1628 lod_int--;
1629 lod_frac += 1.0;
1630 }
1631
1632 /* Encode */
1633 word->bias = float_to_ubyte(lod_frac);
1634 word->bias_int = lod_int;
1635
1636 return true;
1637 }
1638
1639 static enum mali_sampler_type
1640 midgard_sampler_type(nir_alu_type t) {
1641 switch (nir_alu_type_get_base_type(t))
1642 {
1643 case nir_type_float:
1644 return MALI_SAMPLER_FLOAT;
1645 case nir_type_int:
1646 return MALI_SAMPLER_SIGNED;
1647 case nir_type_uint:
1648 return MALI_SAMPLER_UNSIGNED;
1649 default:
1650 unreachable("Unknown sampler type");
1651 }
1652 }
1653
1654 static void
1655 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1656 unsigned midgard_texop)
1657 {
1658 /* TODO */
1659 //assert (!instr->sampler);
1660 //assert (!instr->texture_array_size);
1661
1662 int texture_index = instr->texture_index;
1663 int sampler_index = texture_index;
1664
1665 /* No helper to build texture words -- we do it all here */
1666 midgard_instruction ins = {
1667 .type = TAG_TEXTURE_4,
1668 .mask = 0xF,
1669 .dest = nir_dest_index(ctx, &instr->dest),
1670 .src = { ~0, ~0, ~0 },
1671 .texture = {
1672 .op = midgard_texop,
1673 .format = midgard_tex_format(instr->sampler_dim),
1674 .texture_handle = texture_index,
1675 .sampler_handle = sampler_index,
1676 .swizzle = SWIZZLE_XYZW,
1677 .in_reg_swizzle = SWIZZLE_XYZW,
1678
1679 /* TODO: half */
1680 .in_reg_full = 1,
1681 .out_full = 1,
1682
1683 .sampler_type = midgard_sampler_type(instr->dest_type),
1684 }
1685 };
1686
1687 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1688 int index = nir_src_index(ctx, &instr->src[i].src);
1689 midgard_vector_alu_src alu_src = blank_alu_src;
1690 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1691
1692 switch (instr->src[i].src_type) {
1693 case nir_tex_src_coord: {
1694 emit_explicit_constant(ctx, index, index);
1695
1696 /* Texelfetch coordinates uses all four elements
1697 * (xyz/index) regardless of texture dimensionality,
1698 * which means it's necessary to zero the unused
1699 * components to keep everything happy */
1700
1701 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1702 unsigned old_index = index;
1703
1704 index = make_compiler_temp(ctx);
1705
1706 /* mov index, old_index */
1707 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1708 mov.mask = 0x3;
1709 emit_mir_instruction(ctx, mov);
1710
1711 /* mov index.zw, #0 */
1712 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1713 blank_alu_src, index);
1714 mov.has_constants = true;
1715 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1716 emit_mir_instruction(ctx, mov);
1717 }
1718
1719 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1720 /* texelFetch is undefined on samplerCube */
1721 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1722
1723 /* For cubemaps, we use a special ld/st op to
1724 * select the face and copy the xy into the
1725 * texture register */
1726
1727 unsigned temp = make_compiler_temp(ctx);
1728 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1729 ld.src[0] = index;
1730 ld.mask = 0x3; /* xy */
1731 ld.load_store.arg_1 = 0x20;
1732 ld.load_store.swizzle = alu_src.swizzle;
1733 emit_mir_instruction(ctx, ld);
1734
1735 ins.src[0] = temp;
1736 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1737 } else {
1738 ins.src[0] = index;
1739 }
1740
1741 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1742 /* Array component in w but NIR wants it in z */
1743 if (nr_components == 3)
1744 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1745 else if (nr_components == 2)
1746 ins.texture.in_reg_swizzle = SWIZZLE_XYXX;
1747 else
1748 unreachable("Invalid texture 2D components");
1749 }
1750
1751 break;
1752 }
1753
1754 case nir_tex_src_bias:
1755 case nir_tex_src_lod: {
1756 /* Try as a constant if we can */
1757
1758 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1759 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1760 break;
1761
1762 ins.texture.lod_register = true;
1763 ins.src[1] = index;
1764 emit_explicit_constant(ctx, index, index);
1765
1766 break;
1767 };
1768
1769 default:
1770 unreachable("Unknown texture source type\n");
1771 }
1772 }
1773
1774 emit_mir_instruction(ctx, ins);
1775
1776 /* Used for .cont and .last hinting */
1777 ctx->texture_op_count++;
1778 }
1779
1780 static void
1781 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1782 {
1783 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1784 * generic tex in some cases (which confuses the hardware) */
1785
1786 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1787
1788 if (is_vertex && instr->op == nir_texop_tex)
1789 instr->op = nir_texop_txl;
1790
1791 switch (instr->op) {
1792 case nir_texop_tex:
1793 case nir_texop_txb:
1794 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1795 break;
1796 case nir_texop_txl:
1797 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1798 break;
1799 case nir_texop_txf:
1800 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1801 break;
1802 case nir_texop_txs:
1803 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1804 break;
1805 default:
1806 unreachable("Unhanlded texture op");
1807 }
1808 }
1809
1810 static void
1811 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1812 {
1813 switch (instr->type) {
1814 case nir_jump_break: {
1815 /* Emit a branch out of the loop */
1816 struct midgard_instruction br = v_branch(false, false);
1817 br.branch.target_type = TARGET_BREAK;
1818 br.branch.target_break = ctx->current_loop_depth;
1819 emit_mir_instruction(ctx, br);
1820 break;
1821 }
1822
1823 default:
1824 DBG("Unknown jump type %d\n", instr->type);
1825 break;
1826 }
1827 }
1828
1829 static void
1830 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1831 {
1832 switch (instr->type) {
1833 case nir_instr_type_load_const:
1834 emit_load_const(ctx, nir_instr_as_load_const(instr));
1835 break;
1836
1837 case nir_instr_type_intrinsic:
1838 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1839 break;
1840
1841 case nir_instr_type_alu:
1842 emit_alu(ctx, nir_instr_as_alu(instr));
1843 break;
1844
1845 case nir_instr_type_tex:
1846 emit_tex(ctx, nir_instr_as_tex(instr));
1847 break;
1848
1849 case nir_instr_type_jump:
1850 emit_jump(ctx, nir_instr_as_jump(instr));
1851 break;
1852
1853 case nir_instr_type_ssa_undef:
1854 /* Spurious */
1855 break;
1856
1857 default:
1858 DBG("Unhandled instruction type\n");
1859 break;
1860 }
1861 }
1862
1863
1864 /* ALU instructions can inline or embed constants, which decreases register
1865 * pressure and saves space. */
1866
1867 #define CONDITIONAL_ATTACH(idx) { \
1868 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1869 \
1870 if (entry) { \
1871 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1872 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1873 } \
1874 }
1875
1876 static void
1877 inline_alu_constants(compiler_context *ctx, midgard_block *block)
1878 {
1879 mir_foreach_instr_in_block(block, alu) {
1880 /* Other instructions cannot inline constants */
1881 if (alu->type != TAG_ALU_4) continue;
1882 if (alu->compact_branch) continue;
1883
1884 /* If there is already a constant here, we can do nothing */
1885 if (alu->has_constants) continue;
1886
1887 CONDITIONAL_ATTACH(0);
1888
1889 if (!alu->has_constants) {
1890 CONDITIONAL_ATTACH(1)
1891 } else if (!alu->inline_constant) {
1892 /* Corner case: _two_ vec4 constants, for instance with a
1893 * csel. For this case, we can only use a constant
1894 * register for one, we'll have to emit a move for the
1895 * other. Note, if both arguments are constants, then
1896 * necessarily neither argument depends on the value of
1897 * any particular register. As the destination register
1898 * will be wiped, that means we can spill the constant
1899 * to the destination register.
1900 */
1901
1902 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1903 unsigned scratch = alu->dest;
1904
1905 if (entry) {
1906 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1907 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1908
1909 /* Set the source */
1910 alu->src[1] = scratch;
1911
1912 /* Inject us -before- the last instruction which set r31 */
1913 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
1914 }
1915 }
1916 }
1917 }
1918
1919 /* Being a little silly with the names, but returns the op that is the bitwise
1920 * inverse of the op with the argument switched. I.e. (f and g are
1921 * contrapositives):
1922 *
1923 * f(a, b) = ~g(b, a)
1924 *
1925 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1926 *
1927 * f(a, b) = ~g(b, a)
1928 * ~f(a, b) = g(b, a)
1929 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1930 * f(a, b) = h(a, b)
1931 *
1932 * Thus we define this function in pairs.
1933 */
1934
1935 static inline midgard_alu_op
1936 mir_contrapositive(midgard_alu_op op)
1937 {
1938 switch (op) {
1939 case midgard_alu_op_flt:
1940 return midgard_alu_op_fle;
1941 case midgard_alu_op_fle:
1942 return midgard_alu_op_flt;
1943
1944 case midgard_alu_op_ilt:
1945 return midgard_alu_op_ile;
1946 case midgard_alu_op_ile:
1947 return midgard_alu_op_ilt;
1948
1949 default:
1950 unreachable("No known contrapositive");
1951 }
1952 }
1953
1954 /* Midgard supports two types of constants, embedded constants (128-bit) and
1955 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1956 * constants can be demoted to inline constants, for space savings and
1957 * sometimes a performance boost */
1958
1959 static void
1960 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
1961 {
1962 mir_foreach_instr_in_block(block, ins) {
1963 if (!ins->has_constants) continue;
1964 if (ins->has_inline_constant) continue;
1965
1966 /* Blend constants must not be inlined by definition */
1967 if (ins->has_blend_constant) continue;
1968
1969 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1970 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1971 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1972
1973 if (!(is_16 || is_32))
1974 continue;
1975
1976 /* src1 cannot be an inline constant due to encoding
1977 * restrictions. So, if possible we try to flip the arguments
1978 * in that case */
1979
1980 int op = ins->alu.op;
1981
1982 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1983 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
1984
1985 switch (op) {
1986 /* Conditionals can be inverted */
1987 case midgard_alu_op_flt:
1988 case midgard_alu_op_ilt:
1989 case midgard_alu_op_fle:
1990 case midgard_alu_op_ile:
1991 ins->alu.op = mir_contrapositive(ins->alu.op);
1992 ins->invert = true;
1993 flip = true;
1994 break;
1995
1996 case midgard_alu_op_fcsel:
1997 case midgard_alu_op_icsel:
1998 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1999 default:
2000 break;
2001 }
2002
2003 if (flip) {
2004 /* Flip the SSA numbers */
2005 ins->src[0] = ins->src[1];
2006 ins->src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2007
2008 /* And flip the modifiers */
2009
2010 unsigned src_temp;
2011
2012 src_temp = ins->alu.src2;
2013 ins->alu.src2 = ins->alu.src1;
2014 ins->alu.src1 = src_temp;
2015 }
2016 }
2017
2018 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2019 /* Extract the source information */
2020
2021 midgard_vector_alu_src *src;
2022 int q = ins->alu.src2;
2023 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2024 src = m;
2025
2026 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2027 int component = src->swizzle & 3;
2028
2029 /* Scale constant appropriately, if we can legally */
2030 uint16_t scaled_constant = 0;
2031
2032 if (midgard_is_integer_op(op) || is_16) {
2033 unsigned int *iconstants = (unsigned int *) ins->constants;
2034 scaled_constant = (uint16_t) iconstants[component];
2035
2036 /* Constant overflow after resize */
2037 if (scaled_constant != iconstants[component])
2038 continue;
2039 } else {
2040 float *f = (float *) ins->constants;
2041 float original = f[component];
2042 scaled_constant = _mesa_float_to_half(original);
2043
2044 /* Check for loss of precision. If this is
2045 * mediump, we don't care, but for a highp
2046 * shader, we need to pay attention. NIR
2047 * doesn't yet tell us which mode we're in!
2048 * Practically this prevents most constants
2049 * from being inlined, sadly. */
2050
2051 float fp32 = _mesa_half_to_float(scaled_constant);
2052
2053 if (fp32 != original)
2054 continue;
2055 }
2056
2057 /* We don't know how to handle these with a constant */
2058
2059 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2060 DBG("Bailing inline constant...\n");
2061 continue;
2062 }
2063
2064 /* Make sure that the constant is not itself a
2065 * vector by checking if all accessed values
2066 * (by the swizzle) are the same. */
2067
2068 uint32_t *cons = ins->constants;
2069 uint32_t value = cons[component];
2070
2071 bool is_vector = false;
2072 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2073
2074 for (int c = 1; c < 4; ++c) {
2075 /* We only care if this component is actually used */
2076 if (!(mask & (1 << c)))
2077 continue;
2078
2079 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2080
2081 if (test != value) {
2082 is_vector = true;
2083 break;
2084 }
2085 }
2086
2087 if (is_vector)
2088 continue;
2089
2090 /* Get rid of the embedded constant */
2091 ins->has_constants = false;
2092 ins->src[1] = ~0;
2093 ins->has_inline_constant = true;
2094 ins->inline_constant = scaled_constant;
2095 }
2096 }
2097 }
2098
2099 /* Dead code elimination for branches at the end of a block - only one branch
2100 * per block is legal semantically */
2101
2102 static void
2103 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2104 {
2105 bool branched = false;
2106
2107 mir_foreach_instr_in_block_safe(block, ins) {
2108 if (!midgard_is_branch_unit(ins->unit)) continue;
2109
2110 if (branched)
2111 mir_remove_instruction(ins);
2112
2113 branched = true;
2114 }
2115 }
2116
2117 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2118 * the move can be propagated away entirely */
2119
2120 static bool
2121 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2122 {
2123 /* Nothing to do */
2124 if (comp == midgard_outmod_none)
2125 return true;
2126
2127 if (*outmod == midgard_outmod_none) {
2128 *outmod = comp;
2129 return true;
2130 }
2131
2132 /* TODO: Compose rules */
2133 return false;
2134 }
2135
2136 static bool
2137 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2138 {
2139 bool progress = false;
2140
2141 mir_foreach_instr_in_block_safe(block, ins) {
2142 if (ins->type != TAG_ALU_4) continue;
2143 if (ins->alu.op != midgard_alu_op_fmov) continue;
2144 if (ins->alu.outmod != midgard_outmod_pos) continue;
2145
2146 /* TODO: Registers? */
2147 unsigned src = ins->src[1];
2148 if (src & IS_REG) continue;
2149 assert(!mir_has_multiple_writes(ctx, src));
2150
2151 /* There might be a source modifier, too */
2152 if (mir_nontrivial_source2_mod(ins)) continue;
2153
2154 /* Backpropagate the modifier */
2155 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2156 if (v->type != TAG_ALU_4) continue;
2157 if (v->dest != src) continue;
2158
2159 /* Can we even take a float outmod? */
2160 if (midgard_is_integer_out_op(v->alu.op)) continue;
2161
2162 midgard_outmod_float temp = v->alu.outmod;
2163 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2164
2165 /* Throw in the towel.. */
2166 if (!progress) break;
2167
2168 /* Otherwise, transfer the modifier */
2169 v->alu.outmod = temp;
2170 ins->alu.outmod = midgard_outmod_none;
2171
2172 break;
2173 }
2174 }
2175
2176 return progress;
2177 }
2178
2179 static void
2180 emit_fragment_epilogue(compiler_context *ctx)
2181 {
2182 /* Just emit the last chunk with the branch */
2183 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2184 }
2185
2186 static midgard_block *
2187 emit_block(compiler_context *ctx, nir_block *block)
2188 {
2189 midgard_block *this_block = ctx->after_block;
2190 ctx->after_block = NULL;
2191
2192 if (!this_block)
2193 this_block = create_empty_block(ctx);
2194
2195 list_addtail(&this_block->link, &ctx->blocks);
2196
2197 this_block->is_scheduled = false;
2198 ++ctx->block_count;
2199
2200 /* Set up current block */
2201 list_inithead(&this_block->instructions);
2202 ctx->current_block = this_block;
2203
2204 nir_foreach_instr(instr, block) {
2205 emit_instr(ctx, instr);
2206 ++ctx->instruction_count;
2207 }
2208
2209 return this_block;
2210 }
2211
2212 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2213
2214 static void
2215 emit_if(struct compiler_context *ctx, nir_if *nif)
2216 {
2217 midgard_block *before_block = ctx->current_block;
2218
2219 /* Speculatively emit the branch, but we can't fill it in until later */
2220 EMIT(branch, true, true);
2221 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2222 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2223
2224 /* Emit the two subblocks. */
2225 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2226 midgard_block *end_then_block = ctx->current_block;
2227
2228 /* Emit a jump from the end of the then block to the end of the else */
2229 EMIT(branch, false, false);
2230 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2231
2232 /* Emit second block, and check if it's empty */
2233
2234 int else_idx = ctx->block_count;
2235 int count_in = ctx->instruction_count;
2236 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2237 midgard_block *end_else_block = ctx->current_block;
2238 int after_else_idx = ctx->block_count;
2239
2240 /* Now that we have the subblocks emitted, fix up the branches */
2241
2242 assert(then_block);
2243 assert(else_block);
2244
2245 if (ctx->instruction_count == count_in) {
2246 /* The else block is empty, so don't emit an exit jump */
2247 mir_remove_instruction(then_exit);
2248 then_branch->branch.target_block = after_else_idx;
2249 } else {
2250 then_branch->branch.target_block = else_idx;
2251 then_exit->branch.target_block = after_else_idx;
2252 }
2253
2254 /* Wire up the successors */
2255
2256 ctx->after_block = create_empty_block(ctx);
2257
2258 midgard_block_add_successor(before_block, then_block);
2259 midgard_block_add_successor(before_block, else_block);
2260
2261 midgard_block_add_successor(end_then_block, ctx->after_block);
2262 midgard_block_add_successor(end_else_block, ctx->after_block);
2263 }
2264
2265 static void
2266 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2267 {
2268 /* Remember where we are */
2269 midgard_block *start_block = ctx->current_block;
2270
2271 /* Allocate a loop number, growing the current inner loop depth */
2272 int loop_idx = ++ctx->current_loop_depth;
2273
2274 /* Get index from before the body so we can loop back later */
2275 int start_idx = ctx->block_count;
2276
2277 /* Emit the body itself */
2278 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2279
2280 /* Branch back to loop back */
2281 struct midgard_instruction br_back = v_branch(false, false);
2282 br_back.branch.target_block = start_idx;
2283 emit_mir_instruction(ctx, br_back);
2284
2285 /* Mark down that branch in the graph. */
2286 midgard_block_add_successor(start_block, loop_block);
2287 midgard_block_add_successor(ctx->current_block, loop_block);
2288
2289 /* Find the index of the block about to follow us (note: we don't add
2290 * one; blocks are 0-indexed so we get a fencepost problem) */
2291 int break_block_idx = ctx->block_count;
2292
2293 /* Fix up the break statements we emitted to point to the right place,
2294 * now that we can allocate a block number for them */
2295 ctx->after_block = create_empty_block(ctx);
2296
2297 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2298 mir_foreach_instr_in_block(block, ins) {
2299 if (ins->type != TAG_ALU_4) continue;
2300 if (!ins->compact_branch) continue;
2301 if (ins->prepacked_branch) continue;
2302
2303 /* We found a branch -- check the type to see if we need to do anything */
2304 if (ins->branch.target_type != TARGET_BREAK) continue;
2305
2306 /* It's a break! Check if it's our break */
2307 if (ins->branch.target_break != loop_idx) continue;
2308
2309 /* Okay, cool, we're breaking out of this loop.
2310 * Rewrite from a break to a goto */
2311
2312 ins->branch.target_type = TARGET_GOTO;
2313 ins->branch.target_block = break_block_idx;
2314
2315 midgard_block_add_successor(block, ctx->after_block);
2316 }
2317 }
2318
2319 /* Now that we've finished emitting the loop, free up the depth again
2320 * so we play nice with recursion amid nested loops */
2321 --ctx->current_loop_depth;
2322
2323 /* Dump loop stats */
2324 ++ctx->loop_count;
2325 }
2326
2327 static midgard_block *
2328 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2329 {
2330 midgard_block *start_block = NULL;
2331
2332 foreach_list_typed(nir_cf_node, node, node, list) {
2333 switch (node->type) {
2334 case nir_cf_node_block: {
2335 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2336
2337 if (!start_block)
2338 start_block = block;
2339
2340 break;
2341 }
2342
2343 case nir_cf_node_if:
2344 emit_if(ctx, nir_cf_node_as_if(node));
2345 break;
2346
2347 case nir_cf_node_loop:
2348 emit_loop(ctx, nir_cf_node_as_loop(node));
2349 break;
2350
2351 case nir_cf_node_function:
2352 assert(0);
2353 break;
2354 }
2355 }
2356
2357 return start_block;
2358 }
2359
2360 /* Due to lookahead, we need to report the first tag executed in the command
2361 * stream and in branch targets. An initial block might be empty, so iterate
2362 * until we find one that 'works' */
2363
2364 static unsigned
2365 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2366 {
2367 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2368
2369 unsigned first_tag = 0;
2370
2371 mir_foreach_block_from(ctx, initial_block, v) {
2372 midgard_bundle *initial_bundle =
2373 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2374
2375 if (initial_bundle) {
2376 first_tag = initial_bundle->tag;
2377 break;
2378 }
2379 }
2380
2381 return first_tag;
2382 }
2383
2384 int
2385 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2386 {
2387 struct util_dynarray *compiled = &program->compiled;
2388
2389 midgard_debug = debug_get_option_midgard_debug();
2390
2391 /* TODO: Bound against what? */
2392 compiler_context *ctx = rzalloc(NULL, compiler_context);
2393
2394 ctx->nir = nir;
2395 ctx->screen = screen;
2396 ctx->stage = nir->info.stage;
2397 ctx->is_blend = is_blend;
2398 ctx->alpha_ref = program->alpha_ref;
2399
2400 /* Start off with a safe cutoff, allowing usage of all 16 work
2401 * registers. Later, we'll promote uniform reads to uniform registers
2402 * if we determine it is beneficial to do so */
2403 ctx->uniform_cutoff = 8;
2404
2405 /* Initialize at a global (not block) level hash tables */
2406
2407 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2408 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2409 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2410
2411 /* Record the varying mapping for the command stream's bookkeeping */
2412
2413 struct exec_list *varyings =
2414 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2415
2416 unsigned max_varying = 0;
2417 nir_foreach_variable(var, varyings) {
2418 unsigned loc = var->data.driver_location;
2419 unsigned sz = glsl_type_size(var->type, FALSE);
2420
2421 for (int c = 0; c < sz; ++c) {
2422 program->varyings[loc + c] = var->data.location + c;
2423 max_varying = MAX2(max_varying, loc + c);
2424 }
2425 }
2426
2427 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2428 * (so we don't accidentally duplicate the epilogue since mesa/st has
2429 * messed with our I/O quite a bit already) */
2430
2431 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2432
2433 if (ctx->stage == MESA_SHADER_VERTEX) {
2434 NIR_PASS_V(nir, nir_lower_viewport_transform);
2435 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2436 }
2437
2438 NIR_PASS_V(nir, nir_lower_var_copies);
2439 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2440 NIR_PASS_V(nir, nir_split_var_copies);
2441 NIR_PASS_V(nir, nir_lower_var_copies);
2442 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2443 NIR_PASS_V(nir, nir_lower_var_copies);
2444 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2445
2446 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2447
2448 /* Optimisation passes */
2449
2450 optimise_nir(nir);
2451
2452 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2453 nir_print_shader(nir, stdout);
2454 }
2455
2456 /* Assign sysvals and counts, now that we're sure
2457 * (post-optimisation) */
2458
2459 midgard_nir_assign_sysvals(ctx, nir);
2460
2461 program->uniform_count = nir->num_uniforms;
2462 program->sysval_count = ctx->sysval_count;
2463 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2464
2465 nir_foreach_function(func, nir) {
2466 if (!func->impl)
2467 continue;
2468
2469 list_inithead(&ctx->blocks);
2470 ctx->block_count = 0;
2471 ctx->func = func;
2472
2473 emit_cf_list(ctx, &func->impl->body);
2474
2475 /* Emit empty exit block with successor */
2476
2477 struct midgard_block *semi_end = ctx->current_block;
2478
2479 struct midgard_block *end =
2480 emit_block(ctx, func->impl->end_block);
2481
2482 if (ctx->stage == MESA_SHADER_FRAGMENT)
2483 emit_fragment_epilogue(ctx);
2484
2485 midgard_block_add_successor(semi_end, end);
2486
2487 break; /* TODO: Multi-function shaders */
2488 }
2489
2490 util_dynarray_init(compiled, NULL);
2491
2492 /* Per-block lowering before opts */
2493
2494 mir_foreach_block(ctx, block) {
2495 inline_alu_constants(ctx, block);
2496 midgard_opt_promote_fmov(ctx, block);
2497 embedded_to_inline_constant(ctx, block);
2498 }
2499 /* MIR-level optimizations */
2500
2501 bool progress = false;
2502
2503 do {
2504 progress = false;
2505
2506 mir_foreach_block(ctx, block) {
2507 progress |= midgard_opt_pos_propagate(ctx, block);
2508 progress |= midgard_opt_copy_prop(ctx, block);
2509 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2510 progress |= midgard_opt_combine_projection(ctx, block);
2511 progress |= midgard_opt_varying_projection(ctx, block);
2512 progress |= midgard_opt_not_propagate(ctx, block);
2513 progress |= midgard_opt_fuse_src_invert(ctx, block);
2514 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2515 progress |= midgard_opt_csel_invert(ctx, block);
2516 }
2517 } while (progress);
2518
2519 mir_foreach_block(ctx, block) {
2520 midgard_lower_invert(ctx, block);
2521 midgard_lower_derivatives(ctx, block);
2522 }
2523
2524 /* Nested control-flow can result in dead branches at the end of the
2525 * block. This messes with our analysis and is just dead code, so cull
2526 * them */
2527 mir_foreach_block(ctx, block) {
2528 midgard_opt_cull_dead_branch(ctx, block);
2529 }
2530
2531 /* Ensure we were lowered */
2532 mir_foreach_instr_global(ctx, ins) {
2533 assert(!ins->invert);
2534 }
2535
2536 /* Schedule! */
2537 schedule_program(ctx);
2538
2539 /* Now that all the bundles are scheduled and we can calculate block
2540 * sizes, emit actual branch instructions rather than placeholders */
2541
2542 int br_block_idx = 0;
2543
2544 mir_foreach_block(ctx, block) {
2545 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2546 for (int c = 0; c < bundle->instruction_count; ++c) {
2547 midgard_instruction *ins = bundle->instructions[c];
2548
2549 if (!midgard_is_branch_unit(ins->unit)) continue;
2550
2551 if (ins->prepacked_branch) continue;
2552
2553 /* Parse some basic branch info */
2554 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2555 bool is_conditional = ins->branch.conditional;
2556 bool is_inverted = ins->branch.invert_conditional;
2557 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2558
2559 /* Determine the block we're jumping to */
2560 int target_number = ins->branch.target_block;
2561
2562 /* Report the destination tag */
2563 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2564
2565 /* Count up the number of quadwords we're
2566 * jumping over = number of quadwords until
2567 * (br_block_idx, target_number) */
2568
2569 int quadword_offset = 0;
2570
2571 if (is_discard) {
2572 /* Ignored */
2573 } else if (target_number > br_block_idx) {
2574 /* Jump forward */
2575
2576 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2577 midgard_block *blk = mir_get_block(ctx, idx);
2578 assert(blk);
2579
2580 quadword_offset += blk->quadword_count;
2581 }
2582 } else {
2583 /* Jump backwards */
2584
2585 for (int idx = br_block_idx; idx >= target_number; --idx) {
2586 midgard_block *blk = mir_get_block(ctx, idx);
2587 assert(blk);
2588
2589 quadword_offset -= blk->quadword_count;
2590 }
2591 }
2592
2593 /* Unconditional extended branches (far jumps)
2594 * have issues, so we always use a conditional
2595 * branch, setting the condition to always for
2596 * unconditional. For compact unconditional
2597 * branches, cond isn't used so it doesn't
2598 * matter what we pick. */
2599
2600 midgard_condition cond =
2601 !is_conditional ? midgard_condition_always :
2602 is_inverted ? midgard_condition_false :
2603 midgard_condition_true;
2604
2605 midgard_jmp_writeout_op op =
2606 is_discard ? midgard_jmp_writeout_op_discard :
2607 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2608 midgard_jmp_writeout_op_branch_cond;
2609
2610 if (!is_compact) {
2611 midgard_branch_extended branch =
2612 midgard_create_branch_extended(
2613 cond, op,
2614 dest_tag,
2615 quadword_offset);
2616
2617 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2618 } else if (is_conditional || is_discard) {
2619 midgard_branch_cond branch = {
2620 .op = op,
2621 .dest_tag = dest_tag,
2622 .offset = quadword_offset,
2623 .cond = cond
2624 };
2625
2626 assert(branch.offset == quadword_offset);
2627
2628 memcpy(&ins->br_compact, &branch, sizeof(branch));
2629 } else {
2630 assert(op == midgard_jmp_writeout_op_branch_uncond);
2631
2632 midgard_branch_uncond branch = {
2633 .op = op,
2634 .dest_tag = dest_tag,
2635 .offset = quadword_offset,
2636 .unknown = 1
2637 };
2638
2639 assert(branch.offset == quadword_offset);
2640
2641 memcpy(&ins->br_compact, &branch, sizeof(branch));
2642 }
2643 }
2644 }
2645
2646 ++br_block_idx;
2647 }
2648
2649 /* Emit flat binary from the instruction arrays. Iterate each block in
2650 * sequence. Save instruction boundaries such that lookahead tags can
2651 * be assigned easily */
2652
2653 /* Cache _all_ bundles in source order for lookahead across failed branches */
2654
2655 int bundle_count = 0;
2656 mir_foreach_block(ctx, block) {
2657 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2658 }
2659 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2660 int bundle_idx = 0;
2661 mir_foreach_block(ctx, block) {
2662 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2663 source_order_bundles[bundle_idx++] = bundle;
2664 }
2665 }
2666
2667 int current_bundle = 0;
2668
2669 /* Midgard prefetches instruction types, so during emission we
2670 * need to lookahead. Unless this is the last instruction, in
2671 * which we return 1. Or if this is the second to last and the
2672 * last is an ALU, then it's also 1... */
2673
2674 mir_foreach_block(ctx, block) {
2675 mir_foreach_bundle_in_block(block, bundle) {
2676 int lookahead = 1;
2677
2678 if (current_bundle + 1 < bundle_count) {
2679 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2680
2681 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2682 lookahead = 1;
2683 } else {
2684 lookahead = next;
2685 }
2686 }
2687
2688 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2689 ++current_bundle;
2690 }
2691
2692 /* TODO: Free deeper */
2693 //util_dynarray_fini(&block->instructions);
2694 }
2695
2696 free(source_order_bundles);
2697
2698 /* Report the very first tag executed */
2699 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2700
2701 /* Deal with off-by-one related to the fencepost problem */
2702 program->work_register_count = ctx->work_registers + 1;
2703 program->uniform_cutoff = ctx->uniform_cutoff;
2704
2705 program->blend_patch_offset = ctx->blend_constant_offset;
2706 program->tls_size = ctx->tls_size;
2707
2708 if (midgard_debug & MIDGARD_DBG_SHADERS)
2709 disassemble_midgard(program->compiled.data, program->compiled.size);
2710
2711 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2712 unsigned nr_bundles = 0, nr_ins = 0;
2713
2714 /* Count instructions and bundles */
2715
2716 mir_foreach_block(ctx, block) {
2717 nr_bundles += util_dynarray_num_elements(
2718 &block->bundles, midgard_bundle);
2719
2720 mir_foreach_bundle_in_block(block, bun)
2721 nr_ins += bun->instruction_count;
2722 }
2723
2724 /* Calculate thread count. There are certain cutoffs by
2725 * register count for thread count */
2726
2727 unsigned nr_registers = program->work_register_count;
2728
2729 unsigned nr_threads =
2730 (nr_registers <= 4) ? 4 :
2731 (nr_registers <= 8) ? 2 :
2732 1;
2733
2734 /* Dump stats */
2735
2736 fprintf(stderr, "shader%d - %s shader: "
2737 "%u inst, %u bundles, %u quadwords, "
2738 "%u registers, %u threads, %u loops, "
2739 "%u:%u spills:fills\n",
2740 SHADER_DB_COUNT++,
2741 gl_shader_stage_name(ctx->stage),
2742 nr_ins, nr_bundles, ctx->quadword_count,
2743 nr_registers, nr_threads,
2744 ctx->loop_count,
2745 ctx->spills, ctx->fills);
2746 }
2747
2748 ralloc_free(ctx);
2749
2750 return 0;
2751 }