pan/midgard: Move DCE into its own file
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_LOAD(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* For unclear reasons, the condition code is repeated 8 times */
228 uint16_t duplicated_cond =
229 (cond << 14) |
230 (cond << 12) |
231 (cond << 10) |
232 (cond << 8) |
233 (cond << 6) |
234 (cond << 4) |
235 (cond << 2) |
236 (cond << 0);
237
238 midgard_branch_extended branch = {
239 .op = op,
240 .dest_tag = dest_tag,
241 .offset = quadword_offset,
242 .cond = duplicated_cond
243 };
244
245 return branch;
246 }
247
248 static void
249 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
250 {
251 ins->has_constants = true;
252 memcpy(&ins->constants, constants, 16);
253 }
254
255 static int
256 glsl_type_size(const struct glsl_type *type, bool bindless)
257 {
258 return glsl_count_attribute_slots(type, false);
259 }
260
261 /* Lower fdot2 to a vector multiplication followed by channel addition */
262 static void
263 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
264 {
265 if (alu->op != nir_op_fdot2)
266 return;
267
268 b->cursor = nir_before_instr(&alu->instr);
269
270 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
271 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
272
273 nir_ssa_def *product = nir_fmul(b, src0, src1);
274
275 nir_ssa_def *sum = nir_fadd(b,
276 nir_channel(b, product, 0),
277 nir_channel(b, product, 1));
278
279 /* Replace the fdot2 with this sum */
280 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
281 }
282
283 static int
284 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
285 {
286 switch (instr->intrinsic) {
287 case nir_intrinsic_load_viewport_scale:
288 return PAN_SYSVAL_VIEWPORT_SCALE;
289 case nir_intrinsic_load_viewport_offset:
290 return PAN_SYSVAL_VIEWPORT_OFFSET;
291 default:
292 return -1;
293 }
294 }
295
296 static unsigned
297 nir_dest_index(compiler_context *ctx, nir_dest *dst)
298 {
299 if (dst->is_ssa)
300 return dst->ssa.index;
301 else {
302 assert(!dst->reg.indirect);
303 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
304 }
305 }
306
307 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
308 unsigned *dest)
309 {
310 nir_intrinsic_instr *intr;
311 nir_dest *dst = NULL;
312 nir_tex_instr *tex;
313 int sysval = -1;
314
315 switch (instr->type) {
316 case nir_instr_type_intrinsic:
317 intr = nir_instr_as_intrinsic(instr);
318 sysval = midgard_nir_sysval_for_intrinsic(intr);
319 dst = &intr->dest;
320 break;
321 case nir_instr_type_tex:
322 tex = nir_instr_as_tex(instr);
323 if (tex->op != nir_texop_txs)
324 break;
325
326 sysval = PAN_SYSVAL(TEXTURE_SIZE,
327 PAN_TXS_SYSVAL_ID(tex->texture_index,
328 nir_tex_instr_dest_size(tex) -
329 (tex->is_array ? 1 : 0),
330 tex->is_array));
331 dst = &tex->dest;
332 break;
333 default:
334 break;
335 }
336
337 if (dest && dst)
338 *dest = nir_dest_index(ctx, dst);
339
340 return sysval;
341 }
342
343 static void
344 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
345 {
346 int sysval;
347
348 sysval = sysval_for_instr(ctx, instr, NULL);
349 if (sysval < 0)
350 return;
351
352 /* We have a sysval load; check if it's already been assigned */
353
354 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
355 return;
356
357 /* It hasn't -- so assign it now! */
358
359 unsigned id = ctx->sysval_count++;
360 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
361 ctx->sysvals[id] = sysval;
362 }
363
364 static void
365 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
366 {
367 ctx->sysval_count = 0;
368
369 nir_foreach_function(function, shader) {
370 if (!function->impl) continue;
371
372 nir_foreach_block(block, function->impl) {
373 nir_foreach_instr_safe(instr, block) {
374 midgard_nir_assign_sysval_body(ctx, instr);
375 }
376 }
377 }
378 }
379
380 static bool
381 midgard_nir_lower_fdot2(nir_shader *shader)
382 {
383 bool progress = false;
384
385 nir_foreach_function(function, shader) {
386 if (!function->impl) continue;
387
388 nir_builder _b;
389 nir_builder *b = &_b;
390 nir_builder_init(b, function->impl);
391
392 nir_foreach_block(block, function->impl) {
393 nir_foreach_instr_safe(instr, block) {
394 if (instr->type != nir_instr_type_alu) continue;
395
396 nir_alu_instr *alu = nir_instr_as_alu(instr);
397 midgard_nir_lower_fdot2_body(b, alu);
398
399 progress |= true;
400 }
401 }
402
403 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
404
405 }
406
407 return progress;
408 }
409
410 /* Flushes undefined values to zero */
411
412 static void
413 optimise_nir(nir_shader *nir)
414 {
415 bool progress;
416 unsigned lower_flrp =
417 (nir->options->lower_flrp16 ? 16 : 0) |
418 (nir->options->lower_flrp32 ? 32 : 0) |
419 (nir->options->lower_flrp64 ? 64 : 0);
420
421 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
422 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
423 NIR_PASS(progress, nir, nir_lower_idiv);
424
425 nir_lower_tex_options lower_tex_1st_pass_options = {
426 .lower_rect = true,
427 .lower_txp = ~0
428 };
429
430 nir_lower_tex_options lower_tex_2nd_pass_options = {
431 .lower_txs_lod = true,
432 };
433
434 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
435 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
436
437 do {
438 progress = false;
439
440 NIR_PASS(progress, nir, nir_lower_var_copies);
441 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
442
443 NIR_PASS(progress, nir, nir_copy_prop);
444 NIR_PASS(progress, nir, nir_opt_dce);
445 NIR_PASS(progress, nir, nir_opt_dead_cf);
446 NIR_PASS(progress, nir, nir_opt_cse);
447 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
448 NIR_PASS(progress, nir, nir_opt_algebraic);
449 NIR_PASS(progress, nir, nir_opt_constant_folding);
450
451 if (lower_flrp != 0) {
452 bool lower_flrp_progress = false;
453 NIR_PASS(lower_flrp_progress,
454 nir,
455 nir_lower_flrp,
456 lower_flrp,
457 false /* always_precise */,
458 nir->options->lower_ffma);
459 if (lower_flrp_progress) {
460 NIR_PASS(progress, nir,
461 nir_opt_constant_folding);
462 progress = true;
463 }
464
465 /* Nothing should rematerialize any flrps, so we only
466 * need to do this lowering once.
467 */
468 lower_flrp = 0;
469 }
470
471 NIR_PASS(progress, nir, nir_opt_undef);
472 NIR_PASS(progress, nir, nir_undef_to_zero);
473
474 NIR_PASS(progress, nir, nir_opt_loop_unroll,
475 nir_var_shader_in |
476 nir_var_shader_out |
477 nir_var_function_temp);
478
479 NIR_PASS(progress, nir, nir_opt_vectorize);
480 } while (progress);
481
482 /* Must be run at the end to prevent creation of fsin/fcos ops */
483 NIR_PASS(progress, nir, midgard_nir_scale_trig);
484
485 do {
486 progress = false;
487
488 NIR_PASS(progress, nir, nir_opt_dce);
489 NIR_PASS(progress, nir, nir_opt_algebraic);
490 NIR_PASS(progress, nir, nir_opt_constant_folding);
491 NIR_PASS(progress, nir, nir_copy_prop);
492 } while (progress);
493
494 NIR_PASS(progress, nir, nir_opt_algebraic_late);
495
496 /* We implement booleans as 32-bit 0/~0 */
497 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
498
499 /* Now that booleans are lowered, we can run out late opts */
500 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
501
502 /* Lower mods for float ops only. Integer ops don't support modifiers
503 * (saturate doesn't make sense on integers, neg/abs require dedicated
504 * instructions) */
505
506 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
507 NIR_PASS(progress, nir, nir_copy_prop);
508 NIR_PASS(progress, nir, nir_opt_dce);
509
510 /* Take us out of SSA */
511 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
512 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
513
514 /* We are a vector architecture; write combine where possible */
515 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
516 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
517
518 NIR_PASS(progress, nir, nir_opt_dce);
519 }
520
521 /* Do not actually emit a load; instead, cache the constant for inlining */
522
523 static void
524 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
525 {
526 nir_ssa_def def = instr->def;
527
528 float *v = rzalloc_array(NULL, float, 4);
529 nir_const_load_to_arr(v, instr, f32);
530 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
531 }
532
533 /* Normally constants are embedded implicitly, but for I/O and such we have to
534 * explicitly emit a move with the constant source */
535
536 static void
537 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
538 {
539 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
540
541 if (constant_value) {
542 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
543 attach_constants(ctx, &ins, constant_value, node + 1);
544 emit_mir_instruction(ctx, ins);
545 }
546 }
547
548 static unsigned
549 nir_src_index(compiler_context *ctx, nir_src *src)
550 {
551 if (src->is_ssa)
552 return src->ssa->index;
553 else {
554 assert(!src->reg.indirect);
555 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
556 }
557 }
558
559 static unsigned
560 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
561 {
562 return nir_src_index(ctx, &src->src);
563 }
564
565 static bool
566 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
567 {
568 unsigned comp = src->swizzle[0];
569
570 for (unsigned c = 1; c < nr_components; ++c) {
571 if (src->swizzle[c] != comp)
572 return true;
573 }
574
575 return false;
576 }
577
578 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
579 * output of a conditional test) into that register */
580
581 static void
582 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
583 {
584 int condition = nir_src_index(ctx, src);
585
586 /* Source to swizzle the desired component into w */
587
588 const midgard_vector_alu_src alu_src = {
589 .swizzle = SWIZZLE(component, component, component, component),
590 };
591
592 /* There is no boolean move instruction. Instead, we simulate a move by
593 * ANDing the condition with itself to get it into r31.w */
594
595 midgard_instruction ins = {
596 .type = TAG_ALU_4,
597
598 /* We need to set the conditional as close as possible */
599 .precede_break = true,
600 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
601 .mask = 1 << COMPONENT_W,
602
603 .ssa_args = {
604 .src0 = condition,
605 .src1 = condition,
606 .dest = SSA_FIXED_REGISTER(31),
607 },
608
609 .alu = {
610 .op = midgard_alu_op_iand,
611 .outmod = midgard_outmod_int_wrap,
612 .reg_mode = midgard_reg_mode_32,
613 .dest_override = midgard_dest_override_none,
614 .src1 = vector_alu_srco_unsigned(alu_src),
615 .src2 = vector_alu_srco_unsigned(alu_src)
616 },
617 };
618
619 emit_mir_instruction(ctx, ins);
620 }
621
622 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
623 * r31 instead */
624
625 static void
626 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
627 {
628 int condition = nir_src_index(ctx, &src->src);
629
630 /* Source to swizzle the desired component into w */
631
632 const midgard_vector_alu_src alu_src = {
633 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
634 };
635
636 /* There is no boolean move instruction. Instead, we simulate a move by
637 * ANDing the condition with itself to get it into r31.w */
638
639 midgard_instruction ins = {
640 .type = TAG_ALU_4,
641 .precede_break = true,
642 .mask = mask_of(nr_comp),
643 .ssa_args = {
644 .src0 = condition,
645 .src1 = condition,
646 .dest = SSA_FIXED_REGISTER(31),
647 },
648 .alu = {
649 .op = midgard_alu_op_iand,
650 .outmod = midgard_outmod_int_wrap,
651 .reg_mode = midgard_reg_mode_32,
652 .dest_override = midgard_dest_override_none,
653 .src1 = vector_alu_srco_unsigned(alu_src),
654 .src2 = vector_alu_srco_unsigned(alu_src)
655 },
656 };
657
658 emit_mir_instruction(ctx, ins);
659 }
660
661
662
663 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
664 * pinning to eliminate this move in all known cases */
665
666 static void
667 emit_indirect_offset(compiler_context *ctx, nir_src *src)
668 {
669 int offset = nir_src_index(ctx, src);
670
671 midgard_instruction ins = {
672 .type = TAG_ALU_4,
673 .mask = 1 << COMPONENT_W,
674 .ssa_args = {
675 .src0 = SSA_UNUSED_1,
676 .src1 = offset,
677 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
678 },
679 .alu = {
680 .op = midgard_alu_op_imov,
681 .outmod = midgard_outmod_int_wrap,
682 .reg_mode = midgard_reg_mode_32,
683 .dest_override = midgard_dest_override_none,
684 .src1 = vector_alu_srco_unsigned(zero_alu_src),
685 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
686 },
687 };
688
689 emit_mir_instruction(ctx, ins);
690 }
691
692 #define ALU_CASE(nir, _op) \
693 case nir_op_##nir: \
694 op = midgard_alu_op_##_op; \
695 assert(src_bitsize == dst_bitsize); \
696 break;
697
698 #define ALU_CASE_BCAST(nir, _op, count) \
699 case nir_op_##nir: \
700 op = midgard_alu_op_##_op; \
701 broadcast_swizzle = count; \
702 assert(src_bitsize == dst_bitsize); \
703 break;
704 static bool
705 nir_is_fzero_constant(nir_src src)
706 {
707 if (!nir_src_is_const(src))
708 return false;
709
710 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
711 if (nir_src_comp_as_float(src, c) != 0.0)
712 return false;
713 }
714
715 return true;
716 }
717
718 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
719 * special treatment override this anyway. */
720
721 static midgard_reg_mode
722 reg_mode_for_nir(nir_alu_instr *instr)
723 {
724 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
725
726 switch (src_bitsize) {
727 case 8:
728 return midgard_reg_mode_8;
729 case 16:
730 return midgard_reg_mode_16;
731 case 32:
732 return midgard_reg_mode_32;
733 case 64:
734 return midgard_reg_mode_64;
735 default:
736 unreachable("Invalid bit size");
737 }
738 }
739
740 static void
741 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
742 {
743 bool is_ssa = instr->dest.dest.is_ssa;
744
745 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
746 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
747 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
748
749 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
750 * supported. A few do not and are commented for now. Also, there are a
751 * number of NIR ops which Midgard does not support and need to be
752 * lowered, also TODO. This switch block emits the opcode and calling
753 * convention of the Midgard instruction; actual packing is done in
754 * emit_alu below */
755
756 unsigned op;
757
758 /* Number of components valid to check for the instruction (the rest
759 * will be forced to the last), or 0 to use as-is. Relevant as
760 * ball-type instructions have a channel count in NIR but are all vec4
761 * in Midgard */
762
763 unsigned broadcast_swizzle = 0;
764
765 /* What register mode should we operate in? */
766 midgard_reg_mode reg_mode =
767 reg_mode_for_nir(instr);
768
769 /* Do we need a destination override? Used for inline
770 * type conversion */
771
772 midgard_dest_override dest_override =
773 midgard_dest_override_none;
774
775 /* Should we use a smaller respective source and sign-extend? */
776
777 bool half_1 = false, sext_1 = false;
778 bool half_2 = false, sext_2 = false;
779
780 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
781 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
782
783 switch (instr->op) {
784 ALU_CASE(fadd, fadd);
785 ALU_CASE(fmul, fmul);
786 ALU_CASE(fmin, fmin);
787 ALU_CASE(fmax, fmax);
788 ALU_CASE(imin, imin);
789 ALU_CASE(imax, imax);
790 ALU_CASE(umin, umin);
791 ALU_CASE(umax, umax);
792 ALU_CASE(ffloor, ffloor);
793 ALU_CASE(fround_even, froundeven);
794 ALU_CASE(ftrunc, ftrunc);
795 ALU_CASE(fceil, fceil);
796 ALU_CASE(fdot3, fdot3);
797 ALU_CASE(fdot4, fdot4);
798 ALU_CASE(iadd, iadd);
799 ALU_CASE(isub, isub);
800 ALU_CASE(imul, imul);
801
802 /* Zero shoved as second-arg */
803 ALU_CASE(iabs, iabsdiff);
804
805 ALU_CASE(mov, imov);
806
807 ALU_CASE(feq32, feq);
808 ALU_CASE(fne32, fne);
809 ALU_CASE(flt32, flt);
810 ALU_CASE(ieq32, ieq);
811 ALU_CASE(ine32, ine);
812 ALU_CASE(ilt32, ilt);
813 ALU_CASE(ult32, ult);
814
815 /* We don't have a native b2f32 instruction. Instead, like many
816 * GPUs, we exploit booleans as 0/~0 for false/true, and
817 * correspondingly AND
818 * by 1.0 to do the type conversion. For the moment, prime us
819 * to emit:
820 *
821 * iand [whatever], #0
822 *
823 * At the end of emit_alu (as MIR), we'll fix-up the constant
824 */
825
826 ALU_CASE(b2f32, iand);
827 ALU_CASE(b2i32, iand);
828
829 /* Likewise, we don't have a dedicated f2b32 instruction, but
830 * we can do a "not equal to 0.0" test. */
831
832 ALU_CASE(f2b32, fne);
833 ALU_CASE(i2b32, ine);
834
835 ALU_CASE(frcp, frcp);
836 ALU_CASE(frsq, frsqrt);
837 ALU_CASE(fsqrt, fsqrt);
838 ALU_CASE(fexp2, fexp2);
839 ALU_CASE(flog2, flog2);
840
841 ALU_CASE(f2i32, f2i_rtz);
842 ALU_CASE(f2u32, f2u_rtz);
843 ALU_CASE(i2f32, i2f_rtz);
844 ALU_CASE(u2f32, u2f_rtz);
845
846 ALU_CASE(f2i16, f2i_rtz);
847 ALU_CASE(f2u16, f2u_rtz);
848 ALU_CASE(i2f16, i2f_rtz);
849 ALU_CASE(u2f16, u2f_rtz);
850
851 ALU_CASE(fsin, fsin);
852 ALU_CASE(fcos, fcos);
853
854 /* Second op implicit #0 */
855 ALU_CASE(inot, inor);
856 ALU_CASE(iand, iand);
857 ALU_CASE(ior, ior);
858 ALU_CASE(ixor, ixor);
859 ALU_CASE(ishl, ishl);
860 ALU_CASE(ishr, iasr);
861 ALU_CASE(ushr, ilsr);
862
863 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
864 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
865 ALU_CASE(b32all_fequal4, fball_eq);
866
867 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
868 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
869 ALU_CASE(b32any_fnequal4, fbany_neq);
870
871 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
872 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
873 ALU_CASE(b32all_iequal4, iball_eq);
874
875 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
876 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
877 ALU_CASE(b32any_inequal4, ibany_neq);
878
879 /* Source mods will be shoved in later */
880 ALU_CASE(fabs, fmov);
881 ALU_CASE(fneg, fmov);
882 ALU_CASE(fsat, fmov);
883
884 /* For size conversion, we use a move. Ideally though we would squash
885 * these ops together; maybe that has to happen after in NIR as part of
886 * propagation...? An earlier algebraic pass ensured we step down by
887 * only / exactly one size. If stepping down, we use a dest override to
888 * reduce the size; if stepping up, we use a larger-sized move with a
889 * half source and a sign/zero-extension modifier */
890
891 case nir_op_i2i8:
892 case nir_op_i2i16:
893 case nir_op_i2i32:
894 /* If we end up upscale, we'll need a sign-extend on the
895 * operand (the second argument) */
896
897 sext_2 = true;
898 case nir_op_u2u8:
899 case nir_op_u2u16:
900 case nir_op_u2u32: {
901 op = midgard_alu_op_imov;
902
903 if (dst_bitsize == (src_bitsize * 2)) {
904 /* Converting up */
905 half_2 = true;
906
907 /* Use a greater register mode */
908 reg_mode++;
909 } else if (src_bitsize == (dst_bitsize * 2)) {
910 /* Converting down */
911 dest_override = midgard_dest_override_lower;
912 }
913
914 break;
915 }
916
917 case nir_op_f2f16: {
918 assert(src_bitsize == 32);
919
920 op = midgard_alu_op_fmov;
921 dest_override = midgard_dest_override_lower;
922 break;
923 }
924
925 case nir_op_f2f32: {
926 assert(src_bitsize == 16);
927
928 op = midgard_alu_op_fmov;
929 half_2 = true;
930 reg_mode++;
931 break;
932 }
933
934
935 /* For greater-or-equal, we lower to less-or-equal and flip the
936 * arguments */
937
938 case nir_op_fge:
939 case nir_op_fge32:
940 case nir_op_ige32:
941 case nir_op_uge32: {
942 op =
943 instr->op == nir_op_fge ? midgard_alu_op_fle :
944 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
945 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
946 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
947 0;
948
949 /* Swap via temporary */
950 nir_alu_src temp = instr->src[1];
951 instr->src[1] = instr->src[0];
952 instr->src[0] = temp;
953
954 break;
955 }
956
957 case nir_op_b32csel: {
958 /* Midgard features both fcsel and icsel, depending on
959 * the type of the arguments/output. However, as long
960 * as we're careful we can _always_ use icsel and
961 * _never_ need fcsel, since the latter does additional
962 * floating-point-specific processing whereas the
963 * former just moves bits on the wire. It's not obvious
964 * why these are separate opcodes, save for the ability
965 * to do things like sat/pos/abs/neg for free */
966
967 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
968 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
969
970 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
971 nr_inputs = 2;
972
973 /* Emit the condition into r31 */
974
975 if (mixed)
976 emit_condition_mixed(ctx, &instr->src[0], nr_components);
977 else
978 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
979
980 /* The condition is the first argument; move the other
981 * arguments up one to be a binary instruction for
982 * Midgard */
983
984 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
985 break;
986 }
987
988 default:
989 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
990 assert(0);
991 return;
992 }
993
994 /* Midgard can perform certain modifiers on output of an ALU op */
995 unsigned outmod;
996
997 if (midgard_is_integer_out_op(op)) {
998 outmod = midgard_outmod_int_wrap;
999 } else {
1000 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
1001 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
1002 }
1003
1004 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1005
1006 if (instr->op == nir_op_fmax) {
1007 if (nir_is_fzero_constant(instr->src[0].src)) {
1008 op = midgard_alu_op_fmov;
1009 nr_inputs = 1;
1010 outmod = midgard_outmod_pos;
1011 instr->src[0] = instr->src[1];
1012 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1013 op = midgard_alu_op_fmov;
1014 nr_inputs = 1;
1015 outmod = midgard_outmod_pos;
1016 }
1017 }
1018
1019 /* Fetch unit, quirks, etc information */
1020 unsigned opcode_props = alu_opcode_props[op].props;
1021 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1022
1023 /* src0 will always exist afaik, but src1 will not for 1-argument
1024 * instructions. The latter can only be fetched if the instruction
1025 * needs it, or else we may segfault. */
1026
1027 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1028 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1029
1030 /* Rather than use the instruction generation helpers, we do it
1031 * ourselves here to avoid the mess */
1032
1033 midgard_instruction ins = {
1034 .type = TAG_ALU_4,
1035 .ssa_args = {
1036 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1037 .src1 = quirk_flipped_r24 ? src0 : src1,
1038 .dest = dest,
1039 }
1040 };
1041
1042 nir_alu_src *nirmods[2] = { NULL };
1043
1044 if (nr_inputs == 2) {
1045 nirmods[0] = &instr->src[0];
1046 nirmods[1] = &instr->src[1];
1047 } else if (nr_inputs == 1) {
1048 nirmods[quirk_flipped_r24] = &instr->src[0];
1049 } else {
1050 assert(0);
1051 }
1052
1053 /* These were lowered to a move, so apply the corresponding mod */
1054
1055 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1056 nir_alu_src *s = nirmods[quirk_flipped_r24];
1057
1058 if (instr->op == nir_op_fneg)
1059 s->negate = !s->negate;
1060
1061 if (instr->op == nir_op_fabs)
1062 s->abs = !s->abs;
1063 }
1064
1065 bool is_int = midgard_is_integer_op(op);
1066
1067 ins.mask = mask_of(nr_components);
1068
1069 midgard_vector_alu alu = {
1070 .op = op,
1071 .reg_mode = reg_mode,
1072 .dest_override = dest_override,
1073 .outmod = outmod,
1074
1075 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1076 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1077 };
1078
1079 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1080
1081 if (!is_ssa)
1082 ins.mask &= instr->dest.write_mask;
1083
1084 ins.alu = alu;
1085
1086 /* Late fixup for emulated instructions */
1087
1088 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1089 /* Presently, our second argument is an inline #0 constant.
1090 * Switch over to an embedded 1.0 constant (that can't fit
1091 * inline, since we're 32-bit, not 16-bit like the inline
1092 * constants) */
1093
1094 ins.ssa_args.inline_constant = false;
1095 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1096 ins.has_constants = true;
1097
1098 if (instr->op == nir_op_b2f32) {
1099 ins.constants[0] = 1.0f;
1100 } else {
1101 /* Type pun it into place */
1102 uint32_t one = 0x1;
1103 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1104 }
1105
1106 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1107 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1108 /* Lots of instructions need a 0 plonked in */
1109 ins.ssa_args.inline_constant = false;
1110 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1111 ins.has_constants = true;
1112 ins.constants[0] = 0.0f;
1113 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1114 } else if (instr->op == nir_op_inot) {
1115 /* ~b = ~(b & b), so duplicate the source */
1116 ins.ssa_args.src1 = ins.ssa_args.src0;
1117 ins.alu.src2 = ins.alu.src1;
1118 }
1119
1120 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1121 /* To avoid duplicating the lookup tables (probably), true LUT
1122 * instructions can only operate as if they were scalars. Lower
1123 * them here by changing the component. */
1124
1125 uint8_t original_swizzle[4];
1126 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1127 unsigned orig_mask = ins.mask;
1128
1129 for (int i = 0; i < nr_components; ++i) {
1130 /* Mask the associated component, dropping the
1131 * instruction if needed */
1132
1133 ins.mask = 1 << i;
1134 ins.mask &= orig_mask;
1135
1136 if (!ins.mask)
1137 continue;
1138
1139 for (int j = 0; j < 4; ++j)
1140 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1141
1142 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1143 emit_mir_instruction(ctx, ins);
1144 }
1145 } else {
1146 emit_mir_instruction(ctx, ins);
1147 }
1148 }
1149
1150 #undef ALU_CASE
1151
1152 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1153 * optimized) versions of UBO #0 */
1154
1155 void
1156 emit_ubo_read(
1157 compiler_context *ctx,
1158 unsigned dest,
1159 unsigned offset,
1160 nir_src *indirect_offset,
1161 unsigned index)
1162 {
1163 /* TODO: half-floats */
1164
1165 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1166
1167 /* TODO: Don't split */
1168 ins.load_store.varying_parameters = (offset & 7) << 7;
1169 ins.load_store.address = offset >> 3;
1170
1171 if (indirect_offset) {
1172 emit_indirect_offset(ctx, indirect_offset);
1173 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1174 } else {
1175 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1176 }
1177
1178 emit_mir_instruction(ctx, ins);
1179 }
1180
1181 static void
1182 emit_varying_read(
1183 compiler_context *ctx,
1184 unsigned dest, unsigned offset,
1185 unsigned nr_comp, unsigned component,
1186 nir_src *indirect_offset, nir_alu_type type)
1187 {
1188 /* XXX: Half-floats? */
1189 /* TODO: swizzle, mask */
1190
1191 midgard_instruction ins = m_ld_vary_32(dest, offset);
1192 ins.mask = mask_of(nr_comp);
1193 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1194
1195 midgard_varying_parameter p = {
1196 .is_varying = 1,
1197 .interpolation = midgard_interp_default,
1198 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1199 };
1200
1201 unsigned u;
1202 memcpy(&u, &p, sizeof(p));
1203 ins.load_store.varying_parameters = u;
1204
1205 if (indirect_offset) {
1206 /* We need to add in the dynamic index, moved to r27.w */
1207 emit_indirect_offset(ctx, indirect_offset);
1208 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1209 } else {
1210 /* Just a direct load */
1211 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1212 }
1213
1214 /* Use the type appropriate load */
1215 switch (type) {
1216 case nir_type_uint:
1217 case nir_type_bool:
1218 ins.load_store.op = midgard_op_ld_vary_32u;
1219 break;
1220 case nir_type_int:
1221 ins.load_store.op = midgard_op_ld_vary_32i;
1222 break;
1223 case nir_type_float:
1224 ins.load_store.op = midgard_op_ld_vary_32;
1225 break;
1226 default:
1227 unreachable("Attempted to load unknown type");
1228 break;
1229 }
1230
1231 emit_mir_instruction(ctx, ins);
1232 }
1233
1234 static void
1235 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1236 {
1237 unsigned dest = 0;
1238
1239 /* Figure out which uniform this is */
1240 int sysval = sysval_for_instr(ctx, instr, &dest);
1241 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1242
1243 /* Sysvals are prefix uniforms */
1244 unsigned uniform = ((uintptr_t) val) - 1;
1245
1246 /* Emit the read itself -- this is never indirect */
1247 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1248 }
1249
1250 static void
1251 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1252 {
1253 unsigned offset = 0, reg;
1254
1255 switch (instr->intrinsic) {
1256 case nir_intrinsic_discard_if:
1257 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1258
1259 /* fallthrough */
1260
1261 case nir_intrinsic_discard: {
1262 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1263 struct midgard_instruction discard = v_branch(conditional, false);
1264 discard.branch.target_type = TARGET_DISCARD;
1265 emit_mir_instruction(ctx, discard);
1266 break;
1267 }
1268
1269 case nir_intrinsic_load_uniform:
1270 case nir_intrinsic_load_ubo:
1271 case nir_intrinsic_load_input: {
1272 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1273 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1274
1275 /* Get the base type of the intrinsic */
1276 /* TODO: Infer type? Does it matter? */
1277 nir_alu_type t =
1278 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1279 t = nir_alu_type_get_base_type(t);
1280
1281 if (!is_ubo) {
1282 offset = nir_intrinsic_base(instr);
1283 }
1284
1285 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1286
1287 nir_src *src_offset = nir_get_io_offset_src(instr);
1288
1289 bool direct = nir_src_is_const(*src_offset);
1290
1291 if (direct)
1292 offset += nir_src_as_uint(*src_offset);
1293
1294 /* We may need to apply a fractional offset */
1295 int component = instr->intrinsic == nir_intrinsic_load_input ?
1296 nir_intrinsic_component(instr) : 0;
1297 reg = nir_dest_index(ctx, &instr->dest);
1298
1299 if (is_uniform && !ctx->is_blend) {
1300 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1301 } else if (is_ubo) {
1302 nir_src index = instr->src[0];
1303
1304 /* We don't yet support indirect UBOs. For indirect
1305 * block numbers (if that's possible), we don't know
1306 * enough about the hardware yet. For indirect sources,
1307 * we know what we need but we need to add some NIR
1308 * support for lowering correctly with respect to
1309 * 128-bit reads */
1310
1311 assert(nir_src_is_const(index));
1312 assert(nir_src_is_const(*src_offset));
1313
1314 /* TODO: Alignment */
1315 assert((offset & 0xF) == 0);
1316
1317 uint32_t uindex = nir_src_as_uint(index) + 1;
1318 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1319 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1320 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1321 } else if (ctx->is_blend) {
1322 /* For blend shaders, load the input color, which is
1323 * preloaded to r0 */
1324
1325 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1326 emit_mir_instruction(ctx, move);
1327 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1328 midgard_instruction ins = m_ld_attr_32(reg, offset);
1329 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1330 ins.mask = mask_of(nr_comp);
1331
1332 /* Use the type appropriate load */
1333 switch (t) {
1334 case nir_type_uint:
1335 case nir_type_bool:
1336 ins.load_store.op = midgard_op_ld_attr_32u;
1337 break;
1338 case nir_type_int:
1339 ins.load_store.op = midgard_op_ld_attr_32i;
1340 break;
1341 case nir_type_float:
1342 ins.load_store.op = midgard_op_ld_attr_32;
1343 break;
1344 default:
1345 unreachable("Attempted to load unknown type");
1346 break;
1347 }
1348
1349 emit_mir_instruction(ctx, ins);
1350 } else {
1351 DBG("Unknown load\n");
1352 assert(0);
1353 }
1354
1355 break;
1356 }
1357
1358 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1359
1360 case nir_intrinsic_load_raw_output_pan:
1361 reg = nir_dest_index(ctx, &instr->dest);
1362 assert(ctx->is_blend);
1363
1364 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1365 emit_mir_instruction(ctx, ins);
1366 break;
1367
1368 case nir_intrinsic_load_blend_const_color_rgba: {
1369 assert(ctx->is_blend);
1370 reg = nir_dest_index(ctx, &instr->dest);
1371
1372 /* Blend constants are embedded directly in the shader and
1373 * patched in, so we use some magic routing */
1374
1375 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1376 ins.has_constants = true;
1377 ins.has_blend_constant = true;
1378 emit_mir_instruction(ctx, ins);
1379 break;
1380 }
1381
1382 case nir_intrinsic_store_output:
1383 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1384
1385 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1386
1387 reg = nir_src_index(ctx, &instr->src[0]);
1388
1389 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1390 /* gl_FragColor is not emitted with load/store
1391 * instructions. Instead, it gets plonked into
1392 * r0 at the end of the shader and we do the
1393 * framebuffer writeout dance. TODO: Defer
1394 * writes */
1395
1396 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1397 emit_mir_instruction(ctx, move);
1398
1399 /* Save the index we're writing to for later reference
1400 * in the epilogue */
1401
1402 ctx->fragment_output = reg;
1403 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1404 /* We should have been vectorized, though we don't
1405 * currently check that st_vary is emitted only once
1406 * per slot (this is relevant, since there's not a mask
1407 * parameter available on the store [set to 0 by the
1408 * blob]). We do respect the component by adjusting the
1409 * swizzle. If this is a constant source, we'll need to
1410 * emit that explicitly. */
1411
1412 emit_explicit_constant(ctx, reg, reg);
1413
1414 unsigned component = nir_intrinsic_component(instr);
1415
1416 midgard_instruction st = m_st_vary_32(reg, offset);
1417 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1418 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1419 emit_mir_instruction(ctx, st);
1420 } else {
1421 DBG("Unknown store\n");
1422 assert(0);
1423 }
1424
1425 break;
1426
1427 /* Special case of store_output for lowered blend shaders */
1428 case nir_intrinsic_store_raw_output_pan:
1429 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1430 reg = nir_src_index(ctx, &instr->src[0]);
1431
1432 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1433 emit_mir_instruction(ctx, move);
1434 ctx->fragment_output = reg;
1435
1436 break;
1437
1438 case nir_intrinsic_load_alpha_ref_float:
1439 assert(instr->dest.is_ssa);
1440
1441 float ref_value = ctx->alpha_ref;
1442
1443 float *v = ralloc_array(NULL, float, 4);
1444 memcpy(v, &ref_value, sizeof(float));
1445 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1446 break;
1447
1448 case nir_intrinsic_load_viewport_scale:
1449 case nir_intrinsic_load_viewport_offset:
1450 emit_sysval_read(ctx, &instr->instr);
1451 break;
1452
1453 default:
1454 printf ("Unhandled intrinsic\n");
1455 assert(0);
1456 break;
1457 }
1458 }
1459
1460 static unsigned
1461 midgard_tex_format(enum glsl_sampler_dim dim)
1462 {
1463 switch (dim) {
1464 case GLSL_SAMPLER_DIM_1D:
1465 case GLSL_SAMPLER_DIM_BUF:
1466 return MALI_TEX_1D;
1467
1468 case GLSL_SAMPLER_DIM_2D:
1469 case GLSL_SAMPLER_DIM_EXTERNAL:
1470 return MALI_TEX_2D;
1471
1472 case GLSL_SAMPLER_DIM_3D:
1473 return MALI_TEX_3D;
1474
1475 case GLSL_SAMPLER_DIM_CUBE:
1476 return MALI_TEX_CUBE;
1477
1478 default:
1479 DBG("Unknown sampler dim type\n");
1480 assert(0);
1481 return 0;
1482 }
1483 }
1484
1485 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1486 * was successful */
1487
1488 static bool
1489 pan_attach_constant_bias(
1490 compiler_context *ctx,
1491 nir_src lod,
1492 midgard_texture_word *word)
1493 {
1494 /* To attach as constant, it has to *be* constant */
1495
1496 if (!nir_src_is_const(lod))
1497 return false;
1498
1499 float f = nir_src_as_float(lod);
1500
1501 /* Break into fixed-point */
1502 signed lod_int = f;
1503 float lod_frac = f - lod_int;
1504
1505 /* Carry over negative fractions */
1506 if (lod_frac < 0.0) {
1507 lod_int--;
1508 lod_frac += 1.0;
1509 }
1510
1511 /* Encode */
1512 word->bias = float_to_ubyte(lod_frac);
1513 word->bias_int = lod_int;
1514
1515 return true;
1516 }
1517
1518 static enum mali_sampler_type
1519 midgard_sampler_type(nir_alu_type t) {
1520 switch (nir_alu_type_get_base_type(t))
1521 {
1522 case nir_type_float:
1523 return MALI_SAMPLER_FLOAT;
1524 case nir_type_int:
1525 return MALI_SAMPLER_SIGNED;
1526 case nir_type_uint:
1527 return MALI_SAMPLER_UNSIGNED;
1528 default:
1529 unreachable("Unknown sampler type");
1530 }
1531 }
1532
1533 static void
1534 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1535 unsigned midgard_texop)
1536 {
1537 /* TODO */
1538 //assert (!instr->sampler);
1539 //assert (!instr->texture_array_size);
1540
1541 /* Allocate registers via a round robin scheme to alternate between the two registers */
1542 int reg = ctx->texture_op_count & 1;
1543 int in_reg = reg, out_reg = reg;
1544
1545 int texture_index = instr->texture_index;
1546 int sampler_index = texture_index;
1547
1548 /* No helper to build texture words -- we do it all here */
1549 midgard_instruction ins = {
1550 .type = TAG_TEXTURE_4,
1551 .mask = 0xF,
1552 .texture = {
1553 .op = midgard_texop,
1554 .format = midgard_tex_format(instr->sampler_dim),
1555 .texture_handle = texture_index,
1556 .sampler_handle = sampler_index,
1557
1558 /* TODO: Regalloc it in */
1559 .swizzle = SWIZZLE_XYZW,
1560
1561 /* TODO: half */
1562 .in_reg_full = 1,
1563 .out_full = 1,
1564
1565 .sampler_type = midgard_sampler_type(instr->dest_type),
1566 }
1567 };
1568
1569 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1570 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1571 int index = nir_src_index(ctx, &instr->src[i].src);
1572 int nr_comp = nir_src_num_components(instr->src[i].src);
1573 midgard_vector_alu_src alu_src = blank_alu_src;
1574
1575 switch (instr->src[i].src_type) {
1576 case nir_tex_src_coord: {
1577 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1578 /* texelFetch is undefined on samplerCube */
1579 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1580
1581 /* For cubemaps, we use a special ld/st op to
1582 * select the face and copy the xy into the
1583 * texture register */
1584
1585 midgard_instruction st = m_st_cubemap_coords(reg, 0);
1586 st.ssa_args.src0 = index;
1587 st.load_store.unknown = 0x24; /* XXX: What is this? */
1588 st.mask = 0x3; /* xy */
1589 st.load_store.swizzle = alu_src.swizzle;
1590 emit_mir_instruction(ctx, st);
1591
1592 ins.texture.in_reg_swizzle = swizzle_of(2);
1593 } else {
1594 ins.texture.in_reg_swizzle = alu_src.swizzle = swizzle_of(nr_comp);
1595
1596 midgard_instruction mov = v_mov(index, alu_src, reg);
1597 mov.mask = mask_of(nr_comp);
1598 emit_mir_instruction(ctx, mov);
1599
1600 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1601 /* Texel fetch opcodes care about the
1602 * values of z and w, so we actually
1603 * need to spill into a second register
1604 * for a texel fetch with register bias
1605 * (for non-2D). TODO: Implement that
1606 */
1607
1608 assert(instr->sampler_dim == GLSL_SAMPLER_DIM_2D);
1609
1610 midgard_instruction zero = v_mov(index, alu_src, reg);
1611 zero.ssa_args.inline_constant = true;
1612 zero.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1613 zero.has_constants = true;
1614 zero.mask = ~mov.mask;
1615 emit_mir_instruction(ctx, zero);
1616
1617 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1618 } else {
1619 /* Non-texel fetch doesn't need that
1620 * nonsense. However we do use the Z
1621 * for array indexing */
1622 bool is_3d = instr->sampler_dim == GLSL_SAMPLER_DIM_3D;
1623 ins.texture.in_reg_swizzle = is_3d ? SWIZZLE_XYZZ : SWIZZLE_XYXZ;
1624 }
1625 }
1626
1627 break;
1628 }
1629
1630 case nir_tex_src_bias:
1631 case nir_tex_src_lod: {
1632 /* Try as a constant if we can */
1633
1634 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1635 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1636 break;
1637
1638 /* Otherwise we use a register. To keep RA simple, we
1639 * put the bias/LOD into the w component of the input
1640 * source, which is otherwise in xy */
1641
1642 alu_src.swizzle = SWIZZLE_XXXX;
1643
1644 midgard_instruction mov = v_mov(index, alu_src, reg);
1645 mov.mask = 1 << COMPONENT_W;
1646 emit_mir_instruction(ctx, mov);
1647
1648 ins.texture.lod_register = true;
1649
1650 midgard_tex_register_select sel = {
1651 .select = in_reg,
1652 .full = 1,
1653 .component = COMPONENT_W,
1654 };
1655
1656 uint8_t packed;
1657 memcpy(&packed, &sel, sizeof(packed));
1658 ins.texture.bias = packed;
1659
1660 break;
1661 };
1662
1663 default:
1664 unreachable("Unknown texture source type\n");
1665 }
1666 }
1667
1668 /* Set registers to read and write from the same place */
1669 ins.texture.in_reg_select = in_reg;
1670 ins.texture.out_reg_select = out_reg;
1671
1672 emit_mir_instruction(ctx, ins);
1673
1674 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1675 midgard_instruction ins2 = v_mov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1676 emit_mir_instruction(ctx, ins2);
1677
1678 /* Used for .cont and .last hinting */
1679 ctx->texture_op_count++;
1680 }
1681
1682 static void
1683 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1684 {
1685 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1686 * generic tex in some cases (which confuses the hardware) */
1687
1688 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1689
1690 if (is_vertex && instr->op == nir_texop_tex)
1691 instr->op = nir_texop_txl;
1692
1693 switch (instr->op) {
1694 case nir_texop_tex:
1695 case nir_texop_txb:
1696 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1697 break;
1698 case nir_texop_txl:
1699 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1700 break;
1701 case nir_texop_txf:
1702 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1703 break;
1704 case nir_texop_txs:
1705 emit_sysval_read(ctx, &instr->instr);
1706 break;
1707 default:
1708 unreachable("Unhanlded texture op");
1709 }
1710 }
1711
1712 static void
1713 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1714 {
1715 switch (instr->type) {
1716 case nir_jump_break: {
1717 /* Emit a branch out of the loop */
1718 struct midgard_instruction br = v_branch(false, false);
1719 br.branch.target_type = TARGET_BREAK;
1720 br.branch.target_break = ctx->current_loop_depth;
1721 emit_mir_instruction(ctx, br);
1722 break;
1723 }
1724
1725 default:
1726 DBG("Unknown jump type %d\n", instr->type);
1727 break;
1728 }
1729 }
1730
1731 static void
1732 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1733 {
1734 switch (instr->type) {
1735 case nir_instr_type_load_const:
1736 emit_load_const(ctx, nir_instr_as_load_const(instr));
1737 break;
1738
1739 case nir_instr_type_intrinsic:
1740 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1741 break;
1742
1743 case nir_instr_type_alu:
1744 emit_alu(ctx, nir_instr_as_alu(instr));
1745 break;
1746
1747 case nir_instr_type_tex:
1748 emit_tex(ctx, nir_instr_as_tex(instr));
1749 break;
1750
1751 case nir_instr_type_jump:
1752 emit_jump(ctx, nir_instr_as_jump(instr));
1753 break;
1754
1755 case nir_instr_type_ssa_undef:
1756 /* Spurious */
1757 break;
1758
1759 default:
1760 DBG("Unhandled instruction type\n");
1761 break;
1762 }
1763 }
1764
1765
1766 /* ALU instructions can inline or embed constants, which decreases register
1767 * pressure and saves space. */
1768
1769 #define CONDITIONAL_ATTACH(src) { \
1770 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1771 \
1772 if (entry) { \
1773 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1774 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1775 } \
1776 }
1777
1778 static void
1779 inline_alu_constants(compiler_context *ctx)
1780 {
1781 mir_foreach_instr(ctx, alu) {
1782 /* Other instructions cannot inline constants */
1783 if (alu->type != TAG_ALU_4) continue;
1784
1785 /* If there is already a constant here, we can do nothing */
1786 if (alu->has_constants) continue;
1787
1788 /* It makes no sense to inline constants on a branch */
1789 if (alu->compact_branch || alu->prepacked_branch) continue;
1790
1791 CONDITIONAL_ATTACH(src0);
1792
1793 if (!alu->has_constants) {
1794 CONDITIONAL_ATTACH(src1)
1795 } else if (!alu->inline_constant) {
1796 /* Corner case: _two_ vec4 constants, for instance with a
1797 * csel. For this case, we can only use a constant
1798 * register for one, we'll have to emit a move for the
1799 * other. Note, if both arguments are constants, then
1800 * necessarily neither argument depends on the value of
1801 * any particular register. As the destination register
1802 * will be wiped, that means we can spill the constant
1803 * to the destination register.
1804 */
1805
1806 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1807 unsigned scratch = alu->ssa_args.dest;
1808
1809 if (entry) {
1810 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1811 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1812
1813 /* Force a break XXX Defer r31 writes */
1814 ins.unit = UNIT_VLUT;
1815
1816 /* Set the source */
1817 alu->ssa_args.src1 = scratch;
1818
1819 /* Inject us -before- the last instruction which set r31 */
1820 mir_insert_instruction_before(mir_prev_op(alu), ins);
1821 }
1822 }
1823 }
1824 }
1825
1826 /* Midgard supports two types of constants, embedded constants (128-bit) and
1827 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1828 * constants can be demoted to inline constants, for space savings and
1829 * sometimes a performance boost */
1830
1831 static void
1832 embedded_to_inline_constant(compiler_context *ctx)
1833 {
1834 mir_foreach_instr(ctx, ins) {
1835 if (!ins->has_constants) continue;
1836
1837 if (ins->ssa_args.inline_constant) continue;
1838
1839 /* Blend constants must not be inlined by definition */
1840 if (ins->has_blend_constant) continue;
1841
1842 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1843 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1844 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1845
1846 if (!(is_16 || is_32))
1847 continue;
1848
1849 /* src1 cannot be an inline constant due to encoding
1850 * restrictions. So, if possible we try to flip the arguments
1851 * in that case */
1852
1853 int op = ins->alu.op;
1854
1855 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1856 switch (op) {
1857 /* These ops require an operational change to flip
1858 * their arguments TODO */
1859 case midgard_alu_op_flt:
1860 case midgard_alu_op_fle:
1861 case midgard_alu_op_ilt:
1862 case midgard_alu_op_ile:
1863 case midgard_alu_op_fcsel:
1864 case midgard_alu_op_icsel:
1865 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1866 default:
1867 break;
1868 }
1869
1870 if (alu_opcode_props[op].props & OP_COMMUTES) {
1871 /* Flip the SSA numbers */
1872 ins->ssa_args.src0 = ins->ssa_args.src1;
1873 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1874
1875 /* And flip the modifiers */
1876
1877 unsigned src_temp;
1878
1879 src_temp = ins->alu.src2;
1880 ins->alu.src2 = ins->alu.src1;
1881 ins->alu.src1 = src_temp;
1882 }
1883 }
1884
1885 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1886 /* Extract the source information */
1887
1888 midgard_vector_alu_src *src;
1889 int q = ins->alu.src2;
1890 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1891 src = m;
1892
1893 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1894 int component = src->swizzle & 3;
1895
1896 /* Scale constant appropriately, if we can legally */
1897 uint16_t scaled_constant = 0;
1898
1899 if (midgard_is_integer_op(op) || is_16) {
1900 unsigned int *iconstants = (unsigned int *) ins->constants;
1901 scaled_constant = (uint16_t) iconstants[component];
1902
1903 /* Constant overflow after resize */
1904 if (scaled_constant != iconstants[component])
1905 continue;
1906 } else {
1907 float original = (float) ins->constants[component];
1908 scaled_constant = _mesa_float_to_half(original);
1909
1910 /* Check for loss of precision. If this is
1911 * mediump, we don't care, but for a highp
1912 * shader, we need to pay attention. NIR
1913 * doesn't yet tell us which mode we're in!
1914 * Practically this prevents most constants
1915 * from being inlined, sadly. */
1916
1917 float fp32 = _mesa_half_to_float(scaled_constant);
1918
1919 if (fp32 != original)
1920 continue;
1921 }
1922
1923 /* We don't know how to handle these with a constant */
1924
1925 if (src->mod || src->half || src->rep_low || src->rep_high) {
1926 DBG("Bailing inline constant...\n");
1927 continue;
1928 }
1929
1930 /* Make sure that the constant is not itself a
1931 * vector by checking if all accessed values
1932 * (by the swizzle) are the same. */
1933
1934 uint32_t *cons = (uint32_t *) ins->constants;
1935 uint32_t value = cons[component];
1936
1937 bool is_vector = false;
1938 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1939
1940 for (int c = 1; c < 4; ++c) {
1941 /* We only care if this component is actually used */
1942 if (!(mask & (1 << c)))
1943 continue;
1944
1945 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1946
1947 if (test != value) {
1948 is_vector = true;
1949 break;
1950 }
1951 }
1952
1953 if (is_vector)
1954 continue;
1955
1956 /* Get rid of the embedded constant */
1957 ins->has_constants = false;
1958 ins->ssa_args.src1 = SSA_UNUSED_0;
1959 ins->ssa_args.inline_constant = true;
1960 ins->inline_constant = scaled_constant;
1961 }
1962 }
1963 }
1964
1965 /* Dead code elimination for branches at the end of a block - only one branch
1966 * per block is legal semantically */
1967
1968 static void
1969 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1970 {
1971 bool branched = false;
1972
1973 mir_foreach_instr_in_block_safe(block, ins) {
1974 if (!midgard_is_branch_unit(ins->unit)) continue;
1975
1976 /* We ignore prepacked branches since the fragment epilogue is
1977 * just generally special */
1978 if (ins->prepacked_branch) continue;
1979
1980 /* Discards are similarly special and may not correspond to the
1981 * end of a block */
1982
1983 if (ins->branch.target_type == TARGET_DISCARD) continue;
1984
1985 if (branched) {
1986 /* We already branched, so this is dead */
1987 mir_remove_instruction(ins);
1988 }
1989
1990 branched = true;
1991 }
1992 }
1993
1994 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
1995 * the move can be propagated away entirely */
1996
1997 static bool
1998 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
1999 {
2000 /* Nothing to do */
2001 if (comp == midgard_outmod_none)
2002 return true;
2003
2004 if (*outmod == midgard_outmod_none) {
2005 *outmod = comp;
2006 return true;
2007 }
2008
2009 /* TODO: Compose rules */
2010 return false;
2011 }
2012
2013 static bool
2014 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2015 {
2016 bool progress = false;
2017
2018 mir_foreach_instr_in_block_safe(block, ins) {
2019 if (ins->type != TAG_ALU_4) continue;
2020 if (ins->alu.op != midgard_alu_op_fmov) continue;
2021 if (ins->alu.outmod != midgard_outmod_pos) continue;
2022
2023 /* TODO: Registers? */
2024 unsigned src = ins->ssa_args.src1;
2025 if (src >= ctx->func->impl->ssa_alloc) continue;
2026 assert(!mir_has_multiple_writes(ctx, src));
2027
2028 /* There might be a source modifier, too */
2029 if (mir_nontrivial_source2_mod(ins)) continue;
2030
2031 /* Backpropagate the modifier */
2032 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2033 if (v->type != TAG_ALU_4) continue;
2034 if (v->ssa_args.dest != src) continue;
2035
2036 /* Can we even take a float outmod? */
2037 if (midgard_is_integer_out_op(v->alu.op)) continue;
2038
2039 midgard_outmod_float temp = v->alu.outmod;
2040 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2041
2042 /* Throw in the towel.. */
2043 if (!progress) break;
2044
2045 /* Otherwise, transfer the modifier */
2046 v->alu.outmod = temp;
2047 ins->alu.outmod = midgard_outmod_none;
2048
2049 break;
2050 }
2051 }
2052
2053 return progress;
2054 }
2055
2056 static void
2057 emit_fragment_epilogue(compiler_context *ctx)
2058 {
2059 emit_explicit_constant(ctx, ctx->fragment_output, SSA_FIXED_REGISTER(0));
2060
2061 /* Perform the actual fragment writeout. We have two writeout/branch
2062 * instructions, forming a loop until writeout is successful as per the
2063 * docs. TODO: gl_FragDepth */
2064
2065 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2066 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2067 }
2068
2069 static midgard_block *
2070 emit_block(compiler_context *ctx, nir_block *block)
2071 {
2072 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2073 list_addtail(&this_block->link, &ctx->blocks);
2074
2075 this_block->is_scheduled = false;
2076 ++ctx->block_count;
2077
2078 ctx->texture_index[0] = -1;
2079 ctx->texture_index[1] = -1;
2080
2081 /* Add us as a successor to the block we are following */
2082 if (ctx->current_block)
2083 midgard_block_add_successor(ctx->current_block, this_block);
2084
2085 /* Set up current block */
2086 list_inithead(&this_block->instructions);
2087 ctx->current_block = this_block;
2088
2089 nir_foreach_instr(instr, block) {
2090 emit_instr(ctx, instr);
2091 ++ctx->instruction_count;
2092 }
2093
2094 inline_alu_constants(ctx);
2095 embedded_to_inline_constant(ctx);
2096
2097 /* Append fragment shader epilogue (value writeout) */
2098 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2099 if (block == nir_impl_last_block(ctx->func->impl)) {
2100 emit_fragment_epilogue(ctx);
2101 }
2102 }
2103
2104 if (block == nir_start_block(ctx->func->impl))
2105 ctx->initial_block = this_block;
2106
2107 if (block == nir_impl_last_block(ctx->func->impl))
2108 ctx->final_block = this_block;
2109
2110 /* Allow the next control flow to access us retroactively, for
2111 * branching etc */
2112 ctx->current_block = this_block;
2113
2114 /* Document the fallthrough chain */
2115 ctx->previous_source_block = this_block;
2116
2117 return this_block;
2118 }
2119
2120 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2121
2122 static void
2123 emit_if(struct compiler_context *ctx, nir_if *nif)
2124 {
2125 /* Conditional branches expect the condition in r31.w; emit a move for
2126 * that in the _previous_ block (which is the current block). */
2127 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2128
2129 /* Speculatively emit the branch, but we can't fill it in until later */
2130 EMIT(branch, true, true);
2131 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2132
2133 /* Emit the two subblocks */
2134 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2135
2136 /* Emit a jump from the end of the then block to the end of the else */
2137 EMIT(branch, false, false);
2138 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2139
2140 /* Emit second block, and check if it's empty */
2141
2142 int else_idx = ctx->block_count;
2143 int count_in = ctx->instruction_count;
2144 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2145 int after_else_idx = ctx->block_count;
2146
2147 /* Now that we have the subblocks emitted, fix up the branches */
2148
2149 assert(then_block);
2150 assert(else_block);
2151
2152 if (ctx->instruction_count == count_in) {
2153 /* The else block is empty, so don't emit an exit jump */
2154 mir_remove_instruction(then_exit);
2155 then_branch->branch.target_block = after_else_idx;
2156 } else {
2157 then_branch->branch.target_block = else_idx;
2158 then_exit->branch.target_block = after_else_idx;
2159 }
2160 }
2161
2162 static void
2163 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2164 {
2165 /* Remember where we are */
2166 midgard_block *start_block = ctx->current_block;
2167
2168 /* Allocate a loop number, growing the current inner loop depth */
2169 int loop_idx = ++ctx->current_loop_depth;
2170
2171 /* Get index from before the body so we can loop back later */
2172 int start_idx = ctx->block_count;
2173
2174 /* Emit the body itself */
2175 emit_cf_list(ctx, &nloop->body);
2176
2177 /* Branch back to loop back */
2178 struct midgard_instruction br_back = v_branch(false, false);
2179 br_back.branch.target_block = start_idx;
2180 emit_mir_instruction(ctx, br_back);
2181
2182 /* Mark down that branch in the graph. Note that we're really branching
2183 * to the block *after* we started in. TODO: Why doesn't the branch
2184 * itself have an off-by-one then...? */
2185 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2186
2187 /* Find the index of the block about to follow us (note: we don't add
2188 * one; blocks are 0-indexed so we get a fencepost problem) */
2189 int break_block_idx = ctx->block_count;
2190
2191 /* Fix up the break statements we emitted to point to the right place,
2192 * now that we can allocate a block number for them */
2193
2194 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2195 mir_foreach_instr_in_block(block, ins) {
2196 if (ins->type != TAG_ALU_4) continue;
2197 if (!ins->compact_branch) continue;
2198 if (ins->prepacked_branch) continue;
2199
2200 /* We found a branch -- check the type to see if we need to do anything */
2201 if (ins->branch.target_type != TARGET_BREAK) continue;
2202
2203 /* It's a break! Check if it's our break */
2204 if (ins->branch.target_break != loop_idx) continue;
2205
2206 /* Okay, cool, we're breaking out of this loop.
2207 * Rewrite from a break to a goto */
2208
2209 ins->branch.target_type = TARGET_GOTO;
2210 ins->branch.target_block = break_block_idx;
2211 }
2212 }
2213
2214 /* Now that we've finished emitting the loop, free up the depth again
2215 * so we play nice with recursion amid nested loops */
2216 --ctx->current_loop_depth;
2217
2218 /* Dump loop stats */
2219 ++ctx->loop_count;
2220 }
2221
2222 static midgard_block *
2223 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2224 {
2225 midgard_block *start_block = NULL;
2226
2227 foreach_list_typed(nir_cf_node, node, node, list) {
2228 switch (node->type) {
2229 case nir_cf_node_block: {
2230 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2231
2232 if (!start_block)
2233 start_block = block;
2234
2235 break;
2236 }
2237
2238 case nir_cf_node_if:
2239 emit_if(ctx, nir_cf_node_as_if(node));
2240 break;
2241
2242 case nir_cf_node_loop:
2243 emit_loop(ctx, nir_cf_node_as_loop(node));
2244 break;
2245
2246 case nir_cf_node_function:
2247 assert(0);
2248 break;
2249 }
2250 }
2251
2252 return start_block;
2253 }
2254
2255 /* Due to lookahead, we need to report the first tag executed in the command
2256 * stream and in branch targets. An initial block might be empty, so iterate
2257 * until we find one that 'works' */
2258
2259 static unsigned
2260 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2261 {
2262 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2263
2264 unsigned first_tag = 0;
2265
2266 do {
2267 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2268
2269 if (initial_bundle) {
2270 first_tag = initial_bundle->tag;
2271 break;
2272 }
2273
2274 /* Initial block is empty, try the next block */
2275 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2276 } while(initial_block != NULL);
2277
2278 assert(first_tag);
2279 return first_tag;
2280 }
2281
2282 int
2283 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2284 {
2285 struct util_dynarray *compiled = &program->compiled;
2286
2287 midgard_debug = debug_get_option_midgard_debug();
2288
2289 compiler_context ictx = {
2290 .nir = nir,
2291 .screen = screen,
2292 .stage = nir->info.stage,
2293
2294 .is_blend = is_blend,
2295 .blend_constant_offset = 0,
2296
2297 .alpha_ref = program->alpha_ref
2298 };
2299
2300 compiler_context *ctx = &ictx;
2301
2302 /* Start off with a safe cutoff, allowing usage of all 16 work
2303 * registers. Later, we'll promote uniform reads to uniform registers
2304 * if we determine it is beneficial to do so */
2305 ctx->uniform_cutoff = 8;
2306
2307 /* Initialize at a global (not block) level hash tables */
2308
2309 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2310 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2311 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2312
2313 /* Record the varying mapping for the command stream's bookkeeping */
2314
2315 struct exec_list *varyings =
2316 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2317
2318 unsigned max_varying = 0;
2319 nir_foreach_variable(var, varyings) {
2320 unsigned loc = var->data.driver_location;
2321 unsigned sz = glsl_type_size(var->type, FALSE);
2322
2323 for (int c = 0; c < sz; ++c) {
2324 program->varyings[loc + c] = var->data.location + c;
2325 max_varying = MAX2(max_varying, loc + c);
2326 }
2327 }
2328
2329 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2330 * (so we don't accidentally duplicate the epilogue since mesa/st has
2331 * messed with our I/O quite a bit already) */
2332
2333 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2334
2335 if (ctx->stage == MESA_SHADER_VERTEX) {
2336 NIR_PASS_V(nir, nir_lower_viewport_transform);
2337 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2338 }
2339
2340 NIR_PASS_V(nir, nir_lower_var_copies);
2341 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2342 NIR_PASS_V(nir, nir_split_var_copies);
2343 NIR_PASS_V(nir, nir_lower_var_copies);
2344 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2345 NIR_PASS_V(nir, nir_lower_var_copies);
2346 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2347
2348 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2349
2350 /* Optimisation passes */
2351
2352 optimise_nir(nir);
2353
2354 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2355 nir_print_shader(nir, stdout);
2356 }
2357
2358 /* Assign sysvals and counts, now that we're sure
2359 * (post-optimisation) */
2360
2361 midgard_nir_assign_sysvals(ctx, nir);
2362
2363 program->uniform_count = nir->num_uniforms;
2364 program->sysval_count = ctx->sysval_count;
2365 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2366
2367 nir_foreach_function(func, nir) {
2368 if (!func->impl)
2369 continue;
2370
2371 list_inithead(&ctx->blocks);
2372 ctx->block_count = 0;
2373 ctx->func = func;
2374
2375 emit_cf_list(ctx, &func->impl->body);
2376 emit_block(ctx, func->impl->end_block);
2377
2378 break; /* TODO: Multi-function shaders */
2379 }
2380
2381 util_dynarray_init(compiled, NULL);
2382
2383 /* MIR-level optimizations */
2384
2385 bool progress = false;
2386
2387 do {
2388 progress = false;
2389
2390 mir_foreach_block(ctx, block) {
2391 progress |= midgard_opt_pos_propagate(ctx, block);
2392 progress |= midgard_opt_copy_prop(ctx, block);
2393 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2394 progress |= midgard_opt_combine_projection(ctx, block);
2395 progress |= midgard_opt_varying_projection(ctx, block);
2396 }
2397 } while (progress);
2398
2399 /* Nested control-flow can result in dead branches at the end of the
2400 * block. This messes with our analysis and is just dead code, so cull
2401 * them */
2402 mir_foreach_block(ctx, block) {
2403 midgard_opt_cull_dead_branch(ctx, block);
2404 }
2405
2406 /* Schedule! */
2407 schedule_program(ctx);
2408
2409 /* Now that all the bundles are scheduled and we can calculate block
2410 * sizes, emit actual branch instructions rather than placeholders */
2411
2412 int br_block_idx = 0;
2413
2414 mir_foreach_block(ctx, block) {
2415 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2416 for (int c = 0; c < bundle->instruction_count; ++c) {
2417 midgard_instruction *ins = bundle->instructions[c];
2418
2419 if (!midgard_is_branch_unit(ins->unit)) continue;
2420
2421 if (ins->prepacked_branch) continue;
2422
2423 /* Parse some basic branch info */
2424 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2425 bool is_conditional = ins->branch.conditional;
2426 bool is_inverted = ins->branch.invert_conditional;
2427 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2428
2429 /* Determine the block we're jumping to */
2430 int target_number = ins->branch.target_block;
2431
2432 /* Report the destination tag */
2433 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2434
2435 /* Count up the number of quadwords we're
2436 * jumping over = number of quadwords until
2437 * (br_block_idx, target_number) */
2438
2439 int quadword_offset = 0;
2440
2441 if (is_discard) {
2442 /* Jump to the end of the shader. We
2443 * need to include not only the
2444 * following blocks, but also the
2445 * contents of our current block (since
2446 * discard can come in the middle of
2447 * the block) */
2448
2449 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2450
2451 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2452 quadword_offset += quadword_size(bun->tag);
2453 }
2454
2455 mir_foreach_block_from(ctx, blk, b) {
2456 quadword_offset += b->quadword_count;
2457 }
2458
2459 } else if (target_number > br_block_idx) {
2460 /* Jump forward */
2461
2462 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2463 midgard_block *blk = mir_get_block(ctx, idx);
2464 assert(blk);
2465
2466 quadword_offset += blk->quadword_count;
2467 }
2468 } else {
2469 /* Jump backwards */
2470
2471 for (int idx = br_block_idx; idx >= target_number; --idx) {
2472 midgard_block *blk = mir_get_block(ctx, idx);
2473 assert(blk);
2474
2475 quadword_offset -= blk->quadword_count;
2476 }
2477 }
2478
2479 /* Unconditional extended branches (far jumps)
2480 * have issues, so we always use a conditional
2481 * branch, setting the condition to always for
2482 * unconditional. For compact unconditional
2483 * branches, cond isn't used so it doesn't
2484 * matter what we pick. */
2485
2486 midgard_condition cond =
2487 !is_conditional ? midgard_condition_always :
2488 is_inverted ? midgard_condition_false :
2489 midgard_condition_true;
2490
2491 midgard_jmp_writeout_op op =
2492 is_discard ? midgard_jmp_writeout_op_discard :
2493 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2494 midgard_jmp_writeout_op_branch_cond;
2495
2496 if (!is_compact) {
2497 midgard_branch_extended branch =
2498 midgard_create_branch_extended(
2499 cond, op,
2500 dest_tag,
2501 quadword_offset);
2502
2503 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2504 } else if (is_conditional || is_discard) {
2505 midgard_branch_cond branch = {
2506 .op = op,
2507 .dest_tag = dest_tag,
2508 .offset = quadword_offset,
2509 .cond = cond
2510 };
2511
2512 assert(branch.offset == quadword_offset);
2513
2514 memcpy(&ins->br_compact, &branch, sizeof(branch));
2515 } else {
2516 assert(op == midgard_jmp_writeout_op_branch_uncond);
2517
2518 midgard_branch_uncond branch = {
2519 .op = op,
2520 .dest_tag = dest_tag,
2521 .offset = quadword_offset,
2522 .unknown = 1
2523 };
2524
2525 assert(branch.offset == quadword_offset);
2526
2527 memcpy(&ins->br_compact, &branch, sizeof(branch));
2528 }
2529 }
2530 }
2531
2532 ++br_block_idx;
2533 }
2534
2535 /* Emit flat binary from the instruction arrays. Iterate each block in
2536 * sequence. Save instruction boundaries such that lookahead tags can
2537 * be assigned easily */
2538
2539 /* Cache _all_ bundles in source order for lookahead across failed branches */
2540
2541 int bundle_count = 0;
2542 mir_foreach_block(ctx, block) {
2543 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2544 }
2545 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2546 int bundle_idx = 0;
2547 mir_foreach_block(ctx, block) {
2548 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2549 source_order_bundles[bundle_idx++] = bundle;
2550 }
2551 }
2552
2553 int current_bundle = 0;
2554
2555 /* Midgard prefetches instruction types, so during emission we
2556 * need to lookahead. Unless this is the last instruction, in
2557 * which we return 1. Or if this is the second to last and the
2558 * last is an ALU, then it's also 1... */
2559
2560 mir_foreach_block(ctx, block) {
2561 mir_foreach_bundle_in_block(block, bundle) {
2562 int lookahead = 1;
2563
2564 if (current_bundle + 1 < bundle_count) {
2565 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2566
2567 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2568 lookahead = 1;
2569 } else {
2570 lookahead = next;
2571 }
2572 }
2573
2574 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2575 ++current_bundle;
2576 }
2577
2578 /* TODO: Free deeper */
2579 //util_dynarray_fini(&block->instructions);
2580 }
2581
2582 free(source_order_bundles);
2583
2584 /* Report the very first tag executed */
2585 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2586
2587 /* Deal with off-by-one related to the fencepost problem */
2588 program->work_register_count = ctx->work_registers + 1;
2589 program->uniform_cutoff = ctx->uniform_cutoff;
2590
2591 program->blend_patch_offset = ctx->blend_constant_offset;
2592 program->tls_size = ctx->tls_size;
2593
2594 if (midgard_debug & MIDGARD_DBG_SHADERS)
2595 disassemble_midgard(program->compiled.data, program->compiled.size);
2596
2597 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2598 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2599
2600 /* Count instructions and bundles */
2601
2602 mir_foreach_instr_global(ctx, ins) {
2603 nr_ins++;
2604 }
2605
2606 mir_foreach_block(ctx, block) {
2607 nr_bundles += util_dynarray_num_elements(
2608 &block->bundles, midgard_bundle);
2609
2610 nr_quadwords += block->quadword_count;
2611 }
2612
2613 /* Calculate thread count. There are certain cutoffs by
2614 * register count for thread count */
2615
2616 unsigned nr_registers = program->work_register_count;
2617
2618 unsigned nr_threads =
2619 (nr_registers <= 4) ? 4 :
2620 (nr_registers <= 8) ? 2 :
2621 1;
2622
2623 /* Dump stats */
2624
2625 fprintf(stderr, "shader%d - %s shader: "
2626 "%u inst, %u bundles, %u quadwords, "
2627 "%u registers, %u threads, %u loops, "
2628 "%d:%d spills:fills\n",
2629 SHADER_DB_COUNT++,
2630 gl_shader_stage_name(ctx->stage),
2631 nr_ins, nr_bundles, nr_quadwords,
2632 nr_registers, nr_threads,
2633 ctx->loop_count,
2634 ctx->spills, ctx->fills);
2635 }
2636
2637
2638 return 0;
2639 }